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ABSTRACT

In this paper, we propose a dual-encoder ASR architecture for joint
modeling of close-talk (CT) and far-talk (FT) speech, in order to
combine the advantages of CT and FT devices for better accuracy.
The key idea is to add an encoder selection network to choose the
optimal input source (CT or FT) and the corresponding encoder. We
use a single-channel encoder for CT speech and a multi-channel
encoder with Spatial Filtering neural beamforming for FT speech,
which are jointly trained with the encoder selection. We validate
our approach on both attention-based and RNN Transducer end-to-
end ASR systems. The experiments are done with conversational
speech from a medical use case, which is recorded simultaneously
with a CT device and a microphone array. Our results show that the
proposed dual-encoder architecture obtains up to 9% relative WER
reduction when using both CT and FT input, compared to the best
single-encoder system trained and tested in matched condition.

Index Terms— Far-field ASR, end-to-end training, neural beam-
forming, model selection, model combination

1. INTRODUCTION

Improving the accuracy of far-field ASR remains a challenging prob-
lem, despite decades of research on the topic [1–4]. In recent years,
the end-to-end (E2E) modeling technique [5–11], which replaces
the components of a traditional ASR system by a single neural net-
work, has been proven to be advantageous for recognition accuracy
in general and for far-field ASR in particular. In multi-channel E2E
ASR, the neural network also includes neural beamforming [12–16],
which replaces the traditional multi-channel frontend. Despite these
advances, there still exists a gap between the performance of ASR
systems on close-talk (CT) and far-talk (FT) speech [4].

In general, CT devices, such as headset microphones, are best
at capturing a single speaker who is wearing the device, but they
are sometimes impractical or obtrusive to use. On the contrary, FT
devices, such as microphone arrays, are well suited for capturing
multiple speakers; thus, they are popular for tasks such as meeting
transcription [17–19]. The motivation for our work is to combine the
advantages of CT and FT devices by designing a single E2E ASR
system that uses both CT and FT input simultaneously, in order to
achieve better accuracy. For this, it is not only important to automat-
ically select the best input source for a given speech utterance, but
also to train dedicated components of the ASR system for CT and
FT speech: It is known that an ASR system trained with CT data
performs much better on CT test data and significantly worse on FT
test data, and vice versa [20].

Thus, the main contribution of this paper is to introduce a multi-
channel, multi-encoder E2E ASR architecture where an encoder
selection network selects the optimal input source (CT or FT) and
passes it through the matching encoder. The encoder selection net-
work bases its decision on the input features, which capture important
information such as signal quality of each input source and speaker
role / identity. Since the encoders are both connected to a common
decoder, this architecture bears some similarity to a hybrid system
with different acoustic models, one for CT and one for FT. However,
in our work, the whole system, including the encoder selection and
the beamforming frontend, is trained end-to-end.

The proposed architecture with encoder selection has the fol-
lowing advantages: First, assuming a well trained encoder selection
network, each encoder is trained and tested with matching data. This
means that the system can be operated with only a single input source
(CT or FT) and achieve similar performance as the corresponding
single-encoder system in matched condition. This is unlike multi-
style or multi-condition training [21], which often performs subop-
timally compared to the matched condition scenario. Second, the
system can perform both ‘hard’ and ‘soft’ encoder selection (i.e. com-
pute a weighted average of the encoders) in inference. The benefit of
hard selection is that only one of the encoder needs to be evaluated
for each utterance, thus keeping a similar computational cost as a
single-encoder system. Conversely, using ‘soft’ encoder selection
can further improve the performance (at increased computational
cost), similar to traditional model combination approaches for hybrid
systems such as [22].

2. RELATED WORK

To our knowledge, [23] was the first to propose a ‘dual-encoder’
sequence-to-sequence system in the area of natural language under-
standing, yet without encoder selection as in our work.

