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ABSTRACT

With the success of the first Multi-channel Multi-party Meet-
ing Transcription challenge (M2MeT), the second M2MeT
challenge (M2MeT 2.0) held in ASRU2023 particularly aims
to tackle the complex task of speaker-attributed ASR (SA-
ASR), which directly addresses the practical and challenging
problem of “who spoke what at when” at typical meeting sce-
nario. We particularly established two sub-tracks. The fixed
training condition sub-track, where the training data is con-
strained to predetermined datasets, but participants can use
any open-source pre-trained model. The open training condi-
tion sub-track, which allows for the use of all available data
and models without limitation. In addition, we release a new
10-hour test set for challenge ranking. This paper provides an
overview of the dataset, track settings, results, and analysis of
submitted systems, as a benchmark to show the current state
of speaker-attributed ASR.

Index Terms— M2MeT 2.0, Alimeeting, Meeting Tran-
scription, Multi-speaker ASR, Speaker-attributed ASR

1. INTRODUCTION

Despite years of research, meeting transcription accuracy
still faces significant challenges, including but not limited
to overlapping speech, an unknown number of speakers,
far-field attenuated speech signals, noise, reverberation, and
other factors that can degrade transcription performance. The
ICASSP2022 Multi-Channel Multi-Party Meeting Transcrip-
tion (M2MeT) challenge [} 2] has played a crucial role in the
development of Mandarin meeting transcription technology
by addressing the challenge of speech overlap in actual meet-
ings. The challenge consists of two distinct tasks: speaker
diarization and multi-speaker automatic speech recognition
(ASR). The former involves identifying who spoke when
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in the meeting, while the latter aims to transcribe speech
from multiple speakers. In the second M2MeT challenge
(M2MeT 2.0), these two tasks are merged into a single
speaker-attributed task.

The M2MeT 2.0 challenge presents two key differences
from its predecessor, the first M2MeT. First, the evalu-
ation metric in the first M2MeT challenge was speaker-
independent, meaning that transcription could be determined,
but the corresponding speaker was not identified. To over-
come this limitation and advance current multi-talker ASR
systems, the M2MeT 2.0 challenge introduces the speaker-
attributed ASR (SA-ASR) task. This task not only transcribes
the speech but also assigns speaker labels to each transcrip-
tion. Specifically, we introduce the concatenated minimum
permutation character error rate (cpCER) metric to evaluate
the performance of the submitted systems. The cpCER is
proposed for Mandarin particularly, which is defined simi-
larly to the concatenated minimum permutation word error
rate (cpWER) [3]]. Second, unlike other related challenges
such as Computational Hearing in Multisource Environments
(CHIME) [3], Multimodal Information Based Speech Pro-
cessing (MISP) [4], and M2MeT [, 2]}, the M2MeT 2.0
challenge offers participants the freedom to utilize any open-
source pre-trained model, which is typically prohibited in
these challenges. This flexibility aims to explore the feasible
industrial application of academic research proposed in previ-
ous studies, utilizing various open-source pre-trained models
trained on a large amount of data for the SA-ASR task.

The M2MeT 2.0 challenge consists of two sub-tracks: 1)
The fixed training condition track, is designed to enable re-
producible research in this field by providing a fixed set of
training data, open-source pre-trained models, and evaluation
criteria. 2) The open training condition track, aims to bench-



mark state-of-the-art performance in speaker-attributed ASR
by allowing participants to use their own data and training
techniques.

2. RALATED WORKS

The SA-ASR task [5] involves identifying multiple speakers
and transcribing overlapped speech within a single session.
One common approach to address this cocktail party chal-
lenge is to use speaker diarization to identify the active re-
gions of different speakers. Then, a single-talker ASR system
with a speaker separation module can be used to transcribe
speech from the known active regions. Alternatively, an end-
to-end multi-talker ASR system can be used to transcribe
speech and assign speaker labels simultaneously based on
corresponding speaker information provided by the diariza-
tion system.

