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ABSTRACT

This paper presents AC-VC (Almost Causal Voice Con-
version), a phonetic posteriorgrams based voice conversion
system that can perform any-to-many voice conversion while
having only 57.5 ms future look-ahead. The complete system
is composed of three neural networks trained separately with
non-parallel data. While most of the current voice conversion
systems focus primarily on quality irrespective of algorithmic
latency, this work elaborates on designing a method using
a minimal amount of future context thus allowing a future
real-time implementation. According to a subjective listen-
ing test organized in this work, the proposed AC-VC system
achieves parity with the non-causal ASR-TTS baseline of
the Voice Conversion Challenge 2020 in naturalness with a
MOS of 3.5. In contrast, the results indicate that missing
future context impacts speaker similarity. Obtained similarity
percentage of 65% is lower than the similarity of current best
voice conversion systems.

Index Terms— Voice conversion, Real-time, Phonetic
Posteriorgrams (PPGs), LPCNet

1. INTRODUCTION

Voice conversion (VC) consists in transforming a speech au-
dio signal so that the voice of the original speaker is changed
into the one of a target speaker, while preserving the linguistic
content. VC opens new avenues of creativity and productiv-
ity; for example, Blue Yeti X WoW Edition1 offers real-time
voice effects for someone to sound like any World of Warcraft
character. Would it be possible to propose a similar effect per-
forming real-time voice conversion ?

Nowadays, VC methods are based on machine learning.
Older deep learning approaches required parallel data [1], i.e.,
a training dataset with parallel utterances from source and
target speakers, to then train a sequence-to-sequence model
mapping source acoustic features into target ones. As obtain-
ing large amounts of parallel data is challenging, more recent
works have concentrated on building VC systems trainable
with non-parallel data. Such systems rely on an intermediate

1www.bluemic.com/en-us/products/yetixwow/

speaker-independent speech representation like text [2], pho-
netic posteriorgrams (PPGs)[3, 4] or disentangled latent space
from an auto-encoder [5, 6]. This intermediate representation
should carry only the linguistic content from the input utter-
ance and nothing about the source speaker’s voice character-
istics. It will then be used to generate the voice-converted
audio sample with a system trained with some target speaker
data.

In the voice conversion literature, most published papers
focus on designing VC systems yielding the highest output
quality but rarely on creating real-time VC techniques. Only
few recent works such as [7] and [8] have been pursued to
build real-time VC methods. These approaches are briefly
described in the next section. Nonetheless, having such real-
time systems would dramatically widen the range of applica-
tions of voice conversion.

In our previous work [6], we have designed the FastVC
voice conversion algorithm that runs four times faster than
real-time, i.e., that synthesizes 1s of converted speech in 0.25s
on a CPU. We used this algorithm in our participation (team
T15) in the Voice Conversion Challenge (VCC) 2020 [9]. The
VCC is a bi-annual challenge where scientists can submit
their voice conversion system to be evaluated and compared
with others on the same dataset. The 2020’s session con-
sisted of two VC tasks, an intra-lingual one with semi-parallel
data and a cross-lingual one. FastVC participated only in
the cross-lingual VC task and outperformed two of the three
Challenge baselines in terms of naturalness.

However, FastVC can’t be used in real-time as it is not
causal. In this work, we address this issue by proposing AC-
VC (Almost Causal Voice Conversion), a voice conversion
system operating with a reasonable algorithmic latency, i.e.,
using a look-ahead of maximum 60 ms. As strictly causal
systems only use past and current input samples to generate
the current output sample, the proposed system is referred to
as “almost causal” to specify that some additional future con-
text is also used. There is no published system trainable on
non-parallel data with such a small latency to the best of our
knowledge.