In the ‘bifocal’ ASR approach [24], two encoder networks are
used to reduce latency for keyword spotting by using a small encoder
for wake word detection and a large one for ASR. Unlike our method,
both encoders use the same input and are used in mutually exclusive
execution.

In a similar vein, [25] uses two encoders in a single E2E model
in order to unify streaming and non-streaming ASR. However, unlike
in our work, there is only a single type of input to the system, and the
encoders are cascaded, not run in parallel.

Multi-channel attention [15,26,27] can be understood as selecting
an optimal input source by an attention layer. The key difference to
our approach is that the same acoustic model is used regardless of
which input channel is preferred.
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In the ‘multi-stream’ E2E ASR approach [28–30], a hierarchical
attention network is used to focus the decoder first on one stream (i.e.
encoder) and then on a certain position within the encoder output. Our
work differs from multi-stream E2E ASR in the following aspects:
First, by using an encoder selection network based on the input
features instead of an attention mechanism based on the encoder
outputs, we can skip all but one of the encoders in inference, thus
keeping the inference cost similar to the single-encoder architecture
(note that in [31], a two-stage strategy was proposed to improve
training efficiency, but without reducing inference time). Moreover,
the aforementioned body of work is limited to the attention-based E2E
architecture by design, whereas our approach also works for other
types of E2E architectures (in particular, the RNN-T architecture),
and it does not consider E2E training including the multi-channel
frontend (i.e. neural beamforming) as in our paper.

3. END-TO-END ASR ARCHITECTURES

In this section, we briefly describe the basic E2E ASR architectures
used for our work before introducing our multi-encoder approach.

3.1. Encoder-decoder architecture with attention

First, we use an encoder-decoder architecture with attention simi-
lar to Listen-Attend-Spell (LAS) [6, 7]. The encoder e generates a
hidden representation e(x) of the input features x. In our work, e
is implemented as a stack of bidirectional Long Short-Term Mem-
ory (bLSTM) layers. The decoder determines the distribution pi =
p(yi|y1, . . . , yi−1, x) for the i-th symbol in the output sequence. It
implicitly aligns the encoder outputs with the output sequence by
computing the context vector ci as weighted sum of e(x), using the
Bahdanau attention mechanism [32].

3.2. RNN Transducer

Second, we validate our approach on the Recurrent Neural Net-
work Transducer (RNN-T) architecture [5, 9]. The RNN-T con-
sists of an encoder, a prediction network and a joint network. The
prediction network is similar to an RNN language model which
computes the distribution p(yi|y1, . . . , yi−1). The joint network
is a feed-forward network that computes the alignment probability
p(zi|x, ti, y1, . . . , yi−1) of the output symbol zi with the encoder
output e(x) at time frame ti. The RNN-T approach computes the
probability p(y|x) of the output sequence given the input by marginal-
izing over the possible alignments z. In our paper, the encoder e
consists of Conformer [10] layers.

3.3. Multi-Encoder Architecture with Encoder Selection

In the multi-encoder architecture, the encoder e consists of several
sub-encoders e(1), e(2), . . . , e(E), which are combined using an en-
coder selection network as detailed below. The architecture of the
proposed multi-encoder system for CT and FT input (E = 2) is
shown in Figure 1. Both encoders start from the raw waveform and
the feature extraction is done on-the-fly. In case of FT input, the
features are extracted from a single channel signal obtained by neural
beamforming.

3.3.1. Encoder selection

The encoder selection network computes the probability qk that the
k-th sub-encoder is optimally suited for the current utterance. It takes
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Fig. 1. Dual-encoder end-to-end ASR system with encoder selection
network for joint modeling of single-channel close-talk (CT) and
multi-channel far-talk (FT) input. The switch symbols indicate hard
or soft encoder selection with selection probabilities q1, q2.

as input the concatenation of the input features x(1), x(2), . . . , x(E)

of the E sub-encoders:

qk = EncoderSelection([x(1); · · · ;x(E)]). (1)

The topology of the encoder selection network corresponds to the
sequence classification architecture proposed in [33]. It consists of
convolutional and LSTM layers, followed by an attention layer [34]
to perform summarization across an utterance and a softmax layer.

