
WIKI-EN-ASR-ADAPT: LARGE-SCALE SYNTHETIC DATASET FOR ENGLISH ASR
CUSTOMIZATION

Alexandra Antonova∗

Moscow Institute of Physics and Technology

ABSTRACT
We present a first large-scale public synthetic dataset for
contextual spellchecking customization of automatic speech
recognition (ASR) with focus on diverse rare and out-of-
vocabulary (OOV) phrases, such as proper names or terms.
The proposed approach allows creating millions of realistic
examples of corrupted ASR hypotheses and simulate non-
trivial biasing lists for the customization task. Furthermore,
we propose injecting two types of “hard negatives” to the
simulated biasing lists in training examples and describe our
procedures to automatically mine them. We report experi-
ments with training an open-source customization model on
the proposed dataset and show that the injection of hard neg-
ative biasing phrases decreases WER and the number of false
alarms.

Index Terms— dataset, personalization, speech recogni-
tion, contextual biasing, Wikipedia

1. INTRODUCTION

Recently, ASR customization problem has been gaining at-
tention from researchers because it is a major issue when us-
ing end-to-end ASR models in production systems. While
end-to-end ASR models have become popular and typically
outperform hybrid ASR models, it is more difficult to boost
the correct recognition of user-defined phrases, such as named
entities or uncommon terms. The set of all the user’s phrases
is also referred to as the user’s biasing vocabulary, or biasing
list.

Different approaches have been proposed. Shallow fusion
[1, 2, 3] relies on external language models to do on-the-fly
rescoring of recognition paths and boost the paths correspond-
ing to biasing phrases. Deep contextualization [4, 5, 6] en-
codes biasing phrases and integrates them as additional input
at training time. Compared to deep contextualization, which
requires retraining from scratch, contextual adapters [7] are
a more lightweight approach that can use a pretrained ASR
model with frozen weights and only train a small number
of additional parameters. Text-to-speech (TTS) augmentation
[8, 9] attempts to augment ASR training data with synthe-
sized audio for biasing phrases, but it requires retraining the

∗corresponding e-mail: antonova.aleksandra@phystech.edu

ASR model, which is impractical except for cases where the
model is stored on the user’s device. The contextual spelling
correction (CSC) approach [10, 11, 12] deals only with the
post-processing of ASR output text. Its task is to correct po-
tentially corrupted ASR output conditioned on the user’s bi-
asing list.

The advantage of the CSC approach is that it has the least
interaction with the ASR model and can potentially be applied
on top of any black-box ASR model, even if it is only accessi-
ble for inference via API [12]. The main difficulties are 1) the
need to train the correction model from scratch and 2) the lack
of training data. Real-world customization data often exist
only as in-house datasets, collected by companies providing
ASR, e.g. voice assistants, to many users [7, 8, 10, 13].

Synthetic datasets have proven to be useful for tasks
where obtaining natural data is difficult, such as grammar
correction [14] or text normalization [15]. To the best of
our knowledge, the only publicly available synthetic dataset
for personalization is UserLibri [16]. Though this dataset
is based on real data, it is small and is not representative of
domains other than fiction.

The goal of our paper is to construct the first large-scale
publicly available synthetic dataset1 for CSC customization.
To build such a dataset, we need examples of corrupted
ASR transcriptions paired with correct ones and imitations of
user’s biasing lists.

We use Wikipedia titles and their parts as examples of
target biasing phrases. This data is large, publicly available
and “universal” since it covers multiple domains frequently
needed for customization, such as geographic names, proper
names of people from different countries, scientific terminol-
ogy from different areas, titles of books, movies and so on.
We utilize TTS + ASR to obtain examples of “corrupted” bi-
asing phrases (see Section 2.1). To simulate a bigger “cor-
rupted ASR output” we find occurrences of target phrases
in real text snippets from Wikipedia and substitute the cor-
rect fragment with its corrupted counterpart. Unlike [10], we
never insert corrupted phrase at random places, so our training
examples always have realistic context around target phrases.

