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ABSTRACT

Confidence estimate is an often requested feature in applica-
tions such as medical transcription where errors can impact
patient care and the confidence estimate could be used to alert
medical professionals to verify potential errors in recognition.

In this paper, we present a lightweight neural confidence
model tailored for Automatic Speech Recognition (ASR) sys-
tem with Recurrent Neural Network Transducers (RNN-T).
Compared to other existing approaches, our model utilizes:
(a) the time information associated with recognized words,
which reduces the computational complexity, and (b) a sim-
ple and elegant trick for mapping between sub-word and
word sequences. The mapping addresses the non-unique
tokenization and token deletion problems while amplifying
differences between confusable words. Through extensive
empirical evaluations on two different long-form test sets,
we demonstrate that the model achieves a performance of
0.4 Normalized Cross Entropy (NCE) and 0.05 Expected
Calibration Error (ECE). It is robust across different ASR
configurations, including target types (graphemes vs. mor-
phemes), traffic conditions (streaming vs. non-streaming),
and encoder types. We further discuss the importance of
evaluation metrics to reflect practical applications and high-
light the need for further work in improving Area Under the
Curve (AUC) for Negative Precision Rate (NPV) and True
Negative Rate (TNR).

Index Terms— Confidence estimation, RNN-T, ASR

1. INTRODUCTION

Automatic speech recognition (ASR) is typically the first
step in understanding spoken content. Even for a high-
performance ASR system, the misrecognition between simi-
lar sounding medications, for example, could have a dispro-
portionately high impact on downstream processes. Confi-
dence estimates on the correctness of the recognized words
can potentially safeguard against propagating high-risk er-
rors. They can also be used to prompt users for additional
confirmation of the veracity of the content in specific audio
segments, a task which can otherwise be onerous in long
conversations.

There has been more than two decades of research in de-
veloping confidence estimates for ASR outputs [1} 2]. In con-
ventional ASR systems, the probabilities of decoding lattices
or n-best lists are typically used to directly compute confi-
dence scores [3]. Confidence scores are often computed by
estimating word posterior probabilities from lattices [4] or
word confusion networks [S]. A more flexible approach in-
volves predicting confidence scores using a separate classi-
fier [2] whose input consists of a variety of acoustic and lexi-
cal features extracted from the ASR system that include lattice
posteriors, acoustic/lexical latent representations, phonetics,
and word duration, etc [6, (7, 8. 9]].

Neural based end-to-end ASR systems such as recurrent
neural network transducers (RNN-T) [10] have recently be-
come popular and they have achieved state-of-the-art word
error rate (WER) for a vast majority of speech recognition
tasks. Unlike conventional ASR systems where the acous-
tic and the language models are trained separately, in these
end-to-end models both components are jointly optimized us-
ing a single cost function such as likelihood. While they im-
prove performance substantially, these models tend to exhibit
very skewed posterior probabilities [11, [12]. Several factors
lead to the skewed posteriors: 1) Neural networks in gen-
eral have powerful representation ability and can overfit the
training data. 2) In neural network models optimized by neg-
ative log-likelihood, the likelihood can be increased further
by sharpening the logits even if the predictions of the log-
its are already correct [13]], a phenomenon that can be ob-
served by tracking the posteriors as the training continues af-
ter the convergence of the ASR model. 3) RNN-T has an
integrated language model (LM) trained using reference tran-
scripts (teacher-forcing), which is unlike connectionist tem-
poral classification (CTC) models [14].

There has been a surge of recent related work often cate-
gorized under “calibration” or “reliable deep learning”. One
simple and popular approach uses temperature scaling, a vari-
ant of Platt scaling, on the logits to flatten the posteriors [12]].
A more sophisticated approach that has proved to be very ef-
fective utilizes ensembles of models [15], however this ap-
proach is computationally too expensive for ASR systems.
Lately, neural confidence models have been proposed where
the target is constrained to “correct” and “’incorrect”. This ap-
proach has the flexibility to use various features from the ASR



models [16, [17, [18| [19} 20]. In one such approach, a con-
fidence estimation model is integrated with a Listen-Attend-
Spell (LAS) model and the word-level scores are obtained by
averaging the sub-word predictions associated with the cor-
rect/incorrect targets [16,20]. The mapping from sub-word to
word sequences are not unique and when most sub-words are
recognized correctly in a misrecognized word, averaging the
sub-word predictions results in weak learning signal and this
could be problematic in cases where hypothesis has sub-word
deletions. This was addressed by an auxillary loss [17} [19].

