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ABSTRACT

Much of the recent literature on automatic speech recogni-
tion (ASR) is taking an end-to-end approach. Unlike English
where the writing system is closely related to sound, Chinese
characters (Hanzi) represent meaning, not sound. We pro-
pose factoring audio — Hanzi into two sub-tasks: (1) audio
— Pinyin and (2) Pinyin — Hanzi, where Pinyin is a system
of phonetic transcription of standard Chinese. Factoring the
audio — Hanzi task in this way achieves 3.9% CER (charac-
ter error rate) on the Aishell-1 corpus, the best result reported
on this dataset so far.

Index Terms— ASR, Wav2vec2.0, KenLM, Transformer

1. INTRODUCTION

Automatic speech recognition (ASR) maps from speech audio
to orthographic transcription. For languages with a phonemic
writing system such as Spanish and English, the mapping is
largely from an acoustic stream to a phonological representa-
tion. For languages with a logographic writing system such
as Mandarin Chinese, however, the mapping is more com-
plicated due to the arbitrary association between sounds and
Chinese characters.

In conventional ASR systems, a pronunciation lexicon or
model is used to bridge orthographic words and phonemes or
other phonological representations. The difference in the type
of orthography only requires building language-specific pro-
nunciation lexicons or models, but the framework of separat-
ing acoustic, pronunciation, and language models is equally
valid for languages with different writing systems.

In recent years, end-to-end approaches to automatic
speech recognition have gained popularity and achieved great
success. End-to-end speech recognition does not use a lex-
icon. It learns a mapping between speech audio and ortho-
graphic transcription entirely and directly from paired data.
For English, letters or sub-words have been used as targets to
learn by a network model. These targets are largely phono-
logical units (although English does not have a one-to-one
correspondence between sounds and letters). For Mandarin,
the targets are naturally Chinese characters. Chinese charac-
ters are not phonological units. From our analysis of a large
corpus, a tonal syllable in Mandarin Chinese corresponds to

7 Chinese characters on average, and the number may be as
high as 80 for some syllables (see results in Table 2] below).
Apparently, the burden is much higher for a network to learn
a mapping between audio and Chinese characters, compared
to English letters.

In this study, we promote the use of phonological units,
represented by Pinyin, as targets in Mandarin speech recog-
nition. We propose a framework for Mandarin ASR that con-
sists of two cascade components: from audio to Pinyin, which
we call “recognition”, and from Pinyin to Chinese characters,
called “transcription”. We argue that the recognition compo-
nent is comparable to end-to-end English ASR. The transcrip-
tion component is independent and should be decoupled from
recognition. Our method achieved 3.9% CER (character er-
ror rate) on the Aisell-1 corpus, the best reported result on the
dataset so far.

2. RELATED WORK

2.1. State of the art of Mandarin ASR

Transformer-based models have become popular recently.
The numbers below summarize 30 arXiv papers [1} 2} 314} 5}
6l 17,1801 10L 111 (124 [13] 141 [151 [16} 17, 18 (19} 20} 211, 22} 23]
24,125,126, 1277}, 1281 129, 130] in the last 12 months that reported
performance on Aishell 1, a benchmark dataset for Mandarin
ASR. There were 106 index terms in these 30 papers. After
“speech recognition”, the most common index terms are:

* transformer (17): transformer (12), speech trans-
former (2), transformer-xl (1), spike triggered non-
autoregressive transformer (1), convolution-augmented
transformer (1)

* end-to-end (14): end-to-end speech recognition (5),
end-to-end (4), end-to-end asr (1), robust end-to-end
speech recognition (1), end-to-end speech processing
(1), end-to-end models (1), streaming end-to-end (1)

 attention (12): self-attention (2), attention (1), self-
attention mechanism (1), self-attention network (1),
gaussian-based self-attentin (1), multi-head attention
(1), hybrid ctc and attention (1), ctc-attention (1), on-
line attention (1), stochastic attention head removal (1),
MoChA (1)



* non-autoregressive (8): non-autoregressive (7), spike
triggered non-autoregressive transformer (1)