Speaker diarization techniques that follow conventional
clustering-based approaches usually include two main steps:
speaker embedding extraction and clustering. These ap-
proaches begin by transforming the input audio stream into
a speaker-specific representation, followed by a clustering
process like Variational Bayesian HMM clustering (VBx) [6]
that groups the regions of each speaker into separate clusters.
Clustering-based methods typically assign a single speaker
label to each frame, making it challenging for them to handle
speech overlap. With the rapid development of deep learning,
End-to-End speaker diarization methods like end-to-end neu-
ral diarization (EEND) [7] are proposed, leveraging a single
neural network to replace the modular cluster-based system.
Inspired by the target speaker extraction [8| 9, 10} [11]], target
speaker voice activity detection (TS-VAD) [12} [13| [14] has
been proposed, which can estimate the activity level of each
speaker in the presence of overlapping speech, providing a
promising solution for speaker diarization.

Single-talker ASR has been extensively investigated in re-
cent years, and various architectures, such as Conformer [[15],
Branchformer [[16], and Paraformer [[17], have been proposed
to push the limit of the accuracy of ASR.

Meanwhile, there has been a growing interest in multi-
talker ASR, which is designed to transcribe speech containing
several speakers. One recent approach, called Speaker-
Attributed Transformer(SA-Transformer) [18]], generates
token-level speaker labels during the decoding phase and can
directly produce speaker-attributed transcription only using
the clustered speaker profile. Moreover, TS-ASR [19] is also
a promising approach that utilizes speaker embedding for tar-
get speaker extraction (TSE) and achieves good performance
when TSE and ASR are jointly trained. By extracting the
speaker embedding, TS-ASR can identify the target speaker’s
voice and enhance the accuracy of the overall ASR system.

The field of rich transcription with speech overlap has un-
dergone extensive research, with advancements facilitated by
numerous challenges and open-source datasets [4}120L 21} [22]].
Table [T|outlines the primary datasets utilized in this scenario.

WSJO-2mix [23]] and Libri2Mix [24] datasets involve
mixing pairs of utterances from different speakers at ran-
dom SNRs, making them primarily used for speech sepa-
ration tasks where there is full overlap. On the other hand,
AMI [25], LibriCSS [26]], and CHIME-6 [3]] datasets are
recorded in real rooms. However, the AMI dataset’s fixed
speaker count of four and poor recording quality limit its prac-
tical applications. LibriCSS, similar to Libri2Mix, utilizes the
Librispeech corpus to produce speech mixes. However, due
to the fixed intonation and pace of reading in Librispeech,
there remains a disparity between LibriCSS and real meet-
ing scenarios. CHIME-6 dataset is designed for conference
or indoor conversation transcription tasks and accounts for
overlapped speech.

Although these datasets significantly contribute to the
progress of transcription overlapping speech, they are limited
to English. The language barrier poses a challenge in achiev-
ing comparable results for non-English languages, such as
Mandarin. To overcome this challenge, the AISHELL-4 [27]]
and AliMeeting [1] datasets have been developed specifically
for Mandarin meeting transcription. AISHELL-4 has a lower
overlap ratio, while AliMeeting contains intense discussions.
Additionally, AliMeeting records the near-field signal of each
participant using a headset microphone, ensuring that only
the participant’s speech is transcribed.

Table 1. Datasets available in the literature in multi-talker
speech transcription (OR: overlap rate)

Dataset Hours #SPK Devices OR (%)
WSJO-2mix [23] 43 129 Simu Full
Libri2Mix [24]] 292 1252 Simu Full
AMI [253] 100 190 I;iidfr‘;tcrfa‘;fay <10
LibriCSS [26] 10 40  7-ch mic array  0-40