AC-VC is composed of 3 separately trained neural net-
works. The first is an LSTM-based acoustic model that out-
puts Phonetic PosteriorGrams (PPGs). The second one is the
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conversion model that takes as input PPGs concatenated with
one-hot target speaker embedding and fundamental frequency
(F0) values and outputs converted acoustic features. The last
one is the LPCNet, a speech vocoder designed by Mozilla
teams [10], that takes as input the converted acoustic features
and synthesizes the voice-converted speech. The proposed
AC-VC system has a similar architecture to the CASIA Voice
conversion system [4] that ranked second overall at the VCC
2020 (team T29) [9], but it is low-latency. LPCNet and the
CASIA voice conversion systems are presented in the next
section.

2. RELATED WORK

2.1. Real-time VC

In [7], a 50 ms latency voice conversion method is pre-
sented. It uses a deep neural network (DNN) to map source
mel-frequency cepstral coefficients (MFCCs) and source F0
into target MFCCs, band-averaged aperiodicity and target
F0. Then, recursive maximum likelihood parameter genera-
tion (R-MLPG) is applied to the previously converted MFCCs
and finally, converted speech is synthesized with the WORLD
vocoder [11].

A different real-time VC approach based on spectral dif-
ferentials combined with a DNN is presented in [8]. This
system performs voice conversion without vocoding, i.e., no
waveform is synthesized, the source audio is directly modi-
fied with a filter, reducing drastically the computational load.
Consequently, this system runs faster than real-time on a CPU
with only a few tens of ms latency.

While the use of parallel data is not directly indicated in
the above-mentioned papers [7, 8], one can deduce regarding
the training phase descriptions that parallel utterances seems
indeed required. The need for such data is a strong constraint
that limits the number of possible source/target speaker pairs.

In this work, we hypothesized that PPGs-based VC could
perform low-latency, similarly, as streaming speech recogni-
tion systems are almost real-time thanks to causal acoustic
models (PPGs extractors). Besides, we designed the AC-VC
system intending to train it from non-parallel data.

2.2. LPCNet

Causal PPGs extraction is mandatory but not sufficient. The
major delay’s cause is often speech vocoding. In this work,
we chose to use LPCNet: it is a neural speech synthesizer
adapted from WaveRNN [12] that leverages linear prediction
to perform speech synthesis. Instead of generating the final
audio waveform directly, LPCNet synthesizes the excitation
signal that is spectrally flat and thus simpler to model. Finally,
the excitation is added to the linear prediction to obtain the
audio waveform.

LPCNet takes as input 18 Bark-scale cepstral coefficients
(BSCCs), the pitch, and the pitch correlation for every 10 ms

time frame. The complete model comprises two neural net-
works: the frame rate network and the sample rate network.
The former network, composed of two convolutions followed
by two fully connected layers, takes the BSCCs as input and
outputs a 128-dimensional conditioning vector. As indicated
in its name, this network runs for each frame, i.e., every 10
ms. The sample rate network executes for each sample, so
16000 times per second to generate 16 kHz audio. It takes as
input the conditioning vector from the frame rate network and
the linear predicted sample, the previously generated excita-
tion sample, and the previous output sample. It is composed
of two Gated Recurrent Units (GRU) followed by a dual fully
connected layer with a softmax activation. The output is a
probability distribution over 256 values (8 bits) from which
the following excitation sample is randomly sampled.

Note that the sample rate network is causal and that the
frame rate network has only 30 ms future look-ahead because
of the two convolutions with a total receptive field of 5 frames.
So the analysis re-synthesis with LPCNet can be done with
only 30 ms latency.

Also, LPCNet is an auto-regressive model as the previ-
ous output sample is given back as input to the network to
generate the next one. It is known that large auto-regressive
neural speech synthesizers such as WaveNet [13] can’t gen-
erate speech in real-time as it is impossible to parallelize the
generation of multiple audio samples. However, LPCNet [10]
can run faster than real-time on a single CPU core. This is
achieved thanks to the small model size and important opti-
mizations such as the use of block-sparse matrices in a GRU
layer along with efficient vectorizations.

