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ABSTRACT

The 2023 Multilingual Speech Universal Performance Benchmark
(ML-SUPERB) Challenge expands upon the acclaimed SUPERB
framework, emphasizing self-supervised models in multilingual
speech recognition and language identification. The challenge com-
prises a research track focused on applying ML-SUPERB to specific
multilingual subjects, a Challenge Track for model submissions,
and a New Language Track where language resource researchers
can contribute and evaluate their low-resource language data in the
context of the latest progress in multilingual speech recognition.
The challenge garnered 12 model submissions and 54 language cor-
pora, resulting in a comprehensive benchmark encompassing 154
languages. The findings indicate that merely scaling models is not
the definitive solution for multilingual speech tasks, and a variety
of speech/voice types present significant challenges in multilingual
speech processing.

Index Terms— Multilingual speech recognition, self-supervised
learning, ML-SUPERB

1. INTRODUCTION

Self-supervised learning (SSL) has gained significant popularity in
the speech community due to its effectiveness in capturing essential
speech features, such as phonemes and acoustic units, through train-
ing on large amounts of unlabeled speech data [1]]. These SSL mod-
els have shown remarkable improvements in various downstream
tasks, including speech recognition, speaker identification, and emo-
tion recognition [2]. In recent years, researchers have proposed di-
verse SSL models with different training objectives, operating under
various data conditions, model architectures, and modalities [3L/4].

The Speech Universal PERformance Benchmark (SUPERB), es-
tablished in 2021, has emerged as a popular benchmark for evaluat-
ing speech SSL representations [2]]. The primary goal of this bench-
mark is to compare speech SSLs across various speech processing
tasks, encompassing aspects such as content, speaker, semantics, and
paralinguistics. However, one limitation of SUPERB is its exclusive
focus on English speech in its downstream tasks. In contrast, there
is a growing interest in applying SSL models to multilingual sce-
narios, including training multilingual SSL models [[5H7]] or utilizing
SSL models in a cross-lingual manner [8H11]]. To facilitate research
in these areas, a new benchmark called multilingual SUPERB (ML-
SUPERB) has been proposed [[12].

ML-SUPERB has been designed to encompass a wide range
of languages, including both high-resource languages like English
and endangered languages such as Totonac or Mixtec [13}|14].
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The benchmark primarily focuses on evaluating SSL models for
automatic speech recognition (ASR) and language identification
(LID). To cater to different use cases for SSL models, ML-SUPERB
includes two tracks with four different tasks: the monolingual
track (monolingual ASR) and the multilingual track (multilingual
ASR, LID, joint multilingual ASR/LID). Similar to SUPERB, ML-
SUPERB utilizes frozen SSL models as feature extractors and
employs a lightweight downstream model that can be fine-tuned for
different tracks to achieve high training efficiency. The released
public benchmark of ML-SUPERB covers 143 languages, making it
highly inclusive and representative of diverse linguistic contexts.

Following the release of ML-SUPERB, the ML-SUPERB Chal-
lenge was inaugurated. In addition to a research track encompassing
a variety of topics, we implemented two tracks for competitors: the
Challenge Track and the freshly minted New Language Track. The
Challenge Track emphasizes challenge performance, analogous to
the SUPERB SLT2022 challenge. Conversely, the New Language
Track instigates a novel design to the challenge by inviting partic-
ipants to contribute their language resources. Through the creation
of the New Language Track, ML-SUPERB continues to evolve by
integrating new languages into its framework.

The challenge drew considerable interest and participation,
with the Challenge Track receiving 12 model submissions and the
New Language Track gaining an additional 54 valuable language
resources. In incorporating these new languages, ML-SUPERB
now extends its reach to an impressive total of 154 languages. It’s
noteworthy that all contributions were exclusively from academic in-
stitutions, demonstrating that the realm of multilingual SSL research
isn’t confined to large corporations, and indeed, academia can exert
substantial influence. We also saw unique entries like WavLabLLM,
which were created from the ground up, independent of any pre-
existing SSLs. The challenge’s key findings include: (1) Scaling
large models is not the only viable strategy for tackling multilingual
speech tasks. (2) Diverse speech and voice types pose significant
difficulties when applying multilingual speech representation to
low-resource languages.