The work reported in this paper differs from other pre-
vious work in the following respects. First, our goal is to
provide confidence scores for long-form streaming rich tran-
scription which reflects real-world applications, for exam-
ple, in medical transcription where the audio input could
be half to an hour long. In contrast, previous works are in
non-streaming conditions with short utterances and without
speaker labels, punctuation or capitalizations. Second, to the
best of our knowledge, the proposed confidence model is the
first one tailored for RNN-T models. By utilizing the emis-
sion times, we demonstrate that the model effectively extracts
important acoustic information from the ASR encoder, and
reduces the computational complexity. Third, we addressed
the non-unique tokenization and token deletion problems
with a simple and elegant trick. Our method simply modifies
the training targets without changing the model architecture.
Besides, this trick also amplifies the error signals and im-
proves performance. Fourth, unlike previous work where
the empirical evaluations are only performed on a single
ASR system, we perform comprehensive evaluations on eight
ASR settings: grapheme vs. morpheme, streaming vs. non-
streaming ASR, and different ASR model architectures. We
demonstrate that our model is robust and generalizes across
all the configurations. Fifth, we highlight the importance
of evaluation metrics to reflect the real-world application of
post-ASR editing as in medical transcription.

2. MODEL

2.1. Model Architecture

Our proposed confidence model predicts confidence score
for each sub-word unit (a.k.a., token) in the hypothesized
sequence using both acoustic and lexical features associated
with the unit.
Features : In our model, the acoustic feature for each unit
is generated from a sub-sequence in the ASR encoder out-
put centered around the time when the unit was predicted by
the RNN-T model (emission time). The length of the sub-
sequence is a hyper-parameter (k as defined below). The lex-
ical feature for each sub-word unit is the token’s embedding
vector, which could be either trained from scratch, or initiated
from the RNN-T model’s token embedding.

To generate acoustic feature for a sub-word unit, we ex-

tract k encoder outputs to the left and right of the sub-word
emission time. This 2k + 1 long sub-sequence is mapped into
a single vector as the acoustic feature. We investigated dif-
ferent methods for the mapping including attention or direct
concatenation. When using attention, we used the lexical fea-
ture vector as a query to compute cross-attention with 2k + 1
long sub-sequence. The acoustic and lexical features are con-
catenated to form the input feature for this sub-word unit.
Model Structure: The model consists of a sequence layer
followed by a dense layer, as illustrated in Figure [, We in-
vestigated two options for the sequence layer — a long-short
term memory (LSTM) and a transformer. Since typical trans-
former’s compute attention over the entire span and that can
be computationally expensive in long-form audio, we adopted
a variant where the attention is limited to a fixed window (a
hyper-parameter) and the receptive field is build up hierarchi-
cally with the number of layers [21} [22]. The output from
the sequence layer is fed to a dense layer and finally passed
through a sigmoid function to generate a confidence score.
The model is trained using a cross-entropy loss.
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Fig. 1: Confidence model architecture.

Our lightweight model has approximately 4 million pa-
rameters and incurs computation cost of O(U) in the length
U of the sub-word units which allows us to scale the model
easily for audio with long duration. Note, in previous work
that did not utilize the time information, the computation cost
incurred was O(UT') due to the cross attention with the whole
ASR encoder outputs, where T is the length of audio frames.

2.2. From Sub-Word to Word-Level Confidences

Recall, our confidence model predicts correctness of each
sub-word unit as in a classification task. As such, for train-
ing the model, apart from the windowed encoder output and
the sub-word embedding vector, we need the target class
indicating the correctness of the prediction.

One way to identify the correctness of the sub-word is to
map the reference word sequence to the corresponding sub-
word sequence, compute the Levenshtein distance between
the two sub-word sequences and identify the sub-word units
in error. Since the correctness can only be associated with
sub-words that are hypothesized by the ASR system, it does



not account for words that are incorrect because of a missing
sub-word unit. For example in Table (1] all the hypothesized
sub-word units in the two word sequence son // g that cor-
responds to the reference word song will be marked correct
even though the hypothesized words are in error.