2.3. CASIA VC

The CASIA voice conversion system [4] was submitted to the
VCC 2020 and ranked in the very best teams on the two tasks,
both in terms of naturalness and speaker similarity. It uses
PPGs as speaker-independent speech representation. Thus, it
is composed of an acoustic model to obtain the PPGs from
source speech, a conversion model to get converted acoustic
features from PPGs, and a vocoder to synthesize the output
speech.

More precisely, the acoustic model is a TDNN-LSTM net-
work built with the Kaldi toolkit [14]. It takes as input 40-D
filter-bank features computed on 25 ms frames taken every 10
ms. A 512-D representation is then obtained for each frame
by taking the output of the last LSTM layer. This 512-D rep-
resentation is referred to as phonetic posteriorgrams (PPGs) in
the CASIA VC paper [4], while it is not a probability vector
and does not sum up to one. For simplicity and consistency,
this designation is kept in this paper.

The conversion model is based on the CBHG (1-D Convo-
lution Bank + Highway network + bidirectional GRU) mod-
ule from Tacotron [15]. The input comprises: (i) an input
sequence of previously computed 512-D PPGs concatenated



with (ii) one hot target speaker embeddings, (iii) target F0 val-
ues, (iv) voiced/unvoiced flag (VUF), and (v) band aperiodic-
ity. The three latter values are obtained using tools from the
WORLD vocoder [11]. Finally, the conversion model gener-
ates a sequence of 30-D bark scale cepstral coefficients along
with F0 and F0 autocorrelation values.

Lastly, the vocoder is an adapted version of LPCNet.
It takes as input the sequence as mentioned above of 32-D
acoustic features and synthesizes 24 kHz audio waveform.

The authors fine-tuned both the conversion model and
LPCNet for each target speaker to improve their voice con-
version quality. The authors reported that it allowed obtain-
ing results that better match the target speaker’s voice and
prosody. The fine tuning process is described in more details
in section 3.2.3.

3. PROPOSED METHOD

The CASIA team’s submission in the VCC 2020 uses the
LPCNet as a vocoder and satisfies our low latency require-
ment for speech synthesis. However, the system’s other mod-
ules, namely the acoustic and conversion models, are not low
latency, as they both use a large future context. Different low
latency acoustic models, including TDNN-LSTM models, are
presented and compared in [16]. The lowest achieved latency
is 70 ms, which is already too high for real-time voice con-
version; one needs to add further the latency introduced both
by the conversion model and the vocoder. The CBHG module
uses bi-directional recurrent layers and is thus not suited for
streaming or low latency tasks.

In our proposal, we decided to keep the overall architec-
ture similar to the CASIA’s VC system. Still, we incorporate
new simple acoustic and conversion models that allow having
a total latency of less than 60 ms. Figure 1 shows a schematic
overview of the proposed VC system.
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Fig. 1. Schematic diagram of AC-VC. Yellow blocks rep-
resent signals while blue blocks represent operators. FC
stands for Fully Connected Layer, TSE for Target Speaker
Embedding, F0 for fundamental frequency and VUF for
voiced/unvoiced flag.

3.1. Acoustic model

The acoustic model’s role is to extract from the source audio
a sequence of speaker-independent speech representation, in
our case, phonetic posteriorgrams.

3.1.1. Input features

We chunk the source into overlapping frames of 25 ms with a
hop size of 10 ms. Then for each frame, 13-D Mel Frequency
Cepstral Coefficients (MFCCs) are extracted along with their
∆ and ∆∆ values that give a sequence of 39-D acoustic fea-
tures.