2. BACKGROUND

2.1. SUPERB and its Challenges

Since the public release of SUPERB, researchers have widely
adopted the benchmark, showcasing its increasing prominence.
The speech SSL toolkit, S3PRL, designed to facilitate researchers’
participation in SUPERB, has gained significant attention from re-



searchers in self-supervised speech representatiorﬂ Reflecting the
growing interest, the SUPERB team organized a dedicated SUPERB
session during the 2nd Workshop on Self-supervised Learning for
Audio and Speech Processing at AAAI 2022 || Additionally, some
of the organizers conducted tutorials on SSL methodologies in
speech and benchmarking with SUPERB at ICASSP 2022 and
NAACL 2022 || further emphasizing the relevance and impact of
SUPERSB in the research community.

More recently, the SUPERB team successfully organized the
SUPERB challenge at SLT 2023 [15]. The challenge received 12
speech SSL submissions, highlighting the continued interest and ad-
vancement in the field. Recognizing the importance of addressing
efficiency concerns in speech SSL, the challenge introduced an ad-
ditional examination of memory and computation estimation, sup-
plementing the original SUPERB framework that primarily focused
on the model’s performance across different tasks. This expansion
reflects the community’s emphasis on optimizing the efficiency of
speech SSL models alongside their task-specific capabilities.

2.2. Multilingual Speech Self-supervised Representation

Multilingual speech representation learning has received significant
attention from both academia and industry.

Before the advent of end-to-end ASR systems, numerous studies
delved into multilingual representation for Hidden Markov Model
(HMM)-based architectures [[16-19]. With the evolution towards
end-to-end ASR, researchers began investigating the use of large-
scale multilingual end-to-end ASR models to learn generalized rep-
resentations across multiple languages [20-22[. These studies un-
derscored the importance of incorporating a broader range of lan-
guages and larger datasets to enhance performance, especially in
low-resource ASR scenarios.

To further leverage the abundance of unlabeled data available
in the wild, speech self-supervised models have been introduced in
multilingual representation learning, offering the potential for even
greater data utilization and performance gains. Kawakami et al., in
2020, leveraged various multilingual corpora with contrastive pre-
dictive coding (CPC), along with some English corpora, to jointly
learn representations, resulting in significant performance enhance-
ments across 22 languages [23|]. More recently, Meta teams delved
into multilingual representation learning using Transformer archi-
tecture, employing wav2vec 2.0, which led to notable advancements
in the XLSR series of works [5H7]. These efforts exemplify the
exploration and progress in leveraging self-supervised learning ap-
proaches for multilingual speech representation learning.

In recent works addressing low-resource or multilingual ASR,
researchers have extensively explored the use of the XLSR model as
a backbone, consistently achieving improvements over spectral fea-
tures and other monolingual SSL approaches [8}(9,/11,24-27]]. How-
ever, there have been limited efforts to explore the integration of mul-
tilingual attributes into different self-supervised models, despite the
success of WavLM [28] in outperforming wav2vec2 models across
various speech processing tasks in SUPERB. This challenge, there-
fore, encourages the community to explore and develop improved
architectures for multilingual speech processing.

In addition to ML-SUPERB, several other benchmarking initia-
tives have honed in on multilingual speech representation. LeBench-
mark, for example, explores multilingual SSL in French speech pro-
cessing [29]], while IndicSUPERB concentrates on a range of In-

lhttps ://github.com/s3prl/s3prl
thtps ://aaai-sas-2022.github.io/
3https ://sites.google.com/view/tutorial-ssl-speech

dian languages [30]. Furthermore, XTREME-S covers an expansive
array of tasks by directly amalgamating existing multilingual cor-
pora without confining itself to unsupervised conditions [31]]. These
benchmarking efforts provide invaluable resources and platforms for
furthering research in multilingual speech representation.

Compared to other works, ML-SUPERB distinguishes itself by
aiming to offer an efficient evaluation framework that covers an ex-
tensive range of languages and accounts for varying scenarios. To
be precise, the public release of ML-SUPERB incorporates 143 lan-
guages, which, to the best of our knowledge, represents the bench-
mark with the most extensive language coverage. In terms of design,
each language is equally sampled for ten minutes and one hour, thus
curtailing the computational effort required for a complete evalua-
tion cycle. With the introduction of the New Language Track, we
anticipate an evolving, “open” ML-SUPERB that continues to inte-
grate new languages.