CHIME-6 [3] 35 26
AISHELL-4 [27] 120 61

4-ch mic array 40

8-ch mic array 19

Headset mic,

8-ch mic array 42

AliMeeting [1] 129 481

3. DATASET AND TRACKS

AliMeeting [} 2], AISHELL-4 [28]], and CN-Celeb [29] cor-
pus are adopted as our training data, which is the same as
the first M2MeT challenge. The AliMeeting dataset is a col-
lection of multi-talker conversation recordings in a meeting
setting, comprising a total of 118.75 hours of speech data.
The dataset is split into 104.75 hours for training (Train), 4
hours for evaluation (Eval), and 10 hours for testing (7est).
The AliMeeting corpus includes both far-field overlapped au-
dios and corresponding near-field audios, which exclusively
record and transcribe single-speaker speech. To evaluate
the submitted systems, an additional 10 hours of audio data,



called Test-2023, is incorporated specifically for testing pur-
poses. Test-2023 comprises 10 sessions that were recorded
in 5 different rooms and include 58 speakers. It is crucial to
highlight that none of the speakers in 7est-2023 overlap with
those in the AliMeeting corpus.
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Fig. 1. The main difference between the speaker-attributed
ASR task (M2MeT 2.0) and the multi-speaker ASR task
(M2MeT).

This challenge introduces the speaker-attributed ASR
task which poses a unique challenge of transcribing speech
from multiple speakers and assigning a speaker label to the
transcription simultaneously. Figure [I] illustrates the dif-
ference between the speaker-attributed ASR task and the
multi-speaker ASR task. The speaker-attribution ASR task
groups transcriptions from the same speaker together, while
the multi-speaker ASR task combines overlapping sentences
spoken by different speakers. Sub-track 1 restricts partic-
ipants from using constrained datasets, while sub-track 2
allows the use of any dataset, including private ones. Any
open-source pre-trained models are available for both of
these two sub-tracks. The accuracy of a speaker-attributed
ASR system is evaluated using the cpCER. The calculation
of cpCER involves three steps. The first step is to concate-
nate the reference and hypothesis transcriptions from each
speaker in chronological order. This produces a single tran-
scription within one session. Next, the character error rate
(CER) is calculated between the concatenated reference and
hypothesis transcriptions, and this process is repeated for all
possible speaker permutations. Finally, the permutation with
the lowest CER is selected as the cpCER for that session.

To provide a clear and concise description of the cpCER
computation, we illustrate it in Algorithm[l] To run the algo-
rithm, it is necessary to provide both the ground truth and hy-
pothesis transcriptions for a given session, which are arranged
in chronological order. In cases where the length of Y and [
is not equal, we employ padding with blank transcriptions to
ensure that both sets have the same length.

4. SYSTEM DESCRIPTION
4.1. Baseline system

We release an E2E SA-Transformer baseline built on Fu-
nASR [30] toolkit for easy and reproducible research. The

Algorithm 1: Computation of cpCER

input : Ground truth: {Y7, Y5, ..., Y5}, hypothesis of
different speakers: {Hy, Ha, ..., Hg}. S is
the oracle speaker number and S is the
predicted speaker number

output: The cpC' E R of given session

Y+ {W,Ys,....Ys}:
H + {H17H2, 7HS'}’
mindistance < INFINITY
foreach permutation of H do
distance < 0;
for i + 1 to max(S,S) do

distance +

distance + editdistance(H [i],Y [i]);

end
if distance < mindistance then
10 ‘ mindistance < distance;
11 end
12 end
13 totaltoken + Zf:o length(Y [i]);
14 ¢pCER + mindistance/totaltoken x 100%

R N N O

e e

model architecture is illustrated in Figure [2| It comprises an
ASR block and a speaker block to carry out ASR and token-
level speaker identification. The ASR block is represented as

H*" = AsrEncoder(X), (1
" dy). 2

In the ASR block, the AsrEncoder converts the given
acoustic feature X into a series of hidden embeddings H**".
The AsrDecoder then produces the output distribution o,
step-by-step. To generate each token, the AsrDecoder takes
in the history token y(;.,,—1), the hidden embeddings H“*",
and the weighted speaker profile d,,. Compared to the other
encoder-decoder-based ASR models, our model differs in
its use of the weighted speaker profile d,,, computed in the
speaker block. This profile is employed to bias the transcrip-
tion towards a specific speaker, which enhances the model’s
ability to identify individual speakers within a session. The
posterior probability of token 7 at the n-th decoding step is
formulated as

Pr(yn = i‘y[l:n—lbs[l:n]y X, D) = On,j- 3)