* ctc (6): connectionist temporal classification (2), ctc
(1), ctc module (1), ctc-attention (1), hybrid ctc and at-
tention (1)

 conformer (4): conformer (3), convolution-augmented
transformer (1)

e streaming (4): streaming speech recognition (3),
streaming end-to-end (1)

From the list, we can see that Transformer-based models
are predominately used. 20 of the 28 papers adopted Trans-
former [31] or Conformer [32], i.e., convolution-augmented
Transformer. Transformer is a sequence-to-sequence model
that has three components: encoder, attention, and decoder.
The encoder extracts acoustic features and the decoder ex-
tracts language features and predicts output sequence, both
with the help of self-attention. The alignment between acous-
tic and language features are learned by encoder-decoder at-
tention. From the point of view of conventional ASR, the
three components of Transformer function as acoustic model-
ing, language modeling, and pronunciation modeling, respec-
tively. Therefore, the model can be, and has been, naturally
applied for end-to-end speech recognition.

Much effort has been made to improve the architecture
of Transformer, originally proposed for machine translation,
to make it more suitable for speech recognition. Conformer
[32]], for example, combines Transformer with CNN (convo-
lutional neural network) to model both global and local de-
pendencies of an audio sequence. [§] conducted experiments
on 17 ASR corpora, including Aishell-1, to compare the per-
formance of Transformer and Conformer models. Their re-
sults showed that Conformer outperformed Transformer on
14 of the 17 corpora. On Aishell-1 test set, the character error
rate was 6.7% for Transformer and 4.7% for Conformer.

CTC (Connectionist Temporal Classification) [33] is an-
other frequent keyword on the list. Like attention, CTC can
do alignment between input and output that have different
lengths (such as audio and linguistic labels), and has been
widely used in end-to-end speech recognition. With CTC,
fine-tuning pre-trained wav2vec2.0 [34]] models has achieved
state-of-the-art performance for ASR in English and low re-
source languages [35]. We have found that the method also
performed well on emotion recognition [36] and recognition
of suprasegmental units such as syllables, tones, and pitch ac-
cents [37]. In this paper, we adopted Wav2vec2.0 with CTC
for “recognition” and Transformer for “transcription” in our
proposed framework.

Most of the surveyed papers (21 of 30) reported a charac-
ter error rate between 5% and 7% on Aishell-1 test set [38]], an
improve over the baseline system published with the dataset
in Kaldi [39] (i.e., error rate of 7.9% using Chain TDNN
model). Five papers reported error rates under 5% [8l, 16, 24}

25, 130]. The best character error rate of 4.5% was reported
in [24], which combines conformer with WEST (weighted
finite-state transducers) based non-autoregressive decoding.
[30] proposed a method to correct errors in ASR output. They
reported character error rate of 4.8% using the Conformer ar-
chitecture and 4.1% after error corrections.

2.2. Modeling units in Mandarin ASR

In conventional, hmm-based ASR systems, modeling units
are phonological representations. For Mandarin ASR, phono-
logical units such as phonemes, syllable initials/finals, and
syllables have been employed [40, 41]]. A central issue in
choosing modeling units for Mandarin ASR is how to model
tones [42, 143]]. A number of approaches have been proposed
in the literature, by either modeling tones independently from
phones or using tone-dependent phonological units such as
tonal finals or tonal syllables.

End-to-end ASR directly models graphemes or other units
in orthography. For English, letters, sub-words, and words
have been used. [44] proposed to use Unicode bytes as a rep-
resentation of text. Their results showed that bytes are supe-
rior to grapheme characters over a wide variety of languages
in monolingual end-to- end speech recognition. Characters
are the most commonly used modeling unit for end-to-end
ASR in Mandarin Chinese; sub-words have also been em-
ployed [45]].