Biasing lists are hard to collect if one does not have ac-
cess to real user data. It turns out that using random biasing

1dataset available at: https://huggingface.co/datasets/
bene-ges/wiki-en-asr-adapt

979-8-3503-0689-7/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
9.

17
26

7v
1

 [
ee

ss
.A

S]
 2

9
Se

p
20

23

https://huggingface.co/datasets/bene-ges/wiki-en-asr-adapt
https://huggingface.co/datasets/bene-ges/wiki-en-asr-adapt

Fig. 1. Pipeline for Wiki-En-ASR-Adapt dataset creation using Wikipedia titles and texts.

lists makes the training task easy, but at inference with real
custom vocabulary it may lead to overbiasing - confusion be-
tween similar terms and degradation on common words due
to false alarms. Some researchers propose injecting hard neg-
ative examples into biasing lists during training to encourage
the neural model to learn more discriminative representations.
For example, [17] proposes adding phonetically similar al-
ternatives, while [18] suggests mining hard negative phrases
from the latent space of the context encoder via approximate
nearest neighbour search with a reference query.

In our approach we create two additional sources of hard
negative biasing phrases (see Section 3.1): related phrases
(similar to the correct biasing phrase) and false positive
phrases (similar to some common words or n-grams). We
sample from these sources, in addition to random sampling,
when constructing a simulated biasing list for a given training
example.

We aim to make our dataset as universal as possible, pro-
viding the possibility to generate final training data with a
specified size of biasing lists, ASR-hypothesis length, differ-
ent sampling strategies, and so on. Our dataset is published in
the form of several aggregate tables together with code that
allows the creation of training sets with desired properties
for different customization task settings. It can serve as a
source of diverse training data for models with different ar-
chitectures.

Our experiments show that a customization model trained
on a 10 million subset of our synthetic dataset improves WER
by up to 18% over the baseline ASR transcription. Hard nega-
tive biasing phrases help to reduce the number of false alarms.

This paper is structured as follows. Section 2 describes
corpus preparation from the source data and the tools that we
used. In section 3, we propose our approach to hard negative
sampling. Section 4 gives an overview of the structure of the
final released dataset. In Section 5, we demonstrate the feasi-
bility of our approach by training an open-source customiza-
tion model from scratch on a subset of our dataset. Section 6

discusses the results and concludes.

2. CORPUS PREPARATION

The outline of our approach is shown in Figure 1. It consists
of four steps:

1. Feed a large corpus of target biasing phrases to TTS+ASR
to get possible corruptions.

2. Align corrupted and original phrases to extract smaller
word n-grams and expand corruption inventory.

3. Find occurrences in real text snippets to construct train-
ing examples.

4. Add synthetic biasing lists.

2.1. Running G2P, TTS and ASR to get corrupted (mis-
recognized) examples

We follow the approach in [10, 11] and feed a large number of
short phrases to TTS and then to an ASR system, to get pairs
of input biasing phrase (reference) and the generated ASR-
hypotheses, e.g. “aaron wright” - “errand right”.

We start with a corpus of 4.5 million raw English Wikipedia
titles. We perform some preprocessing, such as removing di-
acritics, bracketed information, and punctuation. Since there
are many out-of-vocabulary words in the titles, we use an
external grapheme-to-phoneme (G2P) model (see Table 5) to
predict the pronunciation of separate words in CMU2 format
. We synthesize audio for each title using TTS with FastPitch
mel-spectrogram generator [19], which allows us to feed
phonemes directly as input, and the HiFi-GAN vocoder[20].
Then, we transcribe the synthesized audio with four different
ASR models (Table 5) using greedy decoding.

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Table 1 shows the metrics of different ASR models af-
ter the recognition of synthesized audio for the corpus of
Wikipedia titles. We observe that WER of all models is rather
high (69-94%), indicating that this dataset provides many ex-
amples of ASR errors. The intersection of predictions is about
20% between Fast-Conformer-CTC [21], Conformer-CTC,
Conformer-Transducer [22] (Table 5), and Whisper models,
and about 10% between each of them and the Quartznet [23]
model. Whisper models [24] are added only for comparison,
we do not use them in the rest of experiments. Whisper mod-
els tend to predict overconfidently common phrases instead
of what was actually said. On the contrary, Quartznet pre-
dictions are often phonetically closer but less consistent with
language modeling. The small intersection of predictions of
different ASR models means that we can simply increase our
corruption dataset by taking predictions of all models on the
same input.