Using the encoder selection network as a classifier, we can decide
to evaluate only one sub-encoder (hard selection):

e(x(1), . . . , x(E)) = e(k
∗)(x(k∗)), k∗ = argmax

k
qk, (2)

where e(k) is the hidden representation of the input features x(k)

computed by the k-th sub-encoder. Alternatively, the scores of the
encoder selection network can be used to perform soft selection, i.e.
compute a weighted average:

e(x(1), . . . , x(E)) =
∑
k

qke
(k)(x(k)). (3)

The result of the encoder selection (Eq. (2) or (3)) is then processed
by the decoder (or joint network in case of RNN-T) of the ASR
system as usual. The encoder selection network is trained jointly with
the rest of the system. During training, soft selection is always used,
in order to keep the training objective differentiable.

We also consider frame-wise encoder selection and combination,
where we remove the attention layer from the encoder selection net-
work and replace it with an average pooling layer. The pooling size
is chosen in a way that the total frame decimation done in the en-
coder selection network (by convolution strides and average pooling)
matches the decimation of the input by the sub-encoders.



3.3.2. Far-talk encoder using neural beamforming

In our dual-encoder system (Figure 1), a neural beamformer is used
on the multi-channel input before extracting the FT features used
in the FT encoder as well as the encoder selection network. The
neural beamformer is implemented via the Spatial Filtering (SF)
layer [35, 36], which is a complex-valued hidden layer designed to
mimic a filter-and-sum beamforming operation with time-invariant
beamforming coefficients. The input is the multi-channel complex
spectrum. The SF layer performs the following operation:

yt,f,d =
∑
c

wf,d,c xt,f,c + bf,d, (4)

where t, f , d and c are the time frame, frequency, look direction and
input channel indices, wf,d,c ∈ C is a trainable weight, xt,f,c is an
STFT coefficient of the time-frequency bin (t, f) of the c-th channel
of the input signal, and bf,d ∈ C is a bias term. After the SF layer,
an average pooling layer is inserted to compute the enhanced power
spectrogram X̂ :

x̂t,f =
1

D

∑
d

|yt,f,d|2, (5)

where D is the number of look directions. The weights of the neural
beamformer are trained jointly with the rest of the system, propagat-
ing the gradients through the FT feature extraction.

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

4.1.1. Data sets

Our experiments are carried out in a domain adaptation scenario.
A seed model with only a CT encoder is trained on a large corpus
of doctor-patient conversations recorded with a CT device. The
seed model is then adapted to the FT input or joint CT / FT input.
An adaptation set of 40 h of parallel CT / FT data was recorded
in a similar medical conversation scenario. Only the doctor uses a
CT device, while all speakers (doctor and others) are recorded by
a wall-mounted 16-channel linear microphone array. The CT and
FT data are synchronized using a cross-correlation based method.
The evaluation is done on a test set that matches the adaptation set
in terms of recording conditions, but contains data from different
speakers. All data are anonymized. For most of our experiments, we
use manually end-pointed utterances. The audio is downsampled to
16 kHz sampling rate.

4.1.2. Training of FT and joint CT / FT systems

To obtain the single-encoder FT system, we clone the seed model, add
the neural SF layer at the bottom of the encoder, and then fine-tune the
model on the FT adaptation data using a small learning rate. Similar
to [35], the weights of the SF layer are initialized with pre-computed
finite impulse response (FIR) filters designed with an ideal steering
vector and an isotropic noise model.

To obtain the dual-encoder systems, we use the CT encoder from
the seed model as initialization for both the CT and FT encoder.
We add the encoder selection network, then retrain the resulting
model end-to-end on the adaptation data, i.e., the encoder selection
network is trained along with the other parts of the end-to-end model
to maximize ASR accuracy (an alternative approach is presented in
Section 4.3.1). The SF layer of the FT encoder is initialized in the
same way as for the single-encoder system.