3. TRACKS IN ML-SUPERB CHALLENGE

In this challenge, participants are invited to engage in three different
tracks. In addition to the research track, which welcomes regular re-
search papers, the main challenge comprises two distinct tracks: the
Challenge Track and the New Language Track. These tracks offer
participants the opportunity to showcase their expertise and innova-
tion in specific areas related to the challenge objectives.

3.1. Challenge Track

The Challenge Track serves as the primary focus of this challenge,
aiming to explore new multilingual self-supervised models. Partici-
pants have the opportunity to compete on two leaderboards: a public
leaderboard and a hidden leaderboard.

The public leaderboard utilizes the ML-SUPERB benchmark
data, which was released in [[12]. On the other hand, the hidden
leaderboard incorporates data submitted from the New Language
Track. The evaluation methodology of ML-SUPERB follows a
similar design to that of SUPERB. It utilizes a frozen upstream
SSL model and a fixed downstream model architecture. Specifi-
cally, a weighted sum of layer-wise SSL features is employed, and
a connectionist-temporal classification %(]ITC)-based transformer
network is used as the downstream model

Both leaderboards consist of four tasks: monolingual ASR, mul-
tilingual ASR, LID, and multilingual ASR+LID. Each task has two
configurations, with a 10-minute training set and a 1-hour training
set, respectively. Additionally, the public leaderboard includes few-
shot learning cases, where only 5 utterances from 20 languages are
used in the training set. However, the hidden set does not consider
this specific case.

3.2. New Language Track

In addition to the Challenge Track, the ML-SUPERB Challenge
presents a unique New Language Track. This track is specifically
tailored for researchers focused on language resources, particularly
those keen on evaluating their low-resource language data employ-
ing cutting-edge ASR techniques. The principal aim of this track
is to encourage researchers to contribute their unique language data
to ML-SUPERB, consequently broadening the spectrum of multi-
lingual research to encapsulate a wider variety of global languages.
Participants engaging in the New Language Track are obligated

4Implementation  details are at |https://github.com/espnet/
espnet/tree/master/egs2/ml_superb/asrl.
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Fig. 1. Geographical distribution of the New Language track sub-
missions. The 45 languages are marked on a map with their rough
locations of speaking.

to offer a comprehensive description of their submitted data and
to execute experiments utilizing established models from the ML-
SUPERB benchmark.

An important aspect of the New Language Track is that the sub-
mitted data serves as an open evaluation set for other participants
who have submitted their own SSL models to the challenge. This es-
tablishes collaboration and allows participants to evaluate their mod-
els on a diverse set of languages, contributing to a more comprehen-
sive and inclusive evaluation of multilingual speech recognition.

4. SUBMISSIONS

4.1. New Language Track Submissions

For the New Language track, the challenge received a total of 8 sub-
missions. In combination with the base evaluation hidden set pre-
pared by the organizers, these submissions resulted in the creation
of 54 new additional ML-SUPERB-style corpora. Figure [I] illus-
trates the distribution of these hidden languages, which are primar-
ily concentrated in East Asia [32]], Southeast Asia [33]], and South
Asia, while also exhibiting a reasonable distribution across other re-
gions of the world (ir(‘)yinSpeech [34], Quechua Speech [35]], etc.).
A number of submissions are created with existing corpora [36}/37,
37H39]l, while there are also effects in releasing newly published
low-resource languages to the challenge.

In addition to the submissions received for the New Language
Track, the organizers have prepared additional data for evalua-
tion purposes, known as the base-hidden set. The base-hidden set
consists of two main concentrations: multilingual conversational
speech and multilingual singing voice. These additions create more
challenging scenarios for multilingual understanding and evalu-
ation. The conversational speech samples are drawn from vari-
ous sources, including Babel [40], Fisher [41]], Switchboard [42],
KsponSpeech [43]], and AccentedFrenckﬂ On the other hand, the
singing voice samples are taken from Muskits recipes [44], includ-
ing Opencpop [45]l, PopCS [46], M4Singer [47]], CSD [48]], as well
as a combination of the Oniku and Ofuton corpord’l The inclu-
sion of these additional datasets in the base-hidden set enhances
the complexity and diversity of the evaluation, providing more re-
alistic and challenging scenarios for evaluating multilingual speech
understanding systems.