3.1.2. Model structure and training

The acoustic model is obtained by removing the last fully con-
nected layer of a phoneme classifier. This classifier tries to
predict a spoken phoneme in the current frame. It has the fol-
lowing simple structure: 2 time-distributed fully connected
layers with ReLU activation followed by two uni-directional
LSTMs and a final time-distributed fully connected layer with
softmax activation. We train the model with the cross-entropy
loss. In this configuration, the model is in “streaming mode”,
i.e., the model tries to predict the phoneme uttered in the cur-
rent frame while having no access to any future context. To
relax this constraint and thus obtain a better classification ac-
curacy, the target phoneme sequence has been shifted by one
during training. The model learns to predict the phoneme of
the previous frame. However, this manipulation introduces
one frame latency in the prediction.

The acoustic model does not contain the last fully con-
nected layer of the phoneme classifier as shown in Figure 1.
Thus, the PPGs refer to the last LSTM layer’s output and are
512-D similarly as [4].

3.2. Conversion model

The conversion model’s role is to generate a sequence of
converted acoustic features for LPCNet to synthesize target
speaker speech with the same linguistic content as the source
speech. As we have seen in Section 2.2, LPCNet requires 18
BSCCs, current F0, and F0 autocorrelation for each 10 ms
frame and will generate speech accordingly.

3.2.1. Model inputs

The conversion model takes input 512-D PPGs concatenated
at each time frame with the target F0, the voiced/unvoiced
flag (VUF), and the N-D one hot target speaker embedding
(with N possible target speakers). The target F0 is obtained
via a transformation of the source F0 that maps the source
speaker’s F0 range to that of the target speaker. This transfor-
mation is referred as F0 mapping in Figure 1 and is described
with more details in [4]. It requires the knowledge of the F0
mean and variance of both the source and target speakers.



3.2.2. Model structure

The conversion model has a similar structure as the acous-
tic model. Indeed, it is composed sequentially of one time-
distributed fully connected layer with ReLU activation, two
uni-directional LSTM layers, and two time-distributed fully
connected layers with ReLU and no activation respectively.
A simple L1 loss was applied during training. Similarly, as
with the acoustic model, the target sequence has been time-
shifted by one so that the model predicts the converted acous-
tic features of the previous frame. This simplifies the net-
work’s learning task as more future context is available but
adds one more frame of latency.

3.2.3. Training and fine tuning

The conversion model’s training does not require any parallel
data. During training, the model tries to predict the acoustic
features of the source utterance given phonetic posteriorgrams
computed by the acoustic model, the source speaker one hot
embedding, and F0 values. Thus, no voice conversion occurs
at training time. Also, the acoustic and conversion models are
not trained jointly as the acoustic model would risk becoming
speaker-dependent. After this training phase, one obtains the
average conversion model, i.e., the conversion model trained
with multi-speaker data.

To further improve the VC system’s performance, both
the average conversion model and average LPCNet are fine-
tuned for a specific target speaker. This operation consists
in continuing the training of the average model using only
speech data from that specific speaker. This is usually done
with a smaller learning rate to avoid obtaining a model too
different from its average version.

3.3. Implementation details

The models were implemented, trained, and tested using Ten-
sorflow and Keras. For the acoustic model, the LibriSpeech
clean dataset [17] was used with phoneme alignments from
[18]. The VCTK dataset [19] composed of 109 speakers was
used for the conversion model training. Both models were
trained with a batch size of 32, the Adam optimizer with a
learning rate of 0.001, and have approximately 2 million pa-
rameters.

For LPCNet, we used the open-source Python and C codes
provided by the authors2 for fine-tuning and inference, re-
spectively. Additionally, the built-in pitch detector of LPCNet
was used to extract F0 and VUF from the input utterance.

Given that both the acoustic and conversion models have
one frame look-ahead, that LPCNet has two frames look-
ahead, and that frames are 25 ms with a hop size of 10 ms,
the system’s overall latency is 57.5 ms. Our experiments
showed that using both the acoustic and the conversion mod-
els in “streaming mode“ (with no future frame look-ahead) is

2https://github.com/mozilla/LPCNet

possible. That reduces the latency to 37.5 ms and provided a
similar voice conversion quality. However, this configuration
was not properly evaluated so it is not discussed more in this
paper.