[46] compared the performance of syllables, initials/finals,
and phones in deep neural networks (DNNs) based Mandarin
ASR. Their results showed that context dependent phones ob-
tained the best performance. [47] studied five modeling units
in Transformer-based Mandarin ASR: context-independent
phonemes, syllables, words, sub-words and characters. They
showed that character-based model performed best. [48] re-
ported that joint character-pinyin training improved character
error rate over the character only model in an attention-based
model for online Mandarin speech recognition. [49] pro-
posed hybrid Character-Syllable modeling units by mixing
high frequency Chinese characters and syllables, and demon-
strated that using these units in CTC based acoustic modeling
for Mandarin speech recognition could dramatically reduce
character error rate. [S0] compared the performance of dif-
ferent modeling units in RNNT (Recurrent Neural Network
Transducer) based Mandarin ASR. They found that using
syllables with tone outperformed the use of initials and finals
with tone with an average of 13.5% relative character error
rate reduction. In this study, we tried both syllables with
and without tone as modeling units for recognition in our
proposed framework.

3. PROPOSED FRAMEWORK

The proposed framework is illustrated in Figure 1.
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Fig. 1. The framework of Mandarin ASR with decoupled
recognition and transcription components.

The recognition module employs Wav2vec2.0 with CTC,
fine-tuned using paired audio and pinyin data, for recognizing
pinyin from audio. A pinyin language model, i.e., a language
model trained on sentences in pinyin, may also be employed
in decoding. The following transcription module converts the
pinyin output into Chinese characters (i.e., Hanzi) through a
Transformer model.

To train a pinyin language model (KenLM n-gram) and
Pinyin-Hanzi Transformer we only need text data. Because
large-scale text corpora are easily available, these models can
be trained on a much larger dataset than is used for fine-tuning
Wav2vec2.0.

Several similar frameworks have been proposed in the
literature. [S1]] proposed a decoupled transformer model
to use monolingual paired data and unpaired text data to
alleviate the problem of data shortage in end-to-end ASR
system for code-switching. The model consists of two parts:
audio-to-phoneme (A2P) network and phoneme-to-text (P2T)
network, and they are optimized jointly through attention fu-
sion. [52f] proposed to separate the decoder subnet from the
encoder output in end-to-end speech recognition. In their
framework, the decoupled subnet is an independently train-
able LM subnet, which can easily be updated using extra text
data. [53]] proposed to use an RNN-T to transform acoustic
feature into syllable sequence, and then convert the syllable
sequence into character sequence through an RNN-T-based
syllable-to-character converter.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

Our experiments were conducted on Aishell-1, a benchmark
dataset for Mandarin ASR. Aishell-1 contains 165 hours of
read speech in Mandarin Chinese from 400 speakers. The
speakers are from different dialect regions but most are from
northern areas. The corpus includes training (150 hours), de-
velopment (10 hours), and test (5 hours) sets.

Two additional text corpora, the Lancaster Corpus of
Mandarin Chinese and Chinese Gigaword Fifth Edition,
were used to train language models and Pinyin-to-Hanzi
transformer models. We selected sentences between 5 and
40 characters from these corpora, and made sure that the

sentences did not appear in the development or test set of
Aishell-1.

4.2. Fine-tuning Wav2vec 2.0

The procedure of fine-tuning Wav2vec2.0 is illustrated in Fig-
ure 2. A randomly initialized linear projection is added on top
of the contextual representations of Wav2vec 2.0 to map the
representations into modeling units, and the entire model is
optimized by minimizing the CTC loss through fine-tuning.

Characters: it (9 R th EMNLHE
Pinyin+T: tal de5 biao3 xian4 ye3 geng4 jial quan2 mian4
Pinyin-T:  ta de biao xian ye geng jia quan mian
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Fig. 2. The framework of fine-tuning Wav2vec 2.0 for pinyin
or character recognition.

We tried both pinyin with tones (Pinyin+T) and without
tones (Pinyin-T) as modeling units for Pinyin recognition. To
compare with the proposed framework of decoupling recog-
nition and transcription, we also tried Chinese characters as
modeling units, using Wav2vec2.0 to directly recognize Chi-
nese characters. The number of modeling units of characters,
pinyin syllables with and without tone is 4333, 2020, and 408,
respectively.

To be used for decoding Wav2vec2.0 with CTC, KenLM
6-gram language models were trained for different model-
ing units, respectively. For pinyin language models, Chinese
characters were converted into Pinyin syllables using a python
package called pypinyin. Every character or pinyin is an in-
dependent unit and word boundaries are not present in the
training data. A dummy lexicon, in which every modeling
unit has a pronunciation of itself, is used for decoding with
the language model.