The statistics of the hidden set are detailed in Table [l Out of
the 54 newly incorporated ML-SUPERB-style corpora, a total of

5https ://www.openslr.org/57/

5Gotanmiya Kurumi Singing Voice Database: http://onikuru.info/
db-download/| and Ofuton P Singing Voice Database: https://sites.
google.com/view/oftn-utagoedb

Table 1. Benchmark statistics on the hidden leaderboard from the
New Language track.

Dataset | Hours | Normal Langs (45)
10-minute 9.52 ~10min x 54 (1ang, data)
1-hour 57.13 ~1h x 54 (lang, data)
Dev 9.31 ~10min x 54 (1ang, data)
Test 9.38 ~10min x 54 (1ang, data)

Table 2. Selected models from the public ML-SUPERB and chal-
lenge submissions from participants. Different colors represent dif-
ferent pre-trained languages: purple stands for monolingual SSL,
blue stands for SSL trained in a few languages from the same re-
gion, and yellow stands for multilingual SSLs.

Pre-Training
Model ‘ Params (M) ‘ #Hours #Langs
wav2vec2-base |3] 95 1k 1
wav2vec2-base-23 [49] 95 100k 23
XLSR-128 [5] 317 400k 128
HuBERT-base [4] 95 1k 1
HuBERT-large [4] 317 60k 1
mHuBERT-base [50] 95 14k 3
MMS-300m 317 491k 1,406
MMS-1b 965 491k 1,406
CV-HuBERT-base 95 13k 92
CV-HuBERT-base (40ms) 96 13k 92
CV-HuBERT-base (80ms) 96 13k 92
CV-HuBERT-MR-base 287 13k 92
EFFUSE (W2V2+XLSR) 634 400k 128
EFFUSE (HuBERT+XLSR) 634 400k 128
NWHCI1 317 400k 128
NWHC2 317 400k 128
‘WavLabLM-base 95 40k 136
WavLabLM-large-EK 317 40k 136
WavLabLM-large-MK 317 40k 136
WavLabLM-large-MS 317 40k 136

18 have been deemed fitting for integration into the future public
benchmark of ML-SUPERB. These 18 corpora will serve to broaden
and enrich the publicly available benchmark. The remaining cor-
pora have been earmarked for internal evaluation within the ML-
SUPERB framework. With this newly established schema, we an-
ticipate that ML-SUPERB will continue to evolve by perpetually
adding new languages, fostering a better ecosystem for multilingual
speech research worldwide.

4.2. Challenge Submissions

For the ML-SUPERB challenge, we received 12 model submissions,
shown in Table[2] For readers’ reference, the organizers also present
the results of six example models in the original public benchmark[]
The followings are their brief descriptions, which are categorized by
their pre-training methods:

HuBERT with multiple resolutions: The set of models takes the
insight from [51] by utilizing HuBERT with multiple resolutions
[52]. In its pre-training stage, the participants utilized Common-
Voice 11.0 dataset [53] and extracted the K-means units with the
English HuBERT released in [[54)]. Similar to [S1], the participants
trained three HuBERT-based on 20ms, 40ms, and 80ms resolution

"The six models are selected based on their relative performances over
the existing public benchmark reported in [[12].
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Table 3. {10-minute / 1-hour} set ML-SUPERB public benchmark (143 languages).