Table 1. Metrics of different ASR models on synthesized
audio for Wikipedia titles.

Model WER CER

Conformer-CTC 76.17 26.7
FastConformer-CTC 76.73 27.81

Conformer-Transducer 70.33 27.58
Quartznet 94.49 34.61

Whisper-base-en 88.18 38.86
Whisper-small-en 72.89 28.48

Whisper-medium-en 69.35 27.0
Whisper-large 69.28 27.27

2.2. Alignment of original and corrupted titles

Though there exist many different ways to align a pair of
strings, they all lack statistical information. We use stronger
corpus-based statistical alignment models provided in the
GIZA++ tool [25]. Since this tool is designed to align words
in a corpus of parallel sentences, we regard our set of orig-
inal and corrupted titles as “parallel sentences” and their
characters, including spaces, as “words”.

In [11], this alignment serves to construct character n-
gram mappings but here we use it to extract aligned words
and subphrases (word n-grams) to increase the diversity of the
corruption inventory. For example, a pair (“ammothea ova-
toides”, “amid the overtodes”) will give additional paired sub-
phrases (“ammothea”, “amid the”) and (“ovatoides”, “over-
todes”).

After this procedure, the initial 4.5 million titles turn into
26 million pairs in the corruption inventory (Table 2). Some
of these pairs consist of common frequent words or phrases,
which will be filtered later in the pipeline.

Table 2. Phrase corruption inventory: original (Orig) and rec-
ognized (Recog) phrases with counts.

Orig Recog Count Orig Recog Count

congo congo 133 bantu band to 10
congo condo 9 bantu bantu 9
congo connt go 1 bantu ban to 7
congo go 1 bantu bant to 6
congo kango 1 bantu banta 2
congo come go 1 bantu than too 1
congo calgo 1 bantu than to 1
congo kongo 1 bantu bad to 1

2.3. Finding occurrences in real text

To construct a training example we need not only a correct
and corrupted biasing phrase, but also an example of a bigger
utterance containing this phrase. To achieve this, we search
for the occurrences of reference phrases in real texts. We
download full texts of all English Wikipedia articles. Those
texts are already split into paragraphs, but not into separate
sentences.

Before searching for phrase occurrences, we need to fil-
ter out common phrases, to avoid extracting too many para-
graphs. We calculate the inverse document frequency (IDF)
score for each original and corrupted phrase from our corrup-
tion inventory.

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
(1)

We filter out reference phrases with low IDF scores (e.g.
“in the”) or phrases that begin or end with a word with low
IDF score (too frequent, e.g. “abraham of”, “in trieste”).

We use simple text matching in lowercase throughout all
Wikipedia articles (not only the article with that particular ti-
tle). Since the original case is known in the given paragraph,
we apply less strict IDF thresholds for uppercase occurrences.
We do not use any NER detectors for two reasons: 1) speed
and simplicity; 2) some of the biasing phrases that we want to
find are not exactly named entities, for example, many scien-
tific terms.

The resulting aggregate table Keys2Paragraph (Table
3) has 34 million records consisting of 1) list of reference
phrases that occurred in the given paragraph, 2) original
paragraph text.

2.4. Simulation of ASR-hypothesis and positive biasing
phrases

Based on Keys2Paragraph, ASR-hypotheses can be easily
created by cutting text snippets of arbitrary length and sub-
stituting reference phrases with some of their counterparts
from the corruption inventory (see Table 2). Note that the de-
scribed substitution procedure allows us to construct highly

Table 3. Examples from Keys2Paragraph: paragraph text
paired with biasing phrases occurring in it.

Keys: bantu; republic of the congo; congo; mbesa
Paragraph: Mbesa is a Bantu language of the Democratic
Republic of the Congo.