WER [%] CT input FT input
Single-encoder

CT enc 15.8 (12.3/23.8) 18.9 (17.2/22.9)
SF(FT) enc 16.4 (13.0/24.0) 16.0 (14.3/19.7)

Dual-encoder
CT enc + SF(FT) enc 16.0 (12.8/23.4) 16.3 (14.7/19.7)

Table 1. WER achieved by the LAS architecture on either close-talk
(CT) or far-talk (FT) input. The CT encoder uses the CT input or a
single channel of the FT input. The FT encoder uses Spatial Filtering
(SF) beamforming for the FT input and skips the SF layer for CT
input. WERs are given as Overall (Doctor/Others).

4.2. Experiments with attention-based system

We first performed a set of experiments using the attention-based
LAS architecture. The topology is similar to the experiments we
reported in [37]. The acoustic features are 80-dimensional log-Mel
features with a frame shift of 10 ms and a window size of 32 ms, which
are batch normalized and cepstral mean normalized per utterance.
The encoders are composed of 6 bLSTM layers (size 512 for each
direction) with an input decimation factor (stride) of 2 after every
other layer, for a total stride of 8. The decoder consists of a single
LSTM layer with size 1024. For the FT model, a SF layer with
D = 11 look directions and C = 16 input channels is used. Training
of the seed model is done on 470 hours of CT data, using a training
recipe similar to [37].

SpecAugment [38] is applied with Tmax = 50, mT = 2, Fmax =
30, mF = 1. The same SpecAugment mask is applied to the input
features passed to each encoder.

In the dual-encoder system, the encoder selection network con-
sists of 2 time-delay neural network layers with 256 units, 1 LSTM
layer with 256 units, followed by an optional attention layer (for
utterance-wise classification) and a softmax layer. The LAS archi-
tecture with a single encoder has 58 M parameters, while the dual-
encoder version has 87 M parameters (of which 1.1 M are used for
the encoder selection network).

For comparison purpose, we also trained a ‘large’ single-encoder
model with a similar number of parameters (87 M). This was done
by increasing the width of the layers (size 670 per direction for the
bLSTM encoder layers and size 1340 for the LSTM decoder layer).
Due to the enlarged size, we found it helpful to increase the dropout
rate from 0.3 to 0.4 for training this model.

4.2.1. Results on single input source (CT or FT)

Table 1 shows the WER achieved by the LAS architecture on close-
talk (CT) or far-talk (FT) input individually. The LAS seed model
trained on CT data obtains 15.8 % WER overall on CT and 18.9 % on
FT input (using a single channel of the microphone array). Comparing
the results on FT input vs. CT input, we observe a large degradation
for the doctor (12.3 to 17.2 %), while the other speakers are improved
(23.8 to 22.9 %). This is expected due to the distances of the speakers
from the input devices, because the doctor is close to the CT device
and the other speakers are closer to the FT device.

After finetuning the LAS model on the FT data using neural SF,
the performance on the FT input is greatly enhanced (18.9 to 16.0 %).
The overall WER is similar to the CT input (15.8 %). On the one hand,
there is large improvement for the other speakers (23.8 to 19.7 %);
on the other hand, the WER on the doctor’s speech is still far behind
the CT case (14.3 vs. 12.3 %). Moreover, the WER on the CT input
(when removing the SF layer) is degraded from 15.8 to 16.4 %.



WER [%] Sel. unit CT + FT input
Single-encoder

SF (CT; FT) enc – 15.0 (12.9/19.6)
SF (CT; FT) enc (large) – 15.5 (13.4/20.0)

Dual-encoder
CT + FT enc. hard sel. Utt 15.1 (13.0/19.8)
CT + FT enc. soft sel. Utt 14.4 (12.3/19.2)
CT + FT enc. hard sel. Frame 15.1 (13.0/19.7)
CT + FT enc. soft sel. Frame 14.3 (12.2/19.2)

Table 2. WER achieved by the LAS architecture on joint close-talk
(CT) and far-talk (FT) input (reference segmentation). The single-
encoder baseline uses Spatial Filtering (SF) beamforming on the
channel-wise concatenation (CT; FT) of CT and FT input. The dual-
encoder approach uses hard or soft encoder selection, and the encoder
selection network is evaluated per utterance or per frame.