Monolingual ASR Multilingual ASR LID Multilingual ASR + LID
SSL Normal Few-shot Normal Normal Few-shot SUPERB
CER/PER CER CER ACC ACC CER CER
FBANK 72.1/63.7 62.4/59.3 583/574 | 11.1/93 | 359/435 62.0/58.6 589/58.1 0/0
wav2vec2-base [3] 442/359 43.0/35.5 457/443 | 544/80.8 | 66.9/83.6 40.6/32.1 44.2/42.6 | 590.4/707.8
wav2vec2-base-23 [49)] 49.2/35.1 37.7/32.0 43.4/422 | 58.7/71.9 | 45.1/66.3 37.2/30.9 44.3/43.0 | 563.0/676.5
XLSR-128 [5] 39.7/30.6 292/22.0 409/39.3 | 66.9/87.9 | 55.6/85.6 28.4/229 42.1/424 | 734.9/854.2
HuBERT-base [4] 42.8/35.3 39.8/314 445/427 | 61.2/86.1 | 71.5/86.0 39.2/309 43.8/41.8 | 650.8/757.0
HuBERT-large [4] 38.2/322 44.4/3777 48.2/435 | 46.5/64.1 | 55.4/77.7 45.6/35.1 49.3/42.2 | 541.8/659.8
mHuBERT-base [50] 41.0/33.0 40.5/33.4 45.6/43.6 | 524/725 | 46.6/70.9 36.8/29.7 44.2/43.1 | 580.3/692.1
MMS-300m 33.8/30.5 28.7/24.0 36.5/365 | 623/843 | 71.9/743 31.5/30.0 30.9/29.2 | 826.7/841.3
MMS-1b 33.3/25.7 21.3/181 30.2/30.8 | 84.8/86.1 | 73.3/74.8 26.0/255 25.4/24.8 | 983.5/943.2
CV-HuBERT-base 41.9/329 354/275 440/408 | 71.2/84.0 | 76.6/87.3 35.1/282 43.6/41.1 | 726.3/796.7
CV-HuBERT-base (40ms) 71.6/62.6 60.5/52.0 57.5/53.0 | 65.6/83.0 | 65.7/83.3 59.6/523 57.7/53.4 | 179.6/380.4
CV-HuBERT-base (80ms) 76.4167.6 72.7/70.7 66.1/64.1 | 332/572 | 17.2/394 723/704 64.2/64.4 | 130.4/16.2
CV-HuBERT-MR-base 47.8/38.3 37.0/283 43.2/40.8 | 64.1/86.0 | 74.8/84.5 36.2/30.6 42.5/41.0 | 659.0/755.0
EFFUSE (W2V2+XLSR) 38.5/28.9 31.0/244 409/402 | 23.0/13.5 | 69.7/87.8 31.4/244 41.8/39.3 | 610.2/624.6
EFFUSE (HuBERT+XLSR) 37.9/29.5 31.8/235 425/383 | 59.4/79.0 | 72.7/89.9 31.2/233 41.0/37.6 | 736.1/849.8
NWHCI 39.5/30.5 289/21.5 414/38.6 | 67.1/87.4 | 77.1/90.6 28.8/21.5 40.3/38.2 | 781.5/878.6
NWHC2 39.5/30.5 293/21.6 42.0/393 | 64.4/88.1 | 77.4/90.6 28.4/21.8 41.5/38.8 | 767.5/875.3
WavLabLM-base 45.6/37.6 453/39.6 45.7/445 | 40.7/56.5 | 51.8/67.8 44.3/382 44.7/43.9 | 488.0/561.8
WavLabLM-large-EK 40.7/33.7 41.0.33,5 44.1/419 | 61.2/83.4 | 60.0/79.9 40.0/33.1 42.6/41.3 | 640.0/741.7