The experiments were conducted using fairseq. In all ex-
periments, the wav2vec 2.0 large model pre-trained on 960
hours of Librispeech audio, libri960_big.pt, was used for fine-
tuning. For the first 10k updates only the output classifier
is trained, after which the Transformer is also updated. The
max_tokens was set to 1.1 million (which is equivalent to
68.75-second audio with sampling rate of 16 kHz), the learn-
ing rate was 5e-5. The development set was used to deter-
mine the number of updates, which is 300k ( 109 epochs) for



Table 1. Results of fine-tuning Wav2vec2.0 for recognition
of different units. The numbers in parentheses are Pinyin-
T errors, calculated by removing tone marks from Pinyin+T
output.

Training data Unit error rate
Wav2vec2.0 | KenLM | Pinyin+T | Pinyin-T | Char.
No LM 4.3% 2.8% 7.2%
(2.6%)
120k 3.6% 2.7% 6.8%
Aishell-1 (2.3%)
Aishell-1 IM 3.0% 2.3% 5.9%
(1.9%)
10M 2.8% 2.2% 5.7%
(1.8%)
90M 2.5% 2.0% 5.3%
(1.7%)

Pinyin+T, 470K ( 170 epochs) for Pinyin-T and 460k ( 167
epochs) for characters.

Table[T]lists the results, from using no language model and
language models trained on progressively increasing amounts
of text data. When no language model was used, Pinyin+T
had a unit error rate 4.3%. If we remove tone marks from the
output of Pinyin+T, the units become Pinyin-T with an error
rate of 2.6%, lower than that from using Pinyin-T as modeling
units. The same result can also be seen for language models
trained on different amounts of data. For example, the Pinyin-
T unit error rate was 1.7% from the Pinyin+T model and 2.0%
from the Pinyin-T model, when the language models were
trained on 90M sentences. This result suggests that there is
an interaction between tones and segments, and therefore seg-
ments can be better distinguished from each other with tone.

When no language model was used, the unit error rate
was 4.3%, 2.8%, and 7.2% for Pinyin+T, Pinyin-T, and char-
acters, respectively. Language models helped the recognition
of these units. With a language model trained on 90 million
sentences, the Pinyin+T, Pinyin-T, and Character error rate
dropped to 2.5%, 2.0%, and 5.3%, respectively.

4.3. Pinyin to Hanzi

The pinyin output from the recognition module needs to be
converted into Chinese characters. This task can be seen as a
translation from pinyin to Chinese characters. To understand
the complexity of this task, we did an analysis of the mapping
from pinyin and Chinese characters, by counting the number
of possible outputs in Chinese characters given a pinyin se-
quence. The results, based on 90 million sentences, are listed
in Table 2] for both pinyin with and without tone.

From Table 2] we can see that a 1-gram pinyin with tone
corresponds to 7 Chinese characters on average, and the num-

Table 2. Statistics of mapping from pinyin N-gram, with or
without tone, to Chinese characters. The numbers in paren-
theses are for pinyin without tone.

N-gram | Average | Maximum | Percentage
I-gram 7.68 82 16.9%
(23.83) (156) (3.7%)
2-gram 4.71 302 30.4%
(28.19) (1380) (6.0%)
3-gram 1.50 177 74.1%
(3.64) (870) (43.6%)
4-gram 1.11 43 92.1%
(1.39) (182) (79.5%)
5-gram 1.03 28 97.4%
(1.09) (63) (93.3%)
6-gram 1.01 14 99.0%
(1.03) 27 (97.6%)

Table 3. Performance of Transformer models converting
pinyin to Chinese characters.

Input units
Pinyin+T
Pinyin-T

output character error rate
1.2%
3.6%

ber may be as high as 80 for some 1-grams. Only 16.9% of
1-grams correspond to only one character. A 6-gram pinyin
with tone corresponds to 1.01 sequences of characters on av-
erage, and 99.0% of 6-grams correspond to only one sequence
of characters. Without tone, a 1-gram pinyin corresponds to
23.83 Chinese characters on average, and 97.6% of 6-grams
correspond to only one sequence of characters.