Keys: mcnab; mcnab bank building; eufaula
Paragraph: The McNab Bank Building is a historic
building in Eufaula, Alabama, U.S.. It was built in the
1850s for John McNab, a Scottish-born banker.

realistic examples of ASR-hypotheses with misrecognized
biasing phrases (Table 4), because

1. The substituted phrases are taken from titles or their
parts, not just random word n-grams, and are likely to
represent some named entity or term.

2. The corrupted variants are produced by real ASR sys-
tems.

3. The corrupted variant is used exactly in place of the
original phrase and not at a random place in the sen-
tence like in [10].

Table 4. Examples of synthetic ASR-hypotheses: text snip-
pets with correct biasing phrases substituted by misrecog-
nized.

Original: discworld noir transitions into more dark
fantasy and lovecraftian horror
Corrupted: discorled nowhere transitions into more dark
fantasy and low crash and horror

Original: of a dog with endocarditis due to
bartonella rochalimae was published in
Corrupted: of a dog with andocrditis due to
bartonel rokalima was published in

The original fragments that were substituted with a cor-
rupted variant serve as the positive biasing phrases for this
particular example. There is a question of whether one should
consider “self-replacement” as valid biasing example. In our
experiments, we allow for such self-replacements so that
model learns to detect them along with corrupted variants.
This can be controlled at the stage of the generation of the
final dataset.

2.5. Fast dictionary-based text normalization

Since many ASR models output normalized text, to imitate
ASR-hypotheses, we may need to normalize the paragraph
texts before cutting snippets. It can be time-consuming to
process such a large amount of text by neural or complex

rule-based text normalization systems. We developed a fast
dictionary-based text normalization. It remembers all 4.3 mil-
lion normalized/unnormalized phrase equivalents from En-
glish Google Text Normalization Dataset [15] and just re-
places matching word n-grams in the paragraph text with their
most frequent normalization equivalent. The procedure al-
ways tries to match the longest possible n-grams first. In
rare cases, some text fragments may remain unnormalized
(e.g. containing a long unknown number). Such fragments
are skipped during snippet selection. Skipping is acceptable
because we have abundant data.

3. SIMULATION OF BIASING LISTS

The procedure described in Section 2 allows us to obtain a
realistic text snippet (ASR-hypothesis) with corrupted frag-
ments and one or more positive biasing phrases. However,
we have to somehow add biasing lists to the training data in
order to make it closer to real data at inference. This is not
easy because there exist no public datasets with biasing lists,
and there is no known way to extract them from any avail-
able data. That is why researchers put effort into simulating
biasing lists [17, 18].

3.1. Types of negative examples

The customization task is substantially different from other
language modeling tasks because it focuses on cases that are
hard or impossible to learn even from large amounts of text:

1. Rare or out-of-vocabulary phrases (e.g. “aaadonta fus-
cozonata”).

2. Undistinguishable spelling variations (e.g. “nathalie”,
“nataly”).

This means that the model should learn to phonetically com-
pare biasing phrases to the text of ASR-hypothesis. At the
same time, it can rely on information about the meaning of
the surrounding words. For example, it can notice meaning
inconsistencies, which may indicate that this is a corrupted
fragment.

We consider the following types of useful negative biasing
phrases:

1. Random - Just random biasing phrases from a big pool.

2. Related - Phrases that are somewhat similar to a pos-
itive biasing phrase, but distinguishable from it (e.g.
“lovecraftian”/“lovecraft”, “mizukawa”/“kurizuka”,
“boulter”/“ana boulter”, “anaudia”/“antony naudi”).

3. False positives - Phrases that are accidentally similar
to some valid fragment in the ASR-hypothesis, that
need not be replaced (e.g. “nuts and”/“knutsen”, “use
of”/“yusuf”, “helmet”/“hellmut”, “runs”/“rhoannes”,
“application”/“plication”, “difference”/“deference”).