0, = AsrDecoder (Y1, 1], H**

On the other hand, the speaker block is denoted as
HPF = SpeakerEncoder(x), %)

qn = SpeakerDecoder (y(1.n—1j, H*P*, H*"),  (5)
exp(cos(gn, d))

Bn, - 5 (6)
* T S F explcos(gn, d;))
K
dn =Y Bo il (7)
k=1



The speaker encoder takes the input acoustic feature X
and produces the speaker embedding H*P*, which has the

same shape as the ASR embedding H**" and represents
the speaker’s unique characteristics. During each decoding
step n, the SpeakerDecoder uses 41.,,—1, HsP% and H®" to
generate a speaker query ¢,. Based on this query, a cosine
distance-based attention weight 3, ; is calculated for every
profile di in D. These weights can be viewed as posterior
probabilities for the n-th token being attributed to the k-th
speaker, taking into account all previous estimations, as well
as relevant information from the input X and the speaker
profiles in D. The /3, ;; can be represented as

PT(STL = k\y[1:nf1]75[1:n71]7xa D) = ﬁn,lw (®

To extract speaker embeddings and initialize the SpeakerEn-
coder, we leveraged a pre-trained x-vector extractor from

ModelScope trained on CN-Celeb. To train our E2E SA-ASR
system, we employed a two-stage training strategy. In the
first stage of training the E2E SA-ASR system, we trained a
standard Conformer for the ASR task, which was utilized in
the second stage to initialize the ASR block. In this second
stage, both the ASR and speaker losses were incorporated to
fine-tune the model. By using Egs. [3|and[§] the joint posterior
of token Y and speaker .S, optimized to be maximized during
training, is represented as

N
PT(K S|Xa D) = H Pr(yn|y[1:n—1]a5[1:7L]7X5 D)
n=1

)]
XPT(Sn|y[1:n—1]a 5[1:71—1]7 X7 D)

During the training phase, speaker embeddings were ex-
tracted from audio solely containing one speaker to gener-
ate speaker profiles, utilizing the oracle time stamp. How-
ever, during the decoding phase, when the oracle speaker la-
bel was absent, we turned to spectral clustering for providing
the speaker profile.

4.2. Official modular system

In addition to the E2E SA-Transformer baseline, we also
develop an official modular system based on pre-trained
models that serves as a strong alternative. With the goal
of encouraging research and development in the field of
speaker-attributed ASR, we are dedicated to releasing this
system in the near future. The modular baseline is illustrated
in Figure 3] Our Front-End process leverages two methods to
enhance the input audio: weighted prediction error (WPE),
a well-known dereverberation technique, and guided source
separation (GSS), which utilizes prior segmentation infor-
mation to assist the separation process. To obtain speaker-
labeled segments for GSS, we employ a speaker diarization
module. The input long-form audio is first processed by a
VBx diarization system to obtain an initial diarization output.
Using this output, an x-vector extractor generates a speaker
profile for each session from non-overlapping speech seg-
ments. The speaker profiles are then utilized by a pre-trained
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Fig. 2. The SA-Transformer [18] baseline system uses in
M2MeT 2.0 challenge.

speaker overlap-aware neural diarization (SOND) [31] model
to generate the final diarization output for GSS. Following
GSS, we segment the audio based on the diarization out-
put and feed it into a Paraformer for single-talker ASR with
speaker labels.
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Fig. 3. The official modular system basing on open-source
pre-trained models.

5. EXPERIMENTAL SETUP

In this section, we describe the settings of the SA-Transformer
baseline and the modular system based on the pre-train mod-
els.



5.1. SA-Transformer baseline

The ASR Encoder is composed of 12 Conformer layers, each
equipped with 4-head multi-head attention (MHA). The MHA
and feed-forward network (FFN) dimensions are set to 256
and 2048, respectively. The ASR Decoder is made up of 6
transformer layers. The Speaker Encoder is initialized with a
pre-trained ResNet x-vector extractor, but with an additional
linear layer that transforms the embedding dimension into
256. The Speaker Decoder comprises 3 transformer layers.
The speaker loss weight is set to 0.5, while the CTC loss
weight is set to 0.3.