Note that the LPCNet pitch detector introduces approxi-
mately 10 ms of additional latency in the system as it uses
F0 trajectory optimization. This additional latency is not ac-
counted for in the latency mentioned above of 57.5 ms as an-
other lower-latency pitch detector may be used instead.

3.4. Baselines

To assess the performance of the proposed AC-VC system,
two different voice conversion systems serve as baselines.
The first and main baseline is the ASR-TTS system also
used as baseline in the VCC2020 [9] (T22). It is com-
posed of a transformer based ASR, of a multispeaker x-vector
Transformer TTS model, and of parallel WaveGAN (PWG)
vocoder [20]. It is described in more details in [2]. The open-
source implementation of this system from ESPnet3 [21] was
used generate voice converted audio samples evaluated in this
work.

As AC-VC is a low latency adaptation of the CASIA VC
system, the latter constitutes logically our second baseline.
Note that this system was not reproduced in this work as no
open source implementation was available. Consequently, the
results of the VCC2020 [9] (T29) were used instead.

4. EXPERIMENTAL SETUP

We evaluated the proposed AC-VC system’s performance
with a subjective test that we organized on the Amazon Me-
chanical Turk (AMT) platform. This listening test contained
natural speech samples and voice-converted speech sam-
ples from both AC-VC and the ASR-TTS baseline from the
VCC2020.

We chose six target speakers from the VCTK test set
(p252, p256, p268, p301, p307, and p316), and fine-tuned six
models for both the proposed and the baseline systems. They
have been chosen in order to obtain a balanced target speaker
set in term of genders, pitch ranges and dialects. Similarly,
4 source speakers have been chosen (p267, p270, p299 and
p311) making a total of 24 source/target speakers conversion
pairs for the subjective evaluation.

The fine-tuning process of AC-VC is described in section
3.2.3. Simultaneously, for the baseline, the instructions given
in the ESPnet recipe “vcc2020/vc1 task1” were carefully fol-
lowed, i.e., only the TTS module was fine-tuned with target
speaker data, while the ASR and PWG modules were left as
is.

The p.808 toolkit4 from Microsoft [22] was used to design
the evaluation on Amazon Mechanical Turk. More precisely,

3https://github.com/espnet/espnet
4https://github.com/microsoft/P.808

https://github.com/mozilla/LPCNet
https://github.com/espnet/espnet
https://github.com/microsoft/P.808


the p835 template was adapted for voice conversion, as fol-
lows.

The subjective evaluation was designed similarly as in the
Voice Conversion Challenge 2020 [9]. The listeners first rated
naturalness, rating two audio samples, a natural speech one
and a voice-converted one, on a scale from 1 to 5 (Bad, Poor,
Fair, Good, Excellent). In the second test, the listeners rated
speaker similarity, listening to the same audio samples, and
rating the pair for speaker similarity on a scale from 1 to
4, meaning different speakers (sure), different speakers (not
sure), same speaker (not sure), same speaker (sure). A total
number of 26 unique listeners participated in the evaluation.
More than 100 and 80 audio samples per VC system have
been rated for Mean Opinion Score (MOS) and speaker simi-
larity, respectively. Each audio sample or pair has been rated
by at least four different listeners.

5. RESULTS AND DISCUSSION

The results of the subjective evaluation are presented in Fig-
ure 2. As the obtained results for our reproduction of the
ASR-TTS baseline of VCC2020 are very similar to those ob-
tained in the VCC2020’s subjective evaluation [9], our results
can be compared accurately with those of the VCC2020. Con-
sequently, the CASIA VC system results from VCC2020’s
evaluation are included in Figure 2 with attenuated colors
to indicate the different origin of the data. Note that as the
MOS scores were processed slightly differently in [9], only
the mean and median are reported for the CASIA system.
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Fig. 2. On the left: MOS ratings for the three VC systems
(AC-VC, ASR-TTS Baseline and CASIA VC) and the natural
speech samples. Mean values (red dots) have been added to
the standard boxplot. On the right: Speaker similarity rating
distributions (colored bars, left scale) and average similarity
scores (red dots, right scale), for the three VC systems. The
CASIA VC system was not evaluated in our subjective test,
its results were taken from VCC 2020 [9].