WavLabLM-large-MK 40.5/32.3 38.8/32.8 44.4/42.8 | 67.6/79.0 | 69.0/79.6 38.6/32.8 44.2/424 | 686.4/732.7
WavLabLM-large-MS 40.5/32.8 37.8/31.9 43.8/42.8 | 71.7/81.1 | 70.8/80.0 37.0/32.2 43.4/41.2 | 715.0/743.3
Table 4. {10-minute / 1-hour} set ML-SUPERB hidden benchmark (54 languages).
SSL Monolingual ASR | Multilingual ASR LID Multilingual ASR + LID
CER/PER CER ACC ACC CER SUPERB,
FBANK 76.4/70.7 71.9/68.4 21.8/14.7 | 29.5/37.1 70.4/65.8 0/0
wav2vec2-base [3] 62.7/54.2 55.0/47.0 43.0/60.2 | 47.0/42.2 543/42.6 | 585.3/620.3
wav2vec2-base-23 [49] 63.7/56.1 55.4/49.9 44.1/57.0 | 48.8/59.9 55.0/48.5 | 581.8/654.2
XLSR-128 5] 57.6/49.2 47.91/39.0 48.4/70.2 | 51.2/70.7 47.0/37.7 | 789.4/962.0
HuBERT-base [4] 61.1/53.8 54.9/47.2 475/65.1 | 46.8/63.1 53.6/45.8 | 637.2/760.5
HuBERT-large [4] 62.7/52.3 54.3/47.3 44.4/579 | 43.2/589 533/45.0 | 589.1/730.9
mHuBERT-base [50] 59.8/53.3 53.2/46.1 452/653 | 440/61.6 52.77/455 | 644.0/771.2
MMS-300m 60.1/51.0 47.3/42.2 489/453 | 55.4/66.2 46.2/40.8 | 788.6/774.7
MMS-1b 55.4/46.8 42.0/37.4 59.4/654 | 60.0/60.9 40.9/39.5 | 1000.0/933.9
CV-HuBERT-base 59.1/52.3 52.0/43.7 489/689 | 51.0/689 509/42.6 | 723.3/857.3
CV-HuBERT-base (40ms) 71.0/63.2 64.9/52.0 47.3766.0 | 40.4/574 64.5/59.0 | 362.0/547.6
CV-HuBERT-base (80ms) 72.5/67.9 76.4/69.8 28.3/50.9 | 28.3/40.5 71.0/69.1 44.6/179.0
CV-HuBERT-MR-base 62.6 /54.8 54.3/44.5 4737559 | 47.3/66.4 53.0/39.3 | 627.7/804.8
EFFUSE (W2V2+XLSR) 61.3/50.6 49.6/41.9 45.0/573 | 49.5/63.7 488/40.6 | 694.0/826.9
EFFUSE (HuBERT+XLSR) 57.5749.1 50.7/40.3 48.2/559 | 489/66.4 49.2/393 | 747.1/865.0
NWHCI1 56.7/47.7 48.2/38.9 47.6/69.4 | 51.5/69.4 47.0/38.5 | 793.5/966.5
NWHC2 56.6/47.8 47917389 47.6/689 | 51.5/689 47.1/384 | 796.8/961.8
WavLabLM-base 55917472 56.6/47.6 454/582 | 45.7/58.1 54.7/46.8 | 661.8/772.1
WavLabLM-large-EK 57.2/50.3 62.9/54.2 46.9/557 | 452/454 603/60.3 | 577.9/567.9
WavLabLM-large-MK 56.9/50.3 64.1/55.6 49.3/62.0 | 493/61.0 61.6/53.7 | 598.6/672.4
WavLabLM-large-MS 59.3/50.7 61.6/55.5 49.7/61.6 | 52.3/59.2 589/539 | 617.4/659.7