5.2. Official modular system

We have implemented VBx diarization in our modular speaker-
attributed system, following the workflow from the first
M2MeT challenge baseline. To extract x-vectors, we use
the same extractor as in SA-Transformer. When generat-
ing speaker profiles, we discard segments shorter than 0.5
seconds. Our system utilizes the pre-trained SOND and
Paraformer models, which are both open-sourced and can
be accessed on ModelScope. The train set of AliMeeting is
utilized to fine-tune the pre-trained paraformer model for 50
epochs with a learning rate of 0.00005.

6. RESULTS AND ANLYSIS

In this section, we provide a comprehensive analysis of var-
ious systems used in this challenge. The major techniques
used and evaluation results of each team is shown in Table 2]
A total of 30 teams registered for this challenge and 8 of
them submitted their results. Almost all teams use constraint
data to build their system except C17, so they submit the
same result to the two sub-tracks. While we initially released
an end-to-end SA-ASR baseline, most participants opted for
a modular system approach due to the long training time
and limited performance with restricted data for end-to-end
approaches. Moreover, with the availability of open-source
pre-trained models, developing a modular system is more
straightforward and yields satisfactory results. Consequently,
we examine different modules, data augmentation techniques,
and post-processing methods to ascertain their effectiveness
in improving the overall system performance.

6.1. Speaker modules
The speaker modules play a crucial role in the speaker-

attributed ASR system by providing time-stamp and speaker
profiles for subsequent ASR module. The input audio is
typically divided into shorter segments, and then a speaker
embedding extractor, such as ResNet [32], or CAM++ [33]],
is employed to encode the audio into an embedding that cap-
tures the speaker characteristics. The speaker embedding
is used to identify the speaker and corresponding speech
segment throughout the ASR process.

The performance of the diarization model is typically
measured by the diarization error rate (DER), which is
impacted by both speaker activation region prediction and
speaker identification accuracy. However, in the context of

speaker-attribute ASR tasks, the speaker activation region is
not always necessary. As a result, we present the results of
speaker counting in Table |3} Teams X27 and M42 both em-
ploy TS-VAD with different speaker embedding extractors.
By utilizing the clustering result as initialization to further
enhance diarization accuracy, team X27 achieves DER of
3.64% on the Test set. Team C17 and V29 opted for spectral
clustering and VBx clustering, respectively. Due to the low
overlap ratio in the 7est-2023 set, cluster-based diarization
methods can also perform well on speaker counting. Team
C31 and the official modular system use the SOND model and
achieved an accuracy of 80% and 100% in speaker counting,
respectively. The main difference is that the official modular
system uses the VBx to split out the single-talker speech part
which can produce more accurate speaker profiles. Benefiting
from the accuracy of speaker counting, the official modular
system achieves DER of 1.51% on the Test-2023 set.

6.2. Front-end

Out of all the participating teams, only the top 2 teams use
the front-end process. The winning team, X27, implements
the weighted prediction error (WPE) and weighted delay-and-
sum acoustic beamforming (Beamformlt) techniques, which
have proven effective in recognizing far-field audio. Team
M42 utilizes a Conformer-based Metric GAN (CMGAN) [34]
to separate multi-talker segments into single-talker segments
and compared the effectiveness of separate training and joint
training strategies. Joint training of the speech separation
module and ASR module results in a significant 4.2% reduc-
tion in the character error rate (cpCER) on the Test-2023 set-
ting (26.60% — 22.40%). The official modular system adopts
WPE and GSS. GSS is proven to be an effective method in
various challenges when the time stamp can be easily ob-
tained. In the official modular system, it results in a 1.80%
cpCER reduction compared to the process of WPE and Beam-
formlt (11.98% — 10.18%).

6.3. ASR module

Multiple ASR models are explored by the participants, in-
cluding U2++ [35], Paraformer [[17], MFCCA [36]], and SA-
Transformer [18]]. In their experiment, Team M42 utilizes
the U2++ and Paraformer models and assessed their perfor-
mance by comparing the cpCER obtained after joint train-
ing with the speaker separation module. The results indi-
cate that Paraformer outperforms U2++ with a lower cpCER
of 20.67% as compared to 22.40%. Notably, the top four
teams processed the audio into single talker segments, which
could be effectively handled using a pre-trained standard ASR
model.