An alternate method that overcomes this issue first aligns
the hypothesized words with the reference words, then trans-
fers the correctness to the last sub-word unit in each hypoth-
esized word [17]. As the example in Table (1] illustrates the
correctness of the two hypothesized words lov // ely is trans-
ferred to the last sub-word units lo // ve // ly. At inference
time, the confidence scores are masked for all the sub-word
units except for the last one in the word.

We apply a small trick to this mapping which turns out to
be effective. Instead of applying the correctness only to the
last sub-word units, we apply them to all the sub-word units
in the incorrect word, as shown in Table[I] Since most ASR
systems have substantially fewer incorrect words compared to
correct words, this trick allows us to increase the number of
negative examples. For example, this increases the total num-
ber of training examples by a factor of two for morphemes and
a factor of four for graphemes. Additionally, this mapping
gives due credit to different segmentations of correctly rec-
ognized words (e.g., lov-ely vs lo-ve-ly). At inference time,
we generate confidence scores at word-level by averaging the
predicted sub-word level scores, which has a simpler imple-
mentation than the masking approach.

Hypothesis lov - ely _son
Reference o ve ly _son g
Corresponding targets for confidence model
" Morpheme  False False False True False
‘Word [17]] - - True - False
Word (ours) True True True False False

Table 1: Illustration of mapping targets at the token and word
levels. Start of words are denoted by _ symbols.

3. EXPERIMENTAL SETUP

3.1. Datasets

We performed empirical evaluations on a medical dictation
and a medical conversation corpora [23].

The medical dictation corpus consists of ~ 5K hours of
audio recordings along with their (= 100K) transcribed clin-
ical notes. The corpus contains 4K unique speakers of which
about 30% were female speakers. The dictations spanned
multiple specialities including radiology, internal medicine,
family medicine, cardiology, psychiatry and oncology. The
corpus was split into ~ 4K hours of training data, ~ 400hrs of
held-out data, and =~ 56hrs of test data, with no speaker over-
lap between the three sets. The transcripts contain clinical
abbreviations (e.g., alc), clinical measures (e.g., blood pres-
sure of 120/70), special annotations to identify spoken com-

mands for formatting such as period, comma, capitalization,
next paragraph, and section headings.

The medical conversation corpus is significantly larger
and consists of about 100K (=~ 15K hours) manually tran-
scribed audio recordings of clinical conversations between
physicians and patients from a wide range of specialities. The
turns are attributed to the speakers in the conversation and are
categorized into four roles — providers, patients, caregivers
and others. Additionally, the transcripts includes punctuation
and capitalization, similar to the dictation transcripts. Test
set consisted of 500 conversations where the providers don’t
overlap with the training set (we don’t have information —
anonymized identity — on the patients or caregivers). For
more details, see [23]].

3.2. ASR system

Our ASR system is based on an RNN-T architecture with
a uni-directional transformer encoder and an LSTM de-
coder [24]. Specifically, the encoder consists of 15 trans-
former layers with a model dimension of 1,024 and 8 atten-
tion heads, while the decoder consists of two LSTM layers
with 1,024 units. As mentioned before, we use a variant
of transformer layer with limited attention of fixed window
size (21, 22]. The model vocabulary is based on graphemes
and includes lower-case and upper-case letters, digits, punctu-
ation and speaker role symbols, resulting in a total vocabulary
size of 102 tokens.

We investigated variations from the primary ASR system,
including LSTM-based encoders, non-streaming condition
with bi-directional encoders, and morpheme-based vocab-
ulary [25]]. The influence of these settings on confidence
performances is described in Sec

Our primary ASR model achieves a word error rate
(WER) of 21.1% on the conversation development set and
10.8% on the dictation development set. The corresponding
confidence models are evaluated on entire audio utterances,
which are segmented automatically using a neural network-
based speech detector to mimic the traffic in a production
environment.

3.3. Evaluation Metrics

We rely on several metrics to evaluate the performances of
our confidence models.

Normalized Cross Entropy (NCE) measures the relative de-
crease in uncertainty brought by the confidence estimation
about the correctness of a word [26]. This metric ranges from
—oo to 1, with higher NCE scores corresponding to better
confidence estimates. When the confidence model performs
worse than the chance (setting confidence score to average
word correctness ratio), the NCE score is negative. The met-
ric takes into account the performance of the associated ASR
system and achieves its highest value when all correct and
incorrect words are assigned 1.0 and 0.0 respectively.