Note that spelling variations (e.g. “nathalie”, “nataly”)
are useful as positive biasing phrases, but not useful as nega-
tives. This would correspond to a situation in which a user’s
vocabulary has both “nathalie” and “nataly”, and they would
be indistinguishable to the model because they are close both
phonetically and semantically.

3.2. Finding “related” phrases

The purpose of the related class of negative examples is to
serve as distractors, making the recognition task harder for
the model and teaching it to capture subtle differences to bet-
ter discriminate between similar phrases. In real settings, a
custom vocabulary can often contain related terms, such as
“cardiac” / “cardial” / “cardiology”, “tubercular” / “tubercu-
lous” / “tuberculosis”, and we don’t want the model to con-
fuse them with one another.

3.3. Finding false positives

The purpose of the false positive class of negative examples is
to teach the model to distinguish cases when some fragment
in the ASR-hypothesis is accidentally phonetically similar to
some biasing phrase, but is relevant to its surrounding context
and need not be replaced. For example, in the text snippet
“of filo pastry filled with chopped nuts and soaked in honey”,
the fragment “nuts and” is perfectly relevant and need not be
replaced with biasing phrase “knutsen”. On the contrary, in
the text snippet “hartman lived with nuts and and her two sis-
ters” the fragment “nuts and” is irrelevant which is a hint for
the model that it’s a corrupted biasing phrase “knutsen”, pro-
vided it is in the biasing list. Note that despite the fact that the
biasing phrase itself can be completely unseen, models can
learn such differences by looking at how well the corrupted
fragment fits into the surrounding context. The only problem
is that it’s hard to sample a sufficient number of false positive
pairs like “knutsen” and “nuts and” because it’s combinatori-
ally difficult to compare the set of possible biasing phrases to
the set of possible text n-grams.

Our solution for mining false positive pairs is as follows:
we take all phrases from our corruption inventory and find
occurrences of corrupted variants in Wikipedia texts. Since
the text is real, we consider the corrupted fragment to be rel-
evant - and therefore we can use the original phrase as a false
positive example for the given text snippet.

Unfortunalely, this method cannot generate an arbitrar-
ily large number of false positive examples, because it is re-
stricted by the phrases from our corruption inventory, many
of which are not realistic n-grams and do not occur in real
texts. Our final false positive phrases inventory contains 449
thousand pairs for 66 thousand common n-grams.

Table 5. Links to resources used in this work.
Resource Reference

G2P https://huggingface.co/bene-ges/en g2p cmu bert large

https://catalog.ngc.nvidia.com/models:
Conformer-CTC stt en conformer ctc large
Conformer-RNNT stt en conformer transducer large
FastConformer-CTC stt en fastconformer ctc large
Quartznet15x5 stt en quartznet15x5
Mel-spectrogram tts en fastpitch
Vocoder tts hifigan

https://github.com:
100k medical terms glutanimate/wordlist-medicalterms-en
24k multi-word medical terms McGill-NLP/medal/master/toy data/valid adam.txt

4. DESCRIPTION OF THE RELEASED DATASET

Wiki-En-ASR-Adapt dataset is published as several aggregate
tables together with code that allows the creation of training
sets with desired properties for different customization task
settings. The resulting resource contains:

• Keys2Paragraph - 4.3 million unique words/phrases
occurring in 33.8 million paragraphs.

• Keys2Corruptions - 24.7 million pairs in the corrupted
phrase inventory, as recognized by four different ASR
models.

• Keys2Related - 62.7 million pairs in the related phrase
inventory.

• FalsePositives - 449 thousand pairs in the false positive
phrase inventory.

• Scripts to generate training examples with the required
properties and sampling strategy.

• Wikipedia titles with character-level alignment, done
with GIZA++.

5. EXPERIMENTS

Most of the existing customization models are in-house sys-
tems of commercial companies. We use an open-source cus-
tomization model[11] from the NeMo toolkit [26]. We gen-
erate training data in the required format using our Wiki-En-
ASR-Adapt dataset and verify that the model can learn from
scratch on it.

