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ABSTRACT

The attention-based deep contextual biasing method has been
demonstrated to effectively improve the recognition perfor-
mance of end-to-end automatic speech recognition (ASR)
systems on given contextual phrases. However, unlike shal-
low fusion methods that directly bias the posterior of the ASR
model, deep biasing methods implicitly integrate contextual
information, making it challenging to control the degree of
bias. In this study, we introduce a spike-triggered deep bi-
asing method that simultaneously supports both explicit and
implicit bias. Moreover, both bias approaches exhibit sig-
nificant improvements and can be cascaded with shallow
fusion methods for better results. Furthermore, we propose a
context sampling enhancement strategy and improve the con-
textual phrase filtering algorithm. Experiments on the public
WenetSpeech Mandarin biased-word dataset show a 32.0%
relative CER reduction compared to the baseline model, with
an impressively 68.6% relative CER reduction on contextual
phrases.

Index Terms— end-to-end, contextual biasing, attention-
based encoder-decoder

1. INTRODUCTION

In recent years, thanks to the advancements in deep learning
and the accumulation of massive data, end-to-end automatic
speech recognition (ASR) methods, including connectionist
temporal classification (CTC) [1, 2], transducer [3, 4], and
attention-based encoder-decoder (AED) [5–7], have gained
widespread application. However, in many real-world sce-
narios, audio data often contains phrases that are either scarce
or completely absent from the training data. These phrases
primarily consist of rare proper nouns and domain-specific
terms. Although the overall error rate may not be signifi-
cantly impacted by these phrases, the recognition accuracy of
such phrases plays a crucial role in user experience and down-
stream tasks. For instance, in the scenario of voice assistants,
the ASR system is required to accurately identify the names
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of individuals in the user’s contact list whom they intend to
call. Similarly, in the navigation scenario, the ASR system
needs to accurately recognize the geographical names spoken
by the user. Fine-tuning the model using relevant data can be
a time-consuming process, rendering it impractical for rapidly
changing and highly personalized scenarios. Therefore, inte-
grating these phrases as contextual knowledge into ASR sys-
tems through contextual biasing becomes increasingly impor-
tant.

In prior studies, contextual biasing methods for end-to-
end models have been roughly categorized into two groups:
shallow fusion-based contextual bias [8–12], such as weighted
finite state transducer (WFST) based methods [9–11], and
neural attention-based contextual biasing (deep biasing) [13–
26]. Recently, due to their superior performance in enhanc-
ing bias phrases and their ease of integration into end-to-end
models, deep biasing methods have gained more popularity.
Contextual Listen, Attend and Spell (CLAS) [13] introduced
for the first time a novel attention-based deep contextual
biasing method, exploring contextual biasing approaches
applicable to the Listen, Attend and Spell (LAS) model.
Context-aware transformer transducer (CATT) [15] integrates
contextual information separately into the audio encoder and
label encoder, providing a deep biasing technique applica-
ble to the transducer model. Contextual phrase prediction
network-based deep biasing method [23], by incorporating a
bias loss to the audio encoder, enables an efficient contextual
biasing approach across CTC, AED, and transducer models.

Most of the previous deep biasing methods share a com-
mon characteristic—the integration of contextual information
is implicit in nature. The biasing process of these methods
can be summarized as follows. The context encoder encodes
the biasing list to obtain contextual phrase embeddings, and
then these embeddings are combined with the model’s acous-
tic or label embeddings using an attention mechanism to ob-
tain context-aware embeddings. Finally, these embeddings
are concatenated or added to the model’s acoustic or label em-
beddings for subsequent inference. In contrast to deep bias,
shallow fusion methods often achieve biasing explicitly by
modifying the posterior of the model’s output during the de-
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Fig. 1. The proposed spike-triggered contextual biasing model

coding process. While implicit biasing methods may achieve
better results, the unified structure makes it challenging to
control the degree of biasing during the inference process.
This limitation prevents setting higher bias levels for specific
contextual phrases to achieve stronger biasing effects. Han et
al. [16] propose a collaborative decoding method on the con-
tinuous integrate-and-fire (CIF) based model for contextual
biasing. It uses a context decoder to obtain the distribution of
contextual outputs. Since the CIF module obtains token-level
embeddings by integrating frame-level information, the con-
text decoder has the same encoding granularity as the ASR
decoder. This allows the context decoder to collaborate de-
coding with the ASR decoder to obtain the final hypothesis.
As the collaborative decoding process operates on the final
output distribution, it allows for explicit control over the ef-
fect of contextual biasing. This method combines the advan-
tages of shallow fusion and deep biasing, but is only appli-
cable to CIF models, limiting its application to more popular
ASR models.