Expected Calibration Error (ECE) represents the differ-
ence in expectation between confidence and accuracy [27]].
ECE achieves the best performance (score of 0.0) when the
confidence scores matches the measured correctness of words
with that score. The lower ECE scores correspond to the bet-
ter confidence estimation.
Area Under Curve (AUC) In addition to the commonly used
AUCRoc and AUCpgrc, we also show AUCyT, the area
under the NPV ~ TNR curve (Negative Predictive Value
vs. True Negative Rate). In practical applications, users or
downstream applications wish to pick a confidence threshold
to identify misrecognized words. Instead of using AUCroc
and AUCpgrc which are dominated by correct predictions, the
most pertinent performance trade-off curve for picking such a
threshold is NPV (similar to negative recall) vs. TNR (simi-
lar to negative precision). AUCs are numbers between 0 and
1 and higher values indicate more reliable confidence scores.
A few points of caution. The choice of metrics is impor-
tant in characterizing the confidence scores. Two of the met-
rics — AUCRroc and AUCpgr( —are influenced disproportion-
ately by correct words and paint an overly optimistic picture
of performance. For medical application, NCE and AUCyr
are more relevant for practical applications. As an aside, two
confidence estimators can have the same AUC value but dif-
ferent NCE values [16]. We do not include the utterance-
level evaluation metrics such as RMSE, since our application
requires word-level confidence for long-from audio with du-
ration ranging between 15 minutes to an hour.

4. EXPERIMENTAL RESULTS

We categorized our experiments into two groups — modifica-
tion of RNN-T posteriors and a dedicated confidence model.

4.1. Modified Posteriors as Confidence Scores

We evaluated the simple approach of estimating the confi-
dence scores by simple modifications of posteriors and the
results are reported in the upper portion of Table 2| The per-
formance is measured over all the recognized events including
case-sensitive words and punctuation. The word-level scores
were computed by averaging the estimates over all the sub-
word units, as mentioned earlier.

When the posteriors from softmax of RNN-T’s joint layer
are directly used as confidence scores, the NCE score is 0.01
which is close to chance (NCE = 0.0). This is not surpris-
ing since the RNN-T posteriors are known to be skewed. A
simple method of improving confidence scores is to construct
a pairwise mapping (look-up table) from the posteriors to the
confidence scores [4]. This nudged the performance to an
NCE score of 0.07, without any impact on AUCyr. Next,
we applied temperature scaling [[12] with T" = 2.0 to achieve
a small improvement with NCE = 0.7 and AUCyT = 0.28.

We investigated the impact of weakening the built-in lan-
guage model in RNN-T since the language model has the po-
tential to memorize in-domain subsequence and maybe one
source of the posterior skew. We introduced noise in the ref-
erence sequence by masking words with certain probability.
Specifically, during ASR training, the output symbols that
were fed back into the decoder were masked with varying de-
grees of randomness. We used a probability of 0.2 with no
degradation in ASR performance and observed that the NCE
value did not change but the AUCyt improved to 0.22.

AUC

NCE | ECE

PRC [ ROC | NT

Modifications of Posteriors

Raw posteriors 0.01 | 0.27 | 095 | 0.65 | 0.14
Pairwise mapping | 0.07 | 0.18 | 095 | 0.65 | 0.14
Temp. scaling 0.07 | 0.12 | 096 | 0.74 | 0.28
LM masking 0.01 | 0.14 | 095 | 0.69 | 0.22

Dedicated Confidence Models

Transformer 040 | 0.05 | 099 | 092 | 0.61
LSTM 0.40 | 0.03 | 099 | 092 | 0.59
AM features only | 0.36 | 0.04 | 0.99 | 091 | 0.54
CRF 039 | 0.04 | 099 | 092 | 0.59
Word-level loss 038 | 0.06 | 0.99 | 090 | 0.58
Only Dense 0.21 | 0.08 | 098 | 0.84 | 0.37

Table 2: Comparison of performance of the confidence model
on dictation corpus using simple modifications of posteriors
and a dedicated confidence models.