We trained Transformer models to convert pinyin to Chi-
nese characters, for pinyin with and without tone, respec-
tively. We used the same architecture and hyperparameters as
transformer_iwslt_de_en in fairseq. Both models were trained
on paired pinyin and characters of 90 million sentences for
20 epochs. Table |3|lists the results of testing on a held-aside
dataset which consists of 14k sentences.

4.4. Evaluation

We evaluated the performance of the proposed framework and
compared it to fine-tuning wav2vec2.0 to directly output Chi-
nese characters, an end-to-end approach. The results of using
pinyin+T and pinyin-T as recognition units are listed in Ta-
ble 4] and Table[5] respectively. From Table[d] we can see that
using pinyin+T, our proposed framework significantly outper-
formed the baseline end-to-end approach. With a KenLM
language model trained on additional text data of 90 million
sentences, our method achieved 3.9% character error rate on



Table 4. Character error rate on Aishell-1 test set, using
pinyin+T as recognition units in the proposed framework.

Training data Character error rate
Wav2vec2.0 | KenLM | End-to-end | Pinyin+T

No LM 7.2% 6.1%

Aishell-1 Aishell-1 6.8% 5.3%

90M 5.3% 3.9%

Table 5. Character error rate on Aishell-1 test set, using
pinyin-T as recognition units in the proposed framework.

Training data Character error rate
Wav2vec2.0 | KenLM | End-to-end | Pinyin-T

No LM 7.2% 7.3%

Aishell-1 Aishell-1 6.8% 7.1%

90M 5.3% 6.0%

Aishell-1 test set, a 35% error reduction over the end-to-end
approach. It is also the best reported result on the benchmark
dataset so far.

When pinyin-T is used as recognition units, however, the
performance of the proposed framework underperformed the
baseline end-to-end approach, as shown in Table 5]

5. CONCLUSIONS

Mandarin ASR maps from audio to Hanzi. In this study, we
proposed a framework that decomposes the task into two sub-
tasks: audio — Pinyin (“recognition) and Pinyin — Hanzi
("transcription”). Our method achieved 3.9% character error
rate on the Aishell-1 corpus, the best reported result on the
dataset so far.

We compared the performance of using pinyin with
(pinyin+T) and without (pinyin-T) tone as recognition units
in our proposed framework. Although the recognition-unit
error rate was slightly lower when pinyin-T was employed,
converting from pinyin-T into Chinese characters generated
more errors. As a result, using pinyin+T outperformed the
baseline end-to-end approach with a large margin (i.e., 35%
relative error reduction) whereas using pinyin-T underper-
formed the baseline. From the application point of view, new
models need to be developed to improve the accuracy of con-
verting pinyin-T into Chinese characters. From a linguistic
point of view, however, pinyin-T is an incomplete representa-
tion of sound in Mandarin Chinese and therefore should not
be used as recognition units in our proposed framework.

6. REFERENCES

[1] Baiji Liu, Songjun Cao2, Sining Sun, Weibin Zhang,
and Long Ma, “Multi-head monotonic chunkwise at-
tention for online speech recognition,” arXiv preprint
arXiv:2005.00205, 2020.

[2] Ye Bail, Jiangyan Yi, Jianhua Tao, Zhengkun Tian,
Zhengqi Wenl, and Shuai Zhang, “Listen atten-
tively, and spell once: Whole sentence generation via a
non-autoregressive architecture for low-latency speech
recognition,” arXiv preprint arXiv:2005.04862, 2020.

[3] Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Ye Bai,
Shuai Zhang, and Zhengqi Wen, “Spike-triggered non-
autoregressive transformer for end-to-end speech recog-
nition,” arXiv preprint arXiv:2005.07903, 2020.

[4] Dongwei Jiang, Wubo Li, Ruixiong Zhang, Miao Cao,
Ne Luo, Yang Han, Wei Zou, and Xiangang Li, “A
further study of unsupervised pre-training for trans-
former based speech recognition,”  arXiv preprint
arXiv:2005.09862, 2020.