To solve this problem, we propose a spike-triggered deep
contextual bias method that supports both implicit and ex-
plicit bias in the AED model. To obtain the contextual bi-
asing model, we freeze the parameters of the pre-trained ASR
model and fine-tune the added contextual biasing module.
We select emitting frames from the encoder output based on
the CTC posterior and apply attention-based biasing only to
these frames. During the inference process, when employ-
ing implicit biasing, context-aware embeddings are added to
the emitting frames to achieve contextual biasing. When em-
ploying explicit bias, context-aware embeddings are used as
input for the context decoder. The context decoder predicts
the contextual phrases present in the utterance, and its poste-
rior is used to bias the posterior for the ASR task.

Furthermore, to further improve the effectiveness of con-
textual biasing, we propose a context sampling enhancement
method, which replaces tokens in the contextual phrases and
transcript with tokens that have similar pronunciations. We
also optimize the contextual phrase filtering algorithm [25]
by computing it solely based on emitting frame posteriors and
introducing a mismatch penalty score to prevent correct con-
textual phrases from being filtered out.

Experimental results on the open-source WenetSpeech
Mandarin biased-word dataset [24] demonstrate that our pro-
posed method achieves a relative decrease of 32.0% in the
character error rate (CER) compared to the baseline model.
Moreover, the CER for the contextual phrase (B-CER) por-
tion decreases impressively by 68.6%. Compared to the
strong baseline model using the deep biasing method [23],
our approach achieves a relative reduction of 6.2% in B-CER.
When combined further with the shallow fusion method
based on WFST, B-CER decreases by 70.0% compared to the
baseline model. Our method exhibits good biasing effects on
rare words that appear infrequently or have never been seen
in the training set.

2. PROPOSED METHODS

2.1. Model Structure

Inspired by spike-triggered non-autoregressive ASR [27],
we applied the spike-triggered approach for contextual bias-
ing. Due to the nature of the CTC loss, there are numerous
emitting spikes in the CTC posterior, with each spike corre-
sponding to a decoded token. The spike-triggered method in-
volves identifying these emitting spikes and using the encoder
embedding of the frames corresponding to these spikes for



subsequent computations. By employing the spike-triggered
method, we can convert frame-level information into token-
level information, which aids the subsequent biasing process
and enables explicit biasing.

To achieve contextual biasing, we introduced three com-
ponents into the standard AED model: the context encoder,
context integration module, and context decoder, as shown in
Figure 1(c).

The context encoder is responsible for encoding the
variable-length contextual phrases from the biasing list into
fixed-length context embeddings. It consists of a single layer
of BLSTM. Each phrase in the tokenized list is tokenized
using the same tokenizer as the base model. The resulting
token sequence is then fed as input to the BLSTM, and the
concatenated hidden states and cell states from the last time
step of the forward and backward LSTM are passed through
a linear layer to obtain the context embedding, denoted as
hCE . Additionally, a contextual phrase consisting of blank
tokens only is included in the biasing list, to enable the model
to focus on it when there is no contextual phrase in the audio.

The context integration module is responsible for ob-
taining the context-aware embedding based on the encoder’s
emitting frame embedding and the context embedding. This
module consists of a convolutional layer, a multi-head atten-
tion layer, and a linear layer, as shown in Figure 1(a).

First, the embedding of the emitting frames from the en-
coder, denoted as hSE , undergoes convolutional layers to ob-
tain hCSE . The purpose of applying convolution is to in-
corporate information from the neighboring emitting frames
into the embedding. This allows the model to consider more
context information during subsequent attention operations,
rather than relying solely on the information from the current
emitting frame. Since the emitting frame embedding oper-
ates at the token level and the context embedding operates at
the phrase level, applying convolution on the emitting frames
helps reduce the granularity gap between the two.

In the multi-head attention layer, as shown in Figure 1(b),
hCSE serves as the query, and the context embedding hCE

serves as the key and value for calculating attention. This pro-
cess extracts the context-aware embedding c for each emitting
frame, which can be described as follows:

αt = Softmax
((

Wqh
SE
t

) (
Wkh

CE
)T

/ sqrt (d)
)

, (1)

ct = αtWvh
CE , (2)

where the scaling factor sqrt (d) is for numerical stability.
On one hand, the context-aware embedding undergoes

further processing through a linear layer, resulting in cIM .
Subsequently, cIM is added back to its corresponding emit-
ting frame embedding. On the other hand, cEX is obtained
by concatenating the context-aware embedding with the emit-
ting frame embedding, and it serves as the input to the context
decoder. This process can be described as follows:

cIMt = Linear(ct) , (3)

h̃E
t = hE

t + cIMt , (4)

cEX
t = [ct,h

SE ] . (5)

The context decoder consists of a linear layer responsible
for mapping the concatenated embedding cEX to the pos-
terior distribution over the vocabulary, predicting contextual
phrases in the utterance. We keep the parts in the labels that
are relevant to the contextual phrases unchanged, masking
other tokens with the blank token. The bias loss for the con-
textual phrase prediction task is computed using the label
smoothing loss function.