In contrast, the dual-encoder architecture achieves similar per-
formance on CT and FT data (when using only one encoder) as
the separate single-encoder systems which are trained and tested in
matched condition. This is notable since the dual-encoder architec-
ture shares the attention layer and decoder between CT and FT input,
indicating that a single parameterization of attention and decoder can
be effective for both types of inputs.

4.2.2. Results on combined CT and FT input

Table 2 shows the performance achieved on combined CT and FT
input. As a baseline, we use a single-encoder system that uses neural
SF applied to the channel-wise concatenation of the CT and FT input,
denoted by SF (CT; FT). This obtains a WER of 15.0 %, which is a
sizeable improvement over the best result on single input (15.8 % for
CT and 16.0 % on FT). The dual-encoder architecture using utterance-
based, hard encoder selection yields 15.1 % WER, which is similar
to the SF baseline. However, further gains can be obtained by using
soft selection, which yields 14.4 % WER overall (12.3 % for the
doctor and 19.2 % for others). This result is even slightly better than
an oracle system combination of the CT and the FT single-encoder
systems, where we assume the speaker role to be known and select
the CT system for the doctor (resulting in 12.3 % WER) and the FT
encoder system for the others (19.7 % WER).

Moreover, the dual-encoder architecture performs much better
than the ‘large’ single-encoder system with a similar number of
parameters, which obtains 15.5 % WER. The reason that the large
size system performs worse than the regular sized one is probably
overfitting. Finally, we also investigated the frame-wise encoder
selection and combination and obtained similar results as with the
utterance-wise encoder selection and combination. This indicates that
the optimal encoder remains the same throughout each test utterance.

4.2.3. Results for VAD segmentation

Table 3 shows the results when we use speech segments obtained by
voice activity detection (VAD) instead of manually segmented utter-
ances. Compared to the manual segmentation results, the absolute
WERs are higher, which can be attributed to the difficulty of reliable
VAD for far-talk input [4]. However, the relative differences between
the different architectures are similar to the test using manual seg-
mentation, and the dual-encoder architecture retains its effectiveness.
For hard selection, the framewise encoder selection outperforms the
utterance-wise selection, intuitively because more than one speaker

WER [%] Sel. unit CT + FT input
Single-encoder

SF (CT; FT) – 15.8 (13.6/20.6)
Dual-encoder

CT + FT enc. hard sel. Utt 16.4 (14.2/21.3)
CT + FT enc. soft sel. Utt 15.2 (12.8/20.4)
CT + FT enc. hard sel. Frame 16.0 (13.8/21.1)
CT + FT enc. soft sel. Frame 15.2 (13.0/20.1)

Table 3. WER achieved by the LAS architecture on joint CT and FT
input when using VAD to segment the input.

can be active in a segment detected by VAD, and hence the optimal
encoder (CT or FT) varies within the segment. For soft selection
however, the framewise and utterance-wise selection perform similar,
indicating the robustness of the soft selection approach. The reason
why utterance-wise soft selection works reasonably well in the case
of speaker switch might be its model averaging effect. For instance,
the encoder selection network is likely to return a probability close to
0.5 if two speakers are equally present.

4.3. Experiments with Conformer Transducer

To confirm the effectiveness of the multi-encoder approach, we per-
formed additional experiments with the Conformer Transducer, using
a topology similar to the ‘large’ one from [10]. The model uses the
same acoustic features as the LAS architecture above. The encoders
have 16 Conformer layers of size 512 (feed-forward layer size 2 048,
convolution width 17). The prediction network consists of a single
LSTM layer of size 640, while the joint network has 512 units. The
single-encoder model has 104 M parameters in total. Training is done
on 3.8 k hours of CT data, using a training recipe similar to [10].