[5] Haoneng Luo, Shiliang Zhang, Ming Lei, and Lei
Xie, “Simplified self-attention for transformer-
based end-to-end speech recognition,” arXiv preprint
arXiv:2005.10463, 2020.

[6] Xinyuan Zhou, Grandee Lee, Emre Yilmaz, Yan-
hua Long, Jiaen Liang, and Haizhou Li, “Self-
and-mixed attention decoder with deep acoustic struc-
ture for transformer-based Ivcsr,” arXiv preprint
arXiv:2006.10407, 2020.

[7] Xi Chen, Songyang Zhang, Dandan Song, Peng
Ouyang, and Shouyi Yin, “Transformer with bidirec-
tional decoder for speech recognition,” arXiv preprint
arXiv:2008.04481, 2020.

[8] Pengcheng Guo, Florian Boyer, Xuankai Chang,
Tomoki Hayashi5, Yosuke Higuchi, Hirofumi Inaguma,
Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jia-
tong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou
Zhang, and Yuekai Zhang, “Recent developments on es-
pnet toolkit,” arXiv preprint arXiv:2010.13956, 2020.

[9] Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao, Shuai
Zhang, and Zhengqi Wen, “One in a hundred: Se-
lect the best predicted sequence from numerous candi-
dates for streaming speech recognition,” arXiv preprint
arXiv:2010.14791, 2020.

[10] Xingchen Song, Zhiyong Wu, Yiheng Huang, Chao
Weng, Dan Su, and Helen Meng, “Non-autoregressive
transformer asr with ctc-enhanced decoder input,” arXiv
preprint arXiv:2010.15025, 2021.



(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

Mingkun Huang, Jun Zhang, Meng Cai, Yang Zhang,
Jiali Yao, Yongbin You, Yi He, and Zejun Ma, “Improv-
ing mn transducer with normalized jointer network,”
arXiv preprint arXiv:2011.01576, 2020.

Shucong Zhang, Erfan Loweimi, Peter Bell, and Steve
Renals, “‘Stochastic attention head removal: A simple
and effective method for improving transformer based
asr models,” arXiv preprint arXiv:2011.04004, 2021.

Cunhang Fan, Jiangyan Yi, Jianhua Tao, Zhengkun
Tian, Bin Liu, and Zhengqi Wen, “Gated recurrent fu-
sion with joint training framework for robust end-to-end
speech recognition,” arXiv preprint arXiv:2011.04249,
2020.

Jian Luo, Jianzong Wang, Ning Cheng, Guilin Jiang,
and Jing Xiao, ‘“Multi-quartznet: Multi-resolution con-
volution for speech recognition with multi-layer feature
fusion,” arXiv preprint arXiv:2011.13090, 2020.

Mohan Li, Catalin Zorila, and Rama Doddipatla,
“Transformer-based online speech recognition with
decoder-end adaptive computation steps,”’
preprint arXiv:2011.13834, 2020.

arXiv

Binbin Zhang, Di Wu, Zhuoyuan Yao, Xiong Wang, Fan
Yu, Chao Yang, Liyong Guo, Yaguang Hu, Lei Xie, and
Xin Lei, “Unified streaming and non-streaming two-
pass end-to-end model for speech recognition,” arXiv
preprint arXiv:2012.05481, 2020.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen, Lei
Xie, and Xin Lei, “Wenet: Production oriented stream-
ing and non-streaming end-to-end speech recognition
toolkit,” arXiv preprint arXiv:2102.01547, 2021.

Jaesong Lee and Shinji Watanabe, “Intermediate loss
regularization for ctc-based speech recognition,” arXiv
preprint arXiv:2102.03216, 2021.

Chengdong Liang, Menglong Xu, and Xiao-Lei Zhang,
“Transformer-based end-to-end speech recognition with
residual gaussian-based self-attention,” arXiv preprint
arXiv:2103.15722, 2021.