Team X27 [37] successfully transforms a single-talker
ASR model into a target speaker model [38]] by incorporating
the target speaker’s embedding into a fully connected layer
and injecting it with an element-wise product between the en-
coder layers. This approach enabled the model to accurately
recognize the target speaker’s speech with high precision.



Table 2. Results of top 5 ranking teams in terms of cpCER and their major techniques. Team code O represents the official
modular system and Team code B represents the SA-Transformer baseline system
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Table 3. The speaker counting accuracy (%) on 20 sessions in Dover-lap is employed to merge the diarization result from

Test-2023 set. egpi, and o4y, represent the estimated speaker
number and oracle speaker number, respectively

Team code ‘ €spk<Ospk €spk=Ospk €spk > Ospk
Official | 0 100 0
X27 | 0 90 10
M42 | 0 100 0
c17 | 10 90
V29 | 0 95
c31 | 15 80 5
Bascline | 10 50 40

Team C31 implements the frame-level diarization with SOT
(FD-SOT) [19] multi-talker ASR system to mitigate the issue
of overlap in the ASR module. This multi-talker ASR sys-
tem combines diarization and ASR results by adhering to the
first-in first-out property of SOT. By splitting the ASR result
using speaker change symbols and assigning speaker labels
using diarization results, FD-SOT ensures one-to-one corre-
spondence. Furthermore, the MFCCA multi-channel solution
is adopted as their ASR model, which effectively leverages
fine-grained channel-wise information at each time step. It
should be noted that MFCCA achieves state-of-the-art level
performance with limited data from AliMeeting. However,
the conversion of multi-talker ASR transcripts to speaker-
attributed ASR transcripts remains a challenging task. The
official modular system adopts Paraformer as its ASR model.
We use the AliMeeting dataset to fine-tune the pre-trained
model and achieve the cpCER of 8.84%, while before fine-
tuning, the cpCER is 10.18%.

6.4. Data augmentation and post-processing

Data augmentation methods are only adopted by the top 2
teams. One such team, X27, uses the non-overlapping seg-
ments in Aishell-4 and CN-Celeb as simulation data to train
their TS-VAD model. They have also applied speed perturba-
tion to the training data of their TS-ASR model. Furthermore,

different channels and ROVER is also employed as the final
system fusion method, which results in a 0.24% cpCER re-
duction on the Test set, reducing it from 17.08% to 16.84%.
Team M42 effectively employs a wide range of data aug-
mentation methods, such as speed perturbation, adding noise
and reverb, pitch shifting, data simulation, audio codec, and
SpecAugment [39]. They have also developed U2++ and
Paraformer based speaker-attributed systems, and utilize a
system fusion method that depends on whether the audio has
undergone speech separation. They discover that the con-
former model performs better on audio that goes through
speech separation while the paraformer model is more ef-
fective on audio without speech separation. Therefore, the
processed audio is taken as the input of U2++, while the
Paraformer takes other inputs to produce the fused hypothe-
sis. This approach results in 2.03% cpCER reduction on the
Test-2023 set.

7. CONCLUSION

This paper provides an overview of the outcomes of the
M2MeT 2.0 challenge, with a focus on the techniques used
by the top-ranking teams. Given the limited training data and
system-building period, leveraging open-source pre-trained
models to construct a modular system is an effective ap-
proach. For speaker modules, TS-VAD and SOND are potent
methods, but accurate speaker profiles are necessary for op-
timal performance. Front-end processing methods such as
WPE, beecamformlt, CMGAN, and GSS are beneficial for
transcribing far-field data, although CMGAN may have a
negative effect on ASR accuracy for non-overlapped speech.
In the ASR module, SOT-based methods underperform due
to limited training data, while single-talker ASR models
trained on a large amount of data perform well when speech
is well-preprocessed in a modular system. Data simulation
is less important than that in the first M2MeT challenge, as
pre-trained ASR models provide sufficient initialization for
fine-tuning with a small amount of data. The best-performing
system achieves 8.84% cpCER given the limited training data
of the challenge.
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