Table 4 shows the results obtained with the single- and dual-
encoder Conformer Transducer. The single-encoder CT seed model
achieves 12.4 % and 14.0 % WER on CT and FT input, respectively.
The large drop in WER compared to the bLSTM LAS above is due
to the improved architecture and enlarged training data. Despite
the difference in the absolute WER numbers, we generally observe
the same trends as displayed in Table 1 and 2. Using a SF neural
beamformer, 12.3 % WER are obtained on FT input, and 11.9 % WER
on joint CT + FT input. Unlike in the LAS case, the FT encoder also
works well on the CT input when the SF layer is skipped. This is
probably due to the increased amount of training data used for the
seed model, which makes the encoder more robust against different
kinds of inputs. We also evaluated the SF (CT; FT) approach on the
FT input only, by setting the CT channel to zero. This performed
well, yielding similar WER as the SF (FT) encoder on the FT input.

The dual-encoder Conformer Transducer performs slightly worse
than the single-encoder baselines on the individual CT or FT inputs,
but it obtains the overall best result on joint CT + FT input, i.e. 11.6 %
WER. The improvement compared to SF (CT; FT) is significant
(p < .001) according to a matched pairs sentence-segment word error
test [39]. As in the LAS case, the dual-encoder with soft selection
comes close to the oracle result when using the CT encoder for the
doctor and the FT encoder for the others.

4.3.1. Encoder selection pretraining

However, surprisingly we also found that hard encoder selection
underperformed in case of the Conformer Transducer: the WER in
this case was 12.4 %, which is similar to the single-encoder systems.



WER [%] CT input FT input CT + FT input
Single-encoder

CT enc 12.4 (9.6/18.5) 14.0 (12.2/18.1) –
SF (FT) enc 12.4 (9.7/18.5) 1 12.3 (10.6/16.3) –
SF (CT; FT) enc 12.5 (9.7/18.6) 1 12.5 (10.7/16.3) 2 11.9 (10.1/16.0)

Dual-encoder
CT enc + SF (FT) enc 12.6 (9.9/18.8) 12.6 (10.9/16.4) 11.6 (9.6/16.0)

Table 4. WER achieved by the Conformer Transducer on close-talk (CT) and far-talk (FT) input, and on joint CT and FT input. The
dual-encoder architecture uses utterance-wise soft encoder selection. 1: SF layer skipped for CT input; 2: CT input channel set to zero in SF
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Fig. 2. Histogram of the CT encoder selection probability for doctor
/ other utterances in the test set, using the dual-encoder Conformer
Transducer. Pretraining is done on the speaker role classification task
(doctor / other).

We examined the distribution of the encoder selection probability
q1 (i.e. the one for the CT encoder), which is shown as a histogram
in Figure 2(a) for the utterances of the doctor vs. those of the other
speakers in our test set. It can be seen that the CT encoder selection
probability for the doctor centers around 0.5, while it is lower for the
other speakers (i.e. the FT encoder is preferred, as is expected).

Intuitively, we would expect the CT encoder to be selected with
high probability for the doctor in our scenario. This led us to investi-
gate pretraining of the encoder selection network on the adaptation
set with a sequence classification criterion, using the speaker role
(doctor or other) as target for each utterance. The pretrained encoder
selection network is then kept frozen during the training of the dual-
encoder model. As a result, the distribution of the encoder selection
probabilities changes as shown in Figure 2(b): The confidence of
the selection is largely increased, i.e. the encoder is selected with
high probability for most of the utterances. At the same time, we
found that the WER of the system using hard encoder selection was
improved significantly (12.4 % to 11.9 %, not shown in Table 4). This

indicates that the speaker role classification is a good proxy task for
the selection of the optimal encoder. However, for soft selection, the
pretraining did not yield any improvement. This means that while the
joint training of the encoder selection network with the ASR system
and the two-stage training lead to different solutions, they are both
optimal in terms of the ASR performance with soft encoder selection
– which is the training criterion.