Lujun Li, Yikai Kang, Yuchen Shi, Ludwig Kurzinger,
Tobias Watzel, and Gerhard Rigoll, “Adversarial
joint training with self-attention mechanism for ro-
bust end-to-end speech recognition,” arXiv preprint
arXiv:2104.01471, 2021.

Somshubra Majumdar, Jagadeesh Balam, Oleksii
Hrinchuk, Vitaly Lavrukhin, Vahid Noroozi, and Boris
Ginsburg, “Citrinet: Closing the gap between non-
autoregressive and autoregressive end-to-end models
for automatic speech recognition,”  arXiv preprint
arXiv:2104.01721, 2021.

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Jumon Nozaki and Tatsuya Komatsu, “Relaxing the
conditional independence assumption of ctc-based asr
by conditioning on intermediate predictions,” arXiv
preprint arXiv:2104.02724, 2021.

Xian Shi, Pan Zhou, Wei Chen, and Lei Xie, “Darts-
conformer: Towards efficient gradient-based neural ar-
chitecture search for end-to-end asr,” arXiv preprint
arXiv:2104.02868, 2021.

Zhichao Wang, Wenwen Yang, Pan Zhou, and Wei
Chen, “Wnars: Wfst based non-autoregressive stream-
ing end-to-end speech recognition,” arXiv preprint
arXiv:2104.03587, 2021.

Fan Yu, Haoneng Luo, Pengcheng Guo, Yuhao Liang,
Zhuoyuan Yao, Lei Xie, Yingying Gao, Leijing Hou,
and Shilei Zhang, “Boundary and context aware training
for cif-based non-autoregressive end-to-end asr,” arXiv
preprint arXiv:2104.04702, 2021.

Fu-Hao Yu and Kuan-Yu Chen, “Non-autoregressive
transformer-based end-to-end asr using bert,” arXiv
preprint arXiv:2104.04805, 2021.

Yukun Liu, Ta Lil, Pengyuan Zhang, and Yonghong
Yan, “Improved conformer-based end-to-end speech
recognition using neural architecture search,” arXiv
preprint arXiv:2104.05390, 2021.

Shengqgiang Li, Menglong Xu, and Xiao-Lei Zhang,
“Efficient conformer-based speech recognition with lin-
ear attention,” arXiv preprint arXiv:2104.06865, 2021.

Mohan Li, Catalin Zorila, and Rama Doddipatla,
“Head-synchronous decoding for transformer-based
streaming ast,” arXiv preprint arXiv:2104.12631, 2021.

Yichong Leng, Xu Tan, Linchen Zhu, Jin Xu, Rengian
Luo, Linquan Liu, Tao Qin, Xiang-Yang Li, Ed Lin, and
Tie-Yan Liu, “Fastcorrect: Fast error correction with
edit alignment for automatic speech recognition,” arXiv
preprint arXiv:2105.03842, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” Ad-
vances in neural information processing systems, pp.
5998-6008, 2017.

Anmol Gulati, James Qin, C. Chiu, Niki Parmar,
Y. Zhang, Jiahui Yu, Wei Han, Shibo Wang, Z. Zhang,
Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recog-
nition,” Proceedings of Interspeech, 2020.



(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

Alex Graves, Santiago Fernandez, Faustino Gomez, and
Jiirgen Schmidhuber, “Connectionist temporal classifi-
cation: labelling unsegmented data with recurrent neural
networks,” Proceedings of the 23rd international con-
ference on Machine learning, pp. 369-376, 2006.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” arXiv
preprint arXiv:2006.11477, 2020.

Cheng Yi, Jianzhong Wang, Ning Cheng, Shiyu
Zhou, and Bo Xu, “Applying wav2vec2.0 to
speech recognition in various low-resource languages,”
ArXiv:2012.12121, 2020.

Xingyu Cai, Jiahong Yuan, Renjie Zheng, Liang Huang,
and Kenneth Church, “Speech emotion recognition with
multi-task learning,” Proceedings of Interspeech 2021,
2021.

Jiahong Yuan, Neville Ryant, Xingyu Cai, Kenneth
Church, and Mark Liberman, “Automatic recognition of
suprasegmentals in speech,” submitted to ASRU, 2021.