by controlling the convolutional feature extractor. To form a Hu-
BERT with Multiple Resolution (HuBERT-MR), the participants fur-
ther combined the three pre-trained HuBERT by simply concatenat-
ing them with upsampling. Following [51]], the upsampling is sim-
ply repeating without additional introduction of learnable parame-
ters. Four submissions are received from the participants, includ-

ing three CommonVoice-HuBERT (i.e., CV-HuBERT)-base models
trained on 20ms, 40ms, and 80ms resolutions and a CV-HuBERT-
MR of the combination of all three HuUBERT with different resolu-
tions.

Ensemble modeling: The ensemble modeling is straightforward by
stacking the representation of two SSL models. The implementa-



tion concept is related to the previous investigation in SSL model
fusion [9}|55]]. The method does not introduce additional parameters
as previous works [[9,55]], but instead has the requirement of the same
representation resolution across different SSL models. The EFFUSE
team submitted two models, including EFFUSE (wav2vec2+XLSR)
and EFFUSE (HuBERT+XLSR) [56].

Parameter-level modification: The NWHC team’s submissions in-
troduce an inventive strategy aimed at preserving a higher volume of
content information derived from SSL models [57]]. Their hierarchi-
cal representation analysis, executed during ASR training, revealed
a continual decrease in content information. This was particularly
apparent in the diminished ASR performance within the concluding
layers. To enhance the performance of downstream tasks involving
the SSL, they propose a modification to the Massively Multilingual
Speech (MMS)-300m model. Specifically, they replace the last few
layers with intermediate layers: for NWHC1, the final three layers
are supplanted by the 17th-19th layers, while for NWHC?2, the last
four layers are supplanted by the 17th-20th layers. Crucially, this
modification is implemented directly at the level of network param-
eters, rather than at the resultant representation.

WavLM-style pre-training: WavLabLM are submitted by the
WAVLab team [52], by adopting WavLM-style pre-training [28]]
into multilingual scenarios. A noisy speech simulation protocol is
applied to the pre-training by mixing utterances and noises. The
pre-training data combined several open-source corpora, reaching
around 40k hours of speech over 136 languages. Four models are
submitted for the challenge, including a base model with less pa-
rameter size and three large models with different training targets
and strategies. All four models are trained with the k-means clus-
ters from their previous HuBERT-large model [54]. WavLabLM-
large-EK utilizes the English data to extract k-means targets, while
the other two models utilize multilingual data to extract targets.
WavLabLM-large-MS further adopts a multi-stage training strategy
by upsampling low-resource languages within the dataset. Note that
WavLabLMs are distinctive submissions that produce pre-training
SSL models from the ground up, without relying on pre-existing
SSLs. These models were developed using academic computing
resources, and their source codes have been made publicly available
to researchers. This makes it easier for individuals who do not have
access to advanced computing resources to conduct pre-training
research on SSL.

In addition to the submissions, the organizers also include the
evaluation of pre-trained wav2vec2.0 presented in the Massively
Multilingual Speech (MMS) project from Meta [58]]. Therefore, in
total, the evaluation of this ML-SUPERB challenge adds up to 14
new models to the benchmark.

5. CHALLENGE RESULTS SUMMARY

The public leaderboard results are presented in Table [3] while the
hidden leaderboard results are shown in Table

Overall: Across both the 10-minute and 1-hour public benchmarks
(Table [3), MMS-1b delivered the best SUPERB score, significantly
outpacing its competitors. Given the wide coverage of languages, it
is unsurprising to observe the strong generalization capability of the
MMS-based model in multilingual speech tasks, particularly in few-
shot tasks. In the hidden benchmarks (Table [d), MMS-1b excels in
the 10-minute benchmark, but was overtaken by the XL.SR-128 and
NWHC models in the 1-hour benchmark, especially in the LID and
multilingual ASR+LID tasks. Remarkably, NWHC2 achieves the
best performance in the 1-hour hidden leaderboard, outperforming
XLSR-128 and NWHCI.

HuBERT with multiple resolutions: In all scenarios, CV-HuBERT-
base utilizing the default 20ms resolution units outperformed the
original HuBERT-base model, emphasizing the importance of mul-
tilingual pre-training. Contrary to the observation in [51], HuBERT
with multiple resolutions did not invariably enhance performance,
but often undermined the performance of the CV-HuBERT-base.
This suggests that techniques used in monolingual contexts may
not always translate effectively to multilingual scenarios due to
linguistic variation and phonetic distribution differences.

Ensemble modeling: Despite being a prevalent strategy in numer-
ous challenges, naive ensemble modeling by concatenating SSL
features does not always improve multilingual task performance.
Specifically, in this challenge, ensemble modeling’s performance
seems largely limited by weaker SSL models. Consequently, both
ensemble models (i.e., EFFUSE models) did not significantly out-
perform XLSR-128, even though the XLSR-128 representation is
included in the ensemble frameworks.

Parameter-level modification: Despite being based on modified
versions of MMS-300m, the NWHC systems surpassed MMS-300m
across all benchmarks, even achieving the best performance in the
1-hour hidden benchmark. These impressive results underscore the
significance of layer-wise analysis of self-supervised models and
raise questions about how to fully leverage SSL models.
WavLM-style pre-training: While WavLM has been a top per-
former in the SUPERB benchmark [2], one may wonder whether
similar pre-training approaches could excel in multilingual scenar-
ios. The analysis of WavLabLMs revealed that the impact of denois-
ing modeling in ML-SUPERB may not be as beneficial as in SU-
PERB. While the model series outperformed the original HuBERT-
based model in the public benchmark, their performance deteriorated
in the hidden benchmarks, especially in multilingual tasks.