4.3.2. Input synchronization and shift-aware training

In both the SF on concatenated CT and FT input and the soft en-
coder selection, different input streams are combined frame-wise;
thus, these methods can be affected by synchronization issues similar
to those encountered in distributed microphone arrays [4, 17]. To
investigate the extent to which time offsets between FT and CT input
can affect the performance, we artificially corrupted our test data
(which is well synchronized) by shifting the CT vs. the FT input
to simulate random offsets. We evaluated SF and soft encoder se-
lection for various maximum shifts up to 100 ms (1600 samples) in
both directions. The results are shown in Figure 3. It can be seen
that encoder selection is more robust against shifts than SF, which
suffers from 46 % relative WER increase for a maximum shift of
1600 samples. Yet, it still underperforms (i.e. it is worse than the
single-encoder baselines) for shifts larger than 800 samples.

This led us to investigate shift-aware training, where we included
random shifts during fine-tuning of the dual-encoder model. In a
proof-of-concept experiment, we set the maximum shift in training
to 800 samples. In this case, there is no significant degradation
for shifts up to 800 samples in testing, and a graceful degradation
for longer shifts not seen in training. This kind of robustness is
promising as exact synchronization can sometimes be hard to achieve.
However, more research is needed to fully assess the potential of data
augmentation to cope with synchronization issues, also for the cases
of (hard) encoder selection and sampling frequency mismatch [17].

4.4. Discussion

In the following, we would like to provide some insight into the
rationale behind our encoder selection architecture, compared to
alternative approaches for model combination.
Model combination in the output space: We compared our method
to combining the ASR hypotheses of the single-encoder CT and FT
systems via ROVER [40]. For the LAS architecture, we obtained
15.9 % WER, compared to 14.3 % with the proposed encoder selec-
tion architecture. The advantage of our approach is that it does not
require time alignments or word-level confidences, which are not
always easy to obtain from E2E systems.
Encoder selection vs. stacking of encoder outputs: We also exper-
imented with an architecture that simply stacks the output of the CT
and FT encoders. However, we could not achieve competitive perfor-
mance in our scenario (the best WER was 12.6 %, compared to 11.6 %
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Fig. 3. Performance of the Conformer Transducer using a single-
encoder (SF on CT and FT channels) or dual-encoder architecture
with encoder selection, for randomly shifted CT and FT inputs.

with the proposed method for the Conformer RNN-T). The reason
is that the architecture with stacking requires training a new joint
network layer (or decoder layer in case of the LAS architecture) from
scratch. In our experiments, the fine-tuning started from a very high
loss value and it only converged when freezing part of the model. In
contrast, the proposed method with encoder selection can be trained
easily with little data, since even a random encoder selection network
provides reasonable ASR accuracy if the rest of the components is
well initialized. This is especially useful considering the effort to
record parallel CT and FT data from a real usage scenario.

5. CONCLUSION

In this paper, we introduced a multi-encoder architecture with encoder
selection to jointly model both CT and FT speech. Our approach can
be applied to various kinds of ASR systems, including the attention-
based and RNN-T architectures investigated in this paper, but also the
encoder-only Connectionist Temporal Classification (CTC) models
and the classical hybrid system. While hard selection can already
outperform the dedicated CT and FT systems, the best performing
method is the soft encoder selection, which relies on framewise
combination of the encoder output. To combat the sensitivity of this
approach to the synchronization between CT and FT audio streams,
we proposed shift-aware training.

In future work, we will extend our work to online streaming ASR,
which can be supported by the framewise encoder selection approach.
We will also look into multi-task learning of the ASR and speaker
role classification tasks to improve the performance of hard encoder
selection. Finally, we will evaluate our architecture with several FT
encoders using different types of beamforming.
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