Some AC-VC and ASR-TTS voice conversion examples
can be listened online5.

On the left side of Figure 2, one can see the natural-
ness rating distributions for the proposed system, the ASR-
TTS baseline, CASIA VC and natural speech samples from
VCTK. While CASIA VC and natural samples achieve nat-
uralness MOS higher than 4, AC-VC and the ASR-TTS
baseline perform equally well with both MOS being close to
3.5. A t-test between the AC-VC and baseline MOS reported
t = −0.41 and p = 0.68. Consequently, the null hypothesis
of equal averages can’t be rejected, i.e., no significant differ-
ence between the AC-VC and the ASR-TTS baseline MOS
can be established.

This result represents the main achievement of this work;
it demonstrates the possibility to obtain natural voice con-
verted speech with limited future context. As said before,
small algorithmic latency is a necessary condition to consider
a possible real-time implementation. For the latter, compu-
tational considerations are of equal importance, but these are
beyond this paper’s scope and have been studied in a previous
work [6].

On the right side of Figure 2, one can see the speaker sim-
ilarity rating distribution for each VC system over the four
values outlined above. The average similarity score is also
indicated. Regarding those criteria, the ASR-TTS baseline
and CASIA VC perform significantly better than the proposed
system with similarity percentages of 98% and 90% against
65%. The similarity percentage is defined as the proportion of
the aggregate of same speaker (sure) and same speaker (not
sure) ratings.

We hypothesize that a part of this performance difference
is due to the missing future context of AC-VC. In general,
modifying source speech prosody is more challenging for a
low latency system. For example, the speech rate can’t be
modified at all in such setting. Similarly, the word emphasis
and the F0 trajectory are somehow fixed because future con-
text is needed to perform a meaningful and consistent trans-
formation. On the contrary, an offline system such as an ASR-
TTS can freely reshape the source signal and perfectly match
the target speaker’s prosody. Still, AC-VC’s Different (sure)
rating proportion is as low as that of CASIA VC at 5%, in-
dicating that the source voice almost always get transformed
toward the target one.

The acoustic and conversion models’ simplicity implies
that further quality improvements, both in term of naturalness
and speaker similarity, are possible with further exploration
of the models’ architecture. A more sophisticated acoustic
model could indeed allow to obtain better and more speaker
independent PPGs. Also, adding the band aperiodicity to
the conversion model’s input and using a greater number of
acoustic features as input to LPCNet, similarly as in [4], could
yield higher quality converted acoustic features and synthe-
sized speech.

5https://damrsn.github.io/AC-VC/

https://damrsn.github.io/AC-VC/


6. CONCLUSIONS

In this work, we have introduced AC-VC (Almost Causal
Voice Conversion), a low latency phonetic posteriorgrams
based voice conversion system trained with non-parallel data.
AC-VC uses a future look-ahead of 57.5 ms to generate
voice-converted audio samples, allowing a possible real-time
implementation. It can perform any-to-many voice conver-
sion as the only required information about the source speaker
is their mean and variance pitch values, which can easily be
computed on the fly. We have demonstrated that AC-VC is
the novel VC system trainable with non-parallel data achiev-
ing such a small latency as other existing real-time voice
conversion systems use parallel data for training.

According to a subjective evaluation organized in this
work, AC-VC performs equally well as the ASR-TTS base-
line of the Voice Conversion Challenge 2020 in terms of
naturalness with a MOS of 3.5. However, the latter yields
significantly higher performances in terms of speaker similar-
ity, with a similarity percentage of 98% against 65% for the
proposed system. Reducing this similarity gap thus paves our
future work.
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