Public benchmarks vs. hidden benchmarks: As per [12], the
majority of the public benchmark comprises read speech, while
the hidden benchmark includes a substantial set of conversational
speech and singing voices. These varied voice styles present sig-
nificant challenges for the ML-SUPERB tasks. The performance in
the hidden sets is considerably worse than that in the public sets.
Despite generally similar rankings, some SSL model performances
vary. For instance, MMS-1b, despite being the top performer in
all other leaderboards, did not achieve the best performance in the
1-hour hidden benchmark. As in the real world, researchers focusing
on low-resource languages often have limited access to clean-read
speech. Therefore, studying multilingual representation across dif-
ferent voice types could become a major research direction.
Multilingual vs. monolingual: In the inaugural ML-SUPERB re-
lease, most models were either monolingual-based or focused on
a small set of languages, with limited exploration of multilingual
SSL models. For the 2023 ML-SUPERB challenge, all model sub-
missions underwent pre-training in multilingual data spanning over
50 languages. The leaderboard results clearly indicate that multi-
lingual SSL typically outperforms those trained with a limited lan-
guage scope, suggesting that focusing on multilingual representation
for multilingual tasks is a promising future research direction.
Performance vs. efficiency: Taking a cue from the SUPERB chal-
lenge at SLT2022 [15]], we’ve also considered efficiency as a critical
factor when evaluating self-supervised models in the ML-SUPERB
challenge. We’ve gauged the theoretical multiply-accumulate oper-
ation (MACs) based on the profiling toolkit utilized in the prior SU-
PERB challengﬂ The tradeoff between model computational com-

8https ://github.com/B06901052/DeepSpeed/tree/
superb-challenge
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Fig. 2. MACs v.s. SUPERB score in ML-SUPERB 1-hour hidden benchmark.

plexity (measured by MACs) and ML-SUPERB performance (indi-
cated by the SUPERB score) is illustrated in Fig2]

In the previous SUPERB challenge [15]], we observed a scaling
rule where increasing model size typically led to improved per-
formances across various speech processing tasks. However, it is
evident that the scaling rule isn’t always effective for multilingual
tasks. Specifically, smaller models can sometimes deliver perfor-
mance equal to or better than their larger counterparts. For instance,
CV-HuBERT-base outperforms MMS-300m and HuBERT-large,
even though it utilizes a base architecture. Similarly, NWHC2
slightly outperforms MMS-1b in the 1-hour hidden benchmark, de-
spite its smaller size and computational burden. In more comparable
scenarios, WavLabLM-base outperforms all three WavLabLM-large
models, with model size being the only differentiating factor. These
observations hint that large-scale SSL pre-training might not be the
only viable path for multilingual SSL representation learning.

6. CONCLUSION

The ML-SUPERB challenge of 2023 has provided a platform for
exploring and developing multilingual speech SSL models in multi-
lingual ASR and LID. The challenge attracted wide-ranging partic-
ipation, yielding valuable insights into the state-of-the-art methods
and potential future directions for this emerging field.

Findings from the challenge underscore that while large model
scaling can be effective, it is not the exclusive solution to advancing
multilingual speech tasks. It was observed that smaller models could
potentially deliver comparable or even superior performance, high-
lighting the potential for efficient and effective model development.
The challenge also uncovered the major difficulties in tackling vary-
ing speech and voice types, especially in low-resource languages,
pointing to a crucial research direction for future multilingual repre-
sentation learning endeavors.

The results of this year’s ML-SUPERB challenge also reinforce
the notion that multilingual SSL models usually outperform those
trained with limited language coverage. Therefore, the path towards
multilingual representation for multilingual tasks stands out as a

promising direction to further explore.

As the field continues to evolve, the insights gathered from this
challenge will serve as valuable stepping stones, informing and di-
recting future research efforts in multilingual SSL model develop-
ment. We expect the ML-SUPERB challenge to continue to play a
pivotal role in shaping this fascinating and crucial area of research.
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