4.2. Choice of Model Architecture

Our proposed confidence model with transformer sequence
layer improves performance substantially over modifications
of posteriors, achieving an NCE of 0.40, ECE of 0.05, and
AUCNT of 0.61 (see bottom portion of the Table E]) For
understanding the impact of different model components, we
performed ablations studies by switching sequence layer from
transformer layers to LSTM layers, utilizing only AM fea-
tures, replacing cross-entropy with CRF loss, switching the
sub-word loss to word-level loss and discarding the sequence
layer altogether.

From ablation studies, we find that the lexical features im-
proves performance substantially, and without them NCE and
AUCnT drop by 10%. The sequence layer appears to play a
critical role, discarding the sequence layer degrades perfor-
mance significantly, from NCE of 0.40 to 0.21 and AUCNt
of 0.61 to 0.37. The sequence layer provides contextual infor-
mation that helps with the predictions of confidence scores.
By tracking the performance during training, we noticed that
sequence layer with LSTM overfits compared to transform-
ers. An attention span of about 30 sub-word units appears to
be sufficient to capture most of the contextual dependencies.

The proposed model uses a cross-entropy loss and we
evaluated the impact of replacing that with CRF loss to cap-
ture additional output dependencies. We found that the se-



Traffic conditions | ASR encoder Units NCE | ECE | AUCRroc | AUCprc | AUCNT | WCR
LSTM Graphemes | 0.38 | 0.02 0.89 0.95 0.77 73.2%

Streaming Morphemes | 0.36 | 0.03 0.88 0.96 0.70 78.4%
Transformer Graphemes | 0.34 | 0.03 0.88 0.96 0.67 79.0%

Morphemes | 0.38 | 0.03 0.89 0.96 0.73 78.4%

LSTM Graphemes | 0.36 | 0.02 0.88 0.96 0.72 76.7%

Non-streaming Morphemes | 0.30 | 0.03 0.86 0.97 0.59 82.5%
Transformer Graphemes | 0.37 | 0.02 0.89 0.97 0.70 79.6%

Morphemes | 0.30 | 0.02 0.86 0.97 0.58 83.1%

Table 3: Confidence model performances, measured on medical conversation corpus, for diverse ASR models configurations,
including different types of encoders, sub-word units, and traffic conditions.
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Fig. 2: Tllustration of the trade-offs for picking an operating point (confidence score threshold) for downstream applications.

quence layer adequately captures the necessary dependencies
and the CRF layer does not help. The ECE score 0.04 is
slightly better than using cross-entropy loss 0.05, but NCE
and AUCyr are slightly worse.

One simple trick that we applied when generating confi-
dence targets is assigning targets to all sub-words instead of
masking non-ending sub-words. This change improved NCE
from 0.38 to 0.40 and a AUCyT from 0.58 to 0.61. These
gains may be because the confidence model now has more ex-
amples at training time. Manual inspection of the predictions
revealed that the confidence model is able to handle sub-word
deletion and generalizes well on non-unique tokenization.

4.3. Performance on diverse ASR systems

For studying the robustness of our proposed model, we evalu-
ated the model with eight distinct ASR model configurations
which are described in [24]: streaming vs. non-streaming
traffic conditions, LSTM vs. transformer encoder type,
grapheme vs. morpheme units. These experiments were
performed only on conversational corpus to limit the number
of experiments and the results are reported in Table 3] The
last column enumerates the word correctness ratios (WCR)
of the ASR models since the performance should only be
compared between systems with similar WCR measures.

The results show that our proposed confidence model is
robust to different ASR models and performs consistently
without significant degradation. Comparing the performance
of the confidence model with similar WCR, transformer layer
performs better than LSTM layer and the non-streaming con-
dition is better than the streaming case.

In Figure |2| we characterize the model performance for
a streaming system to illustrate the trade-off for different
threshold-based operating point for post-ASR editing. Re-
flecting the ECE numbers, the calibration curves show an
almost perfect (represented by a dotted diagonal line in Fig-
ure[2a)) alignment between the confidence scores and expected
word accuracy. Similarly, the precision-recall curve and the
ROC show a nice performance trade-off, mirroring the corre-
sponding AUC metrics. However, this is overly optimistic,
as illustrated by the NPV ~ TNR curve, which shows there
is still room for further improvement.