5.1. SpellMapper model architecture

SpellMapper is a non-autoregressive model based on BERT
architecture that works at char-level and tags characters as
belonging to one of ten given candidate biasing phrases or
none. The given ten biasing phrases are preselected from a
larger biasing vocabulary by a retrieval algorithm that finds
candidates that best match the input ASR-hypothesis based
on n-gram mappings statistics.

5.2. Training and evaluation datasets

We use Wiki-En-ASR-Adapt to generate two training datasets
for the SpellMapper model. Both datasets consist of ten mil-
lion training examples, and in 50% of examples there is at
least one correct candidate. Biasing lists always contain ten
phrases. In the first dataset, all phrases in the biasing list (ex-
cept for the correct candidates) are sampled randomly from
a big pool of phrases. In the second dataset, we inject hard
negative biasing phrases in the following way:

• 1-3 incorrect candidates are sampled from the false pos-
itives inventory if available.

• If the example contains correct candidate(s), at most
3 incorrect candidates are sampled from the related
phrases inventory.

• The rest are randomly sampled to reach the total num-
ber of ten candidates.

For the final testing, we use three corpora from different
domains. Spoken Wikipedia [27] and SPGISpeech [28] are
processed similarly to [11]: audio is real, and biasing vocabu-
laries are simulated using rare words and phrases from the ref-
erence texts. To test with a more realistic biasing vocabulary,
we prepare a medical dataset (Med) in the following way: we
take a set of 5.5k medical abstracts from PubMed3 resource
and intersect their texts with a list of medical terms consist-
ing of 100k single-word terms and 24k multi-word terms (see
resources in Table 5), obtaining a biasing vocabulary of 5.1k
phrases. Then we feed the medical abstracts to TTS (same as
in Section 2.1) to get synthetic audio.

Baseline transcriptions for all three datasets are produced
by the Conformer-CTC model. Apart from Word Error Rate
(WER), we measure recall and precision w.r.t. the target bias-
ing phrases and the percentage of transcriptions changed by
post-correction. We compare the results of the customization
model trained on datasets with and without hard negative bi-
asing phrases.

5.3. Results

The results are presented in Table 6. They can be summarized
as follows:

• The proposed dataset allows to train a working cus-
tomization model from scratch.

• Model trained with random biasing lists tends to make
more replacements at inference but has low precision,
diminishing gain in WER.

• Injection of hard negative biasing phrases decreases
WER and affects the precision/recall metrics making
the model produce fewer false alarms.

3https://www.ncbi.nlm.nih.gov/pmc/

Table 6. Comparison of customization models trained with
random/hard biasing lists, using test sets from different do-
mains: medical (Med), business (SPGI), Wikipedia (SWC).

Training
set Metric Med SPGI SWC

Random WER 11.46 5.64 5.54
biasing Recall 58.8 61.3 68.1
lists Precision 53.2 65.1 73.0

Changed sent 65.8 10.0 30.3

Hard WER 10.77 5.59 5.39
biasing Recall 50.2 46.1 64.6
lists Precision 63.2 84.6 81.4

Changed sent 52.8 6.0 25.7

Baseline ASR WER 12.72 5.88 6.6

6. CONCLUSION

In this paper we introduced Wiki-En-ASR-Adapt, the first
large-scale dataset for English ASR customization with focus
on rare and OOV biasing phrases. Despite being synthetic,
our training examples are realistic because they are based on
real text snippets. The large corpus size, including multiple
domains covered by Wikipedia, and the use of real errors of
different ASR models make it representative for many poten-
tial customization applications.

We also presented a solution to “hard negative” problem.
We supply two sources of “hard negatives”, namely, related
phrases and false positives, and provide an option to inject
them in desired proportions to the simulated biasing lists in
training examples.

We demonstrated the feasibility of the proposed approach
by training an open-source customization model on the gener-
ated dataset and showed the positive effect of hard negatives.

We hope that the appearance of a new large-scale pub-
lic dataset for ASR customization will stimulate academic re-
search and development of new customization models. While
our dataset is best suited to train text-only CSC customization
models, like [10] or [11], it can be adapted to training cus-
tomization models that use acoustics if one synthesizes audio
for selected sentences.