Hui Bu, Jiayu Du, X. Na, Bengu Wu, and Hao Zheng,
“Aishell-1: An open-source mandarin speech corpus
and a speech recognition baseline,” Proceedings of O-
COCOSDA, 2017.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, ,” in I[EEE
2011 Workshop on Automatic Speech Recognition and
Understanding, 2011.

C. Chen, R. Gopinath, M. Monkowski, M. Picheny, and
K. Shen, “New methods in continuous mandarin speech
recognition,” in EUROSPEECH, 1997.

Mei-Yuh Hwang, Gang Peng, Mari Ostendorf, Wen
Wang, Arlo Faria, and Aaron Heidel, “Build-
ing a highly accurate mandarin speech recognizer
with language-independent technologies and language-
dependent modules,” [EEE Transactions on Audio,
Speech & Language Processing, vol. 17, pp. 1253—
1262, 2009.

Eric Chang, Jian-Lai Zhou, Shuo Di, Chao-Tsung
Huang, and Kai-Fu Lee, “Large vocabulary mandarin
speech recognition with different approaches in model-
ing tones,” in INTERSPEECH, 2000.

Xin Lei, Modeling Lexical Tones for Mandarin Large
Vocabulary Continuous Speech Recognition, PhD the-
sis, University of Washington, 2006.

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

Bo Li, Yu Zhang, T. Sainath, Yonghui Wu, and William
Chan, “Bytes are all you need: End-to-end multilingual
speech recognition and synthesis with bytes,” ICASSP
2019 - 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 5621—
5625, 2019.

Shiliang Zhang, Yuan Liu, Ming Lei, Bin Ma, and Lei
Xie, “Towards language-universal mandarin-english
speech recognition,” in INTERSPEECH, 2019.

Xiangang Li, Yuning Yang, Zaihu Pang, and Xihong
Wu, “A comparative study on selecting acoustic model-
ing units in deep neural networks based large vocabulary
chinese speech recognition,” Neurocomputing, vol. 170,
pp. 251-256, 2015.

Shiyu Zhou, Linhao Dong, Shuang Xu, and Bo Xu, “A
comparison of modeling units in sequence-to-sequence
speech recognition with the transformer on mandarin
chinese,” arXiv preprint arXiv:1805.06239, 2018.

William Chan and Ian Lane, “On online attention-based
speech recognition and joint mandarin character-pinyin
training,” in INTERSPEECH, 2016.

Shiliang Zhang, Ming Lei, Yuan Liu, and Wei Li,
“Investigation of modeling units for mandarin speech
recognition using dfsmn-ctc-smbr,”  ICASSP 2019
- 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7085—
7089, 2019.

Li Fu, Xiaoxiao Li, and Libo Zi, “Research on model-
ing units of transformer transducer for mandarin speech
recognition,” arXiv preprint arXiv:2004.13522, 2020.

Shuai Zhang, Jiangyan Yi, Zhengkun Tian, Ye Bai, Jian-
hua Tao, and Zhengqi Wen, “Decoupling pronunciation
and language for end-to-end code-switching automatic
speech recognition,” arXiv preprint arXiv:2010.14798,
2020.

Van Tung Pham, Haihua Xu, Yerbolat Khassanov, Zhip-
ing Zeng, Eng Siong Chng, Chongjia Ni, Bin Ma, and
Haizhou Li, “Independent language modeling architec-
ture for end-to-end asr,” ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7059-7063, 2020.

Xiong Wang, Zhuoyuan Yao, Xian Shi, and Lei Xie,
“Cascade rnn-transducer: Syllable based streaming on-
device mandarin speech recognition with a syllable-
to-character converter,” 2021 IEEE Spoken Language
Technology Workshop (SLT), pp. 15-21, 2021.



	1  Introduction
	2  Related work
	2.1  State of the art of Mandarin ASR
	2.2  Modeling units in Mandarin ASR

	3  Proposed framework
	4  Experiments and results
	4.1  Datasets
	4.2  Fine-tuning Wav2vec 2.0
	4.3  Pinyin to Hanzi
	4.4  Evaluation

	5  Conclusions
	6  References