5. DISCUSSION

5.1. Effect of RNN-T’s Emission Times

In this section, we show the advantages of directly using
RNN-T’s time information. One of the major differences
between RNN-T [10]] and LAS models [28]] is that, we know
the audio frame from which a token is emitted in RNN-Ts.
This additional information allows the model to focus on the
acoustic features around the emission times, and leads to sub-
stantially higher performance, e.g., NCE scores increasing
from 0.32 to 0.41, and AUCy from 0.53 to 0.61. It also
sidesteps the need for computing cross-attention across the
entire audio input as in [17], which reduces the complexity
from O(UT) to O(U) and aids faster models convergence.
To study the impact of emission times, we compared the
model performances at different cross-attention spans k (see
the definition of % in [2.T)) and the results are reported in Ta-
ble When k is very large, the confidence model cross-



attends to all RNN-T’s acoustic frames, similar to [[17]. At
the other extreme, when k is equal to 0, the model only uses
the exact frame when the token was emitted. The results show
that the model achieves better performance when k is smaller,
reaching the highest NCE, ECE, and AUCs at k = 1 (three
frames). This might be because the model does not have to
learn the acoustic feature of a token by attending the whole
audio frames. Instead, we inform the model to attend solely
to the most relevant audio frames to this token. At k = 1, the
acoustic features processing can be simplified by concatenat-
ing the three frames, without the need for computing attention
across the encoder output subsequence and achieves similar
performance.

ATC
k| NCE | ECE p=TROC T NT
0 039 | 004 | 092 | 099 [ 061
T 1041 [ 0.04 [ 092 [ 099 |06l
3 1039 [ 0.05 [ 092 [ 099 | 0.60
5 1038 [ 005 | 092 [ 099 [ 059
0 1038 [ 005 | 092 | 099 | 0,59
15 | 038 | 0.04 | 091 | 099 | 058
Al 032 | 005 | 089 [ 099 [ 053

Table 4: Confidence model performances for various spans k
of the ASR encoder outputs for the medical dictation corpus.

5.2. Challenges in Detection of Incorrect Words

Our main motivations is to provide confidence scores for
identifying incorrect words predicted by the ASR system.
We argue that the best method to pick a threshold is using
a performance trade-off curve based on True Negative Rate
(TNR) vs Negative Predictive Value (NPV). From our results,
we demonstrated that there is still room for improvement.
ASR systems have advanced substantially in recent years
and achieve high performance with low word error rates. This
leads to label imbalance in confidence data which is domi-
nated by correctly recognized words True. Label imbalance
not only results in the model difficult to train, but makes eval-
uations more challenging. AUCpRgc is a commonly used met-
rics in prior confidence works. Due to the data imbalance, we
observed that AUCprc is consistently as good as over 0.98 in
the dictation corpus and over 0.95 in the conversation corpus.
However when picking a threshold for identifying incorrect
words, it is challenging to find as many wrong predictions
as possible (higher True Negative Rate (TNR)) without sac-
rificing precision (higher Negative Predictive Value (NPV))
(see Figure [2). Hence, we argue that the choice of metrics
is critically important in characterizing production systems,
and AUCyr is a better metric for measuring performance of
confidence scores associated with current ASR systems. We
found that low ECE and high AUCgoc and AUCpgc do
not necessarily guarantee a good trade-off between NPV and
TNR. For the current SOTA performance, as illustrated in

Figure 2] NPV ~ TNR curve, picking an operating point to
detect incorrect words is still a challenging task and there is
room for improvement.

Given the imbalance between correct and incorrect words,
we explored different data augmentation techniques to gener-
ate more occurrences of wrong predictions. In addition, we
experimented with focal loss to increase the contribution of
incorrect words on the loss [29]].

Data Augmentation We augmented the confidence training
data by 3 times via decoding ASR trainings on 3 subsets of the
training data. The data augmentation was found to stabilize
the confidence model training and prevent overfitting on the
medical dictation corpus, which is a relatively small corpus.
The NCE score increased from 0.37 to 0.4.

Focal Loss The focal loss increases the contribution of in-
correct words to the loss [29]. We set tunable parameters
a = 0.15 and v = 2 in the loss function. Unfortunately,
only marginal improvements were observed, AUCyt and
AUCRoc improved from 0.61 to 0.62 and from 0.92 to 0.93
respectively. Despite these results, focal loss may be a useful
regularization method for larger models with more features
in the future.