Current restrictions that have yet to be overcome:

• Since our corruption inventory originates from Wikipedia
titles, which are mostly noun groups in singular gram-
matical number, other classes, such as verbs, -ing,
possessive, and plural forms, are underrepresented.

• False positive inventory should be expanded to cover
more common word n-grams.

All code to reproduce our experiments will be released
together with the dataset.

https://www.ncbi.nlm.nih.gov/pmc/

7. REFERENCES

[1] Ding Zhao, Tara N. Sainath, David Rybach, Pat Rondon,
Deepti Bhatia, Bo Li, and Ruoming Pang, “Shallow-
fusion end-to-end contextual biasing,” in Interspeech,
2019.

[2] Aditya Gourav, Linda Liu, Ankur Gandhe, Yile Gu,
Guitang Lan, Xiangyang Huang, Shashank Kalmane,
Gautam Tiwari, Denis Filimonov, Ariya Rastrow, et al.,
“Personalization strategies for end-to-end speech recog-
nition systems,” in ICASSP, 2021.

[3] Jennifer Drexler Fox and Natalie Delworth, “Improving
contextual recognition of rare words with an alternate
spelling prediction model,” in Interspeech, 2022.

[4] Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar, An-
juli Kannan, and Ding Zhao, “Deep context: End-to-end
contextual speech recognition,” 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), pp. 418–425, 2018.

[5] Mahaveer Jain, Gil Keren, Jay Mahadeokar, Geoffrey
Zweig, Florian Metze, and Yatharth Saraf, “Contextual
RNN-T for open domain ASR,” in Interspeech, 2020.

[6] Feng-Ju (Claire) Chang, Jing Liu, Martin Radfar,
Athanasios Mouchtaris, Maurizio Omologo, Ariya Ras-
trow, and Siegfried Kunzmann, “Context-aware trans-
former transducer for speech recognition,” in ASRU,
2021.

[7] Kanthashree Mysore Sathyendra, Thejaswi Muniyappa,
Feng-Ju (Claire) Chang, Jing Liu, Jinru Su, Grant
Strimel, Athanasios Mouchtaris, and Siegfried Kunz-
mann, “Contextual adapters for personalized speech
recognition in neural transducers,” in ICASSP 2022,
2022.

[8] Khe Chai Sim, Françoise Beaufays, Arnaud Benard,
Dhruv Guliani, Andreas Kabel, Nikhil Khare, Tamar
Lucassen, Petr Zadrazil, Harry Zhang, Leif Johnson,
et al., “Personalization of end-to-end speech recogni-
tion on mobile devices for named entities,” in Auto-
matic Speech Recognition and Understanding Workshop
(ASRU), 2019.

[9] Vladimir Bataev, Roman Korostik, Evgeny Shabalin,
Vitaly Lavrukhin, and Boris Ginsburg, “Text-only do-
main adaptation for end-to-end asr using integrated text-
to-mel-spectrogram generator,” in Interspeech, 2023.

[10] Xiaoqiang Wang, Yanqing Liu, Jinyu Li, Veljko Mil-
janic, Sheng Zhao, and Hosam Khalil, “Towards contex-
tual spelling correction for customization of end-to-end
speech recognition systems,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 30,
pp. 3089–3097, 2022.

[11] Alexandra Antonova, Evelina Bakhturina, and Boris
Ginsburg, “Spellmapper: A non-autoregressive neu-
ral spellchecker for asr customization with candidate
retrieval based on n-gram mappings,” in Interspeech,
2023.

[12] Rao Ma, Mengjie Qian, Mark J. F. Gales, and Kate M.
Knill, “Adapting an unadaptable asr system,” in Inter-
speech, 2023.

[13] Philip Harding, Sibo Tong, and Simon Wiesler, “Selec-
tive biasing with trie-based contextual adapters for per-
sonalised speech recognition using neural transducers,”
in Interspeech, 2023.

[14] Felix Stahlberg and Shankar Kumar, “Synthetic data
generation for grammatical error correction with tagged
corruption models,” in Proceedings of the 16th Work-
shop on Innovative Use of NLP for Building Educational
Applications, Online, Apr. 2021, pp. 37–47, Association
for Computational Linguistics.

[15] Hao Zhang, Richard Sproat, Axel H Ng, Felix Stahlberg,
Xiaochang Peng, Kyle Gorman, and Brian Roark, “Neu-
ral models of text normalization for speech applica-
tions,” Computational Linguistics, vol. 45, no. 2, pp.
293–337, 2019.

[16] Theresa Breiner, Swaroop Ramaswamy, Ehsan Var-
iani, Shefali Garg, Rajiv Mathews, Khe Chai Sim,
Kilol Gupta, Mingqing Chen, and Lara McConnaughey,
“UserLibri: A dataset for ASR personalization using
only text,” in Interspeech, 2022.

[17] Uri Alon, Golan Pundak, and Tara N. Sainath, “Con-
textual speech recognition with difficult negative train-
ing examples,” ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6440–6444, 2018.

[18] Maurits Bleeker, Pawel Swietojanski, Stefan Braun,
and Xiaodan Zhuang, “Approximate nearest neighbour
phrase mining for contextual speech recognition,” 2023.

[19] Adrian Łańcucki, “FastPitch: Parallel text-to-speech
with pitch prediction,” in ICASSP, 2021.

[20] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae, “Hifi-
GAN: Generative adversarial networks for efficient and
high fidelity speech synthesis,” in NeurIPS, 2020.

[21] Dima Rekesh, Samuel Kriman, Somshubra Majumdar,
Vahid Noroozi, He Huang, Oleksii Hrinchuk, Ankur
Kumar, and Boris Ginsburg, “Fast conformer with lin-
early scalable attention for efficient speech recognition,”
2023.

[22] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang,
“Conformer: Convolution-augmented transformer for
speech recognition,” in Interspeech. 2020, ISCA.

[23] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jo-
celyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, and Yang Zhang, “Quartznet: Deep
automatic speech recognition with 1d time-channel sep-
arable convolutions,” ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6124–6128, 2019.

[24] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever, “Robust
speech recognition via large-scale weak supervision,” in
International Conference on Machine Learning, 2022.

[25] Franz Josef Och and Hermann Ney, “A systematic com-
parison of various statistical alignment models,” Com-
putational linguistics, vol. 29, no. 1, pp. 19–51, 2003.

[26] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary,
B. Ginsburg, S. Kriman, S. Beliaev, V. Lavrukhin,
J. Cook, et al., “NeMo: a toolkit for building AI ap-
plications using neural modules,” in Systems for ML
Workshop, NeurIPS, 2019.

[27] Timo Baumann, Arne Köhn, and Felix Hennig, “The
Spoken Wikipedia corpus collection: Harvesting, align-
ment and an application to hyperlistening,” Language
Resources and Evaluation, vol. 53, pp. 303–329, 2019.

[28] Patrick K. O’Neill, Vitaly Lavrukhin, Somshubra
Majumdar, Vahid Noroozi, Yuekai Zhang, Olek-
sii Kuchaiev, Jagadeesh Balam, Yuliya Dovzhenko,
Keenan Freyberg, Michael D. Shulman, Boris Ginsburg,
Shinji Watanabe, and Georg Kucsko, “SPGISpeech: 5,
000 hours of transcribed financial audio for fully for-
matted end-to-end speech recognition,” in Interspeech,
2021.

	 Introduction
	 Corpus preparation
	 Running G2P, TTS and ASR to get corrupted (misrecognized) examples
	 Alignment of original and corrupted titles
	 Finding occurrences in real text
	 Simulation of ASR-hypothesis and positive biasing phrases
	 Fast dictionary-based text normalization

	 Simulation of biasing lists
	 Types of negative examples
	 Finding ``related" phrases
	 Finding false positives

	 Description of the released dataset
	 Experiments
	 SpellMapper model architecture
	 Training and evaluation datasets
	 Results

	 CONCLUSION
	 References