6. CONCLUSION AND FUTURE WORK

The key contributions of our paper are below. (a) We pro-
pose a confidence model tailored for RNN-T models. Our
model takes advantage of the emission times, which reduces
the computational complexity and improves the performance.
(b) We solve the non-unique tokenization and token deletion
problems with a simple trick of mapping between sub-word
and word sequences. Besides, this trick also amplifies the er-
ror signals and improves performance. (c) We show that our
model is robust across eight different ASR configurations and
two real-world long-form medical datasets. Unlike previous
work, our models provide confidence scores not only for rec-
ognized words but also for other symbols associated with rich
transcription, such as punctuation, capitalization and speaker
role labels. (d) We illustrate the importance of AUCyT for
measuring the performance of confidence model for current
ASR systems where errors are disproportionately fewer than
correct words. The AUCNt needs to be improved further
so that downstream users can pick better operating point for
identifying misrecognitions. (e) The proposed architecture is
not restricted in speech recognition tasks, but also applicable
for any other tasks using RNN-T. We will present a follow-up
paper on applying RNN-T in named entity recognition and its
corresponding confidence scores.

7. ACKNOWLEDGEMENTS

We are grateful for help and support from Ryan Yanzhang
He, David Qiu, Stephen Koo, Chung-cheng Chiu, Hasim Sak,
Han Lu, and David Rybach.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

8. REFERENCES

Manhung Siu and Herbert Gish, “Evaluation of word
confidence for speech recognition systems,” Computer
Speech & Language, vol. 13, no. 4, pp. 299-319, 1999.

Thomas Kemp and Thomas Schaaf, “Estimating confi-
dence using word lattices,” in Proc. EuroSpeech, 1997,
pp- 827-830.

Frank Wessel, Klaus Macherey, and Ralf Schluter, “Us-
ing word probabilities as confidence measures,” in
Proc. ICASSP, 1998, vol. 1, pp. 225-228.

Gunnar Evermann and Philip C Woodland, *“Large
vocabulary decoding and confidence estimation using
word posterior probabilities,” in Proc. ICASSP, 2000,
vol. 3, pp. 1655-1658.

Lidia Mangu, Eric Brill, and Andreas Stolcke, “Find-
ing consensus in speech recognition: word error mini-
mization and other applications of confusion networks,”
Computer Speech & Language, vol. 14, no. 4, pp. 373—
400, 2000.

Matthew Stephen Seigel and Philip C Woodland, “Com-
bining information sources for confidence estimation
with crf models,” in Proc. 12th Annual Conference of
the International Speech Communication Association,
2011.

Kaustubh Kalgaonkar, Chaojun Liu, Yifan Gong, and
Kaisheng Yao, “Estimating confidence scores on asr re-
sults using recurrent neural networks,” in Proc. ICASSP,
2015, pp. 4999-5003.

Anton Ragni, Qiujia Li, Mark JF Gales, and Yongqiang
Wang, “Confidence estimation and deletion predic-
tion using bidirectional recurrent neural networks,” in
Proc. IEEE Spoken Language Technology Workshop
(SLT), 2018, pp. 204-211.

Qiujia Li, PM Ness, Anton Ragni, and Mark JF Gales,
“Bi-directional lattice recurrent neural networks for con-
fidence estimation,” in Proc. ICASSP, 2019, pp. 6755—
6759.

Alex Graves, “Sequence transduction with recurrent
neural networks,” CoRR, 2012.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
D. Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek, “Can you trust
your model’s uncertainty? evaluating predictive uncer-
tainty under dataset shift,” in Proc. NeurlPS, 2019,
vol. 32.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger, “On calibration of modern neural networks,” in
Proc. ICML, 2017, vol. 70, pp. 1321-1330.

Rafael Miiller, Simon Kornblith, and Geoffrey E Hinton,
“When does label smoothing help?,” in Proc. NeurIPS,
2019, vol. 32.

Alex Graves, Santiago Fernandez, Faustino J. Gomez,
and Jiirgen Schmidhuber, “Connectionist temporal clas-
sification: labelling unsegmented sequence data with re-
current neural networks,” in Proc. ICML, 2006, vol. 148,
pp- 369-376.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell, “Simple and scalable predictive un-
certainty estimation using deep ensembles,”  arXiv
preprint arXiv:1612.01474, 2016.

Qiyjia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang
He, Philip C Woodland, Liangliang Cao, and Trevor
Strohman, “Confidence estimation for attention-based

sequence-to-sequence models for speech recognition,”
in Proc. ICASSP, 2021.

David Qiu, Qiujia Li, Yanzhang He, Yu Zhang, Bo Li,
Liangliang Cao, Rohit Prabhavalkar, Deepti Bhatia, Wei
Li, Ke Hu, Tara N. Sainath, and Ian McGraw, “Learning
word-level confidence for subword end-to-end asr,” in
Proc. ICASSP, 2021, pp. 6393-6397.

Qiuyjia Li, Yu Zhang, Bo Li, Liangliang Cao, and
Philip C Woodland, ‘Residual energy-based models
for end-to-end speech recognition,” arXiv preprint
arXiv:2103.14152, 2021.

David Qiu, Yanzhang He, Qiujia Li, Yu Zhang, Lian-
gliang Cao, and lan McGraw, ‘“Multi-task learning
for end-to-end asr word and utterance confidence with
deletion prediction,” arXiv preprint arXiv:2104.12870,
2021.

Alejandro Woodward, Clara Bonnin, Issey Masuda,
David Varas, Elisenda Bou-Balust, and Juan Carlos
Riveiro, “Confidence measures in encoder-decoder
models for speech recognition,” Proc. Interspeech, pp.
611-615, 2020.

Jing Pan, Joshua Shapiro, Jeremy Wohlwend, Kyu J.
Han, Tao Lei, and Tao Ma, “ASAPP-ASR: multistream
CNN and self-attentive SRU for SOTA speech recogni-
tion,” in Proc. Interspeech, 2020, pp. 16-20.

Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi,
Erik McDermott, Stephen Koo, and Shankar Kumar,
“Transformer transducer: A streamable speech recogni-
tion model with transformer encoders and RNN-T loss,”
in Proc. ICASSP, 2020, pp. 7829-7833.



(23]

(24]

[25]

[26]

(27]

(28]

(29]

Izhak Shafran, Nan Du, Linh Tran, Amanda Perry,
Lauren Keyes, Mark Knichel, Ashley Domin, Lei
Huang, Yu-hui Chen, Gang Li, Mingqiu Wang, Laurent
El Shafey, Hagen Soltau, and Justin Stuart Paul, “The
medical scribe: Corpus development and model perfor-
mance analyses,” in Proc. LREC, May 2020.

Hagen Soltau, Mingqiu Wang, Izhak Shafran, and Lau-
rent El Shafey, “Understanding medical conversations:
Rich transcription, confidence scores & information ex-
traction,” in Proc. Interspeech, 2021.

Sami Virpioja, Peter Smit, Stig-Arne Gronroos, and
Mikko Kurimo, “Morfessor 2.0: Python implementa-
tion and extensions for morfessor baseline,” Tech. Rep.,
Aalto University, 2013.

Anonymous, “A tutorial introduction to the ideas behind
normalized cross-entropy and the information-theoretic
idea of entropy,” Tech. Rep., NIST, 2017.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht, “Obtaining well calibrated probabilities us-
ing bayesian binning,” in Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015.

W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, at-
tend and spell: A neural network for large vocabulary
conversational speech recognition,” in Proc. ICASSP,
2016, pp. 4960-4964.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollér, “Focal loss for dense object detection,”
in Proc. of the IEEE International Conference on Com-
puter Vision (ICCV), 2017, pp. 2980-2988.



	1  Introduction
	2  Model
	2.1  Model Architecture
	2.2  From Sub-Word to Word-Level Confidences

	3  Experimental Setup
	3.1  Datasets
	3.2  ASR system
	3.3  Evaluation Metrics

	4  Experimental Results
	4.1  Modified Posteriors as Confidence Scores
	4.2  Choice of Model Architecture
	4.3  Performance on diverse ASR systems

	5  Discussion
	5.1  Effect of RNN-T's Emission Times
	5.2  Challenges in Detection of Incorrect Words

	6  Conclusion and Future work
	7  Acknowledgements
	8  References