In addition to the AED loss, we incorporate auxiliary
training using the CTC loss. Let λ1 denote the weight as-
signed to the CTC loss and λ2 denote the weight assigned
to the bias loss. The joint loss function for the contextual
biasing model can be expressed as follows:

L = λ1Lctc + (1− λ1)Latt + λ2Lbias . (6)

During the process of training, we seek the optimal se-
quence of emitting frames on the posterior of the CTC based
on the labels. We use the Viterbi algorithm to compute the
optimal sequence of emitting frames and their corresponding
posterior probabilities. During the inference phase, we adopt
a similar approach to CTC greedy search. We consider frames
where the maximum posterior probability token is not blank
and differs from the maximum posterior probability token of
the previous frame as emitting frames. Due to the fact that En-
glish ASR models often use byte pair encoding (BPE) tokens
as modeling units, which are not segmented based on pronun-
ciation, the emitting frames selected during inference are less
accurate compared to Mandarin ASR models. This limitation
affects the effectiveness of spike-triggered contextual biasing
methods on English ASR models.

2.2. Implicit/Explicit Contextual Bias

When employing implicit contextual biasing for decoding, we
retain the operation of adding cIM back to the encoder emit-
ting frame embedding while excluding the computation of the
context decoder. The context-aware embeddings effectively
convey the information of possible contextual phrases into
the corresponding encoder emitting frame embedding, thus
achieving implicit contextual biasing.

When employing explicit contextual biasing for decod-
ing, we no longer add the context-aware embedding cIM

back to the encoder emitting frame embedding. Similar to
the shallow-fusion bias method based on the WFST [10], we
use the bias list to construct a bias decoding graph. Figure
2 illustrates the bias decoding graph constructed using “语
音识别” as the contextual phrase. In this graph, both ϕ arcs
and ρ arcs can match any token, with ϕ arcs not consuming
the matched token while ρ arcs consume the matched token.
Dashed arcs are traversed only when no matching token is
present.
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Fig. 2. Example of bias decoding graph

We perform beam search with the posterior probabilities
from the context decoder within the bias decoding graph. The
path score is calculated as the sum of the context decoder
posterior probability and the bias decoding graph score. To
implement explicit biasing, we use decoding paths obtained
through beam search, which exclusively consist of contextual
phrases, to introduce bias to the posterior of the ASR task.
Specifically, if a decoding path decodes a certain token at an
emitting frame, a bias score is applied to that token in the
posterior of the ASR task at this frame. Notably, bias scores
are not cumulatively added when multiple decoding paths de-
code the same token in the same emitting frame. Compared
to explicit biasing in CIF [16], our approach is more accurate
due to the application of the bias decoding graph. This allows
us to reduce the impact on non-biased parts and improve the
effectiveness of explicit biasing.

2.3. Contextual Phrase Filtering

To mitigate the loss of recognition accuracy in the contex-
tual biasing model when using a larger bias list, we employ
a filtering mechanism on the list before inputting it into the
context module. This process retains only those contextual
phrases that are more likely to occur in the audio. We opti-
mize the contextual phrase filtering algorithm based on Yang
et al.’s work [25], by employing only the CTC posterior prob-
abilities of emitting frames for more precise filtering.

To begin, we perform calculations using the bias list that
only contains the blank token, resulting in obtaining unbiased
CTC posterior probabilities. Moreover, we retain the audio
embedding hE throughout the process.

The contextual phrases are then filtered in two stages us-
ing the unbiased CTC posterior. In the first stage, we calculate
the posterior and the phrase score confidence (PSC). It com-
putes the average of the maximum posterior values for each
token present in the contextual phrases within a sliding win-
dow, without considering token order. In the second stage, we
employ a dynamic programming algorithm to calculate the
sequence order confidence (SOC). SOC considers the maxi-
mum average posterior values of the tokens within the sliding
window, taking into account the token order.

Building upon Yang et al.’s work [25], we introduced two
optimizations. Firstly, we employ only posterior from emit-
ting frames for filtering, thereby enhancing the efficiency of
the filtering process. Additionally, we set a mismatch penalty
score, denoted as p, equal to twice the confidence threshold, q.
While calculating the PSC and SOC scores, the penalty score

p is permitted to represent the cost of insertion, deletion, and
substitution errors. Specifically, even when the probability of
a token in the posterior is very low, we can match that token
with a cost of p rather than using the exact posterior value of
that token. Context phrases with PSC and SOC scores below
the confidence threshold q are filtered out. By introducing p,
context phrases containing three or more tokens can be re-
tained in the filtering process, even if one token has a very
low posterior, as long as the probabilities of the other tokens
are sufficiently high. This approach effectively improves the
recall of the filtering algorithm.

After obtaining the filtered contextual phrases, we use the
previously retained Encoder embedding hE for subsequent
biasing inference, resulting in more accurate biased recogni-
tion results.

2.4. Context Sampling Enhancement Strategy

To improve the effectiveness of contextual biasing, we em-
ploy a context sampling augmentation strategy during the
training phase. We employ random sampling to extract con-
textual phrases from labels and enhance them by simultane-
ously replacing one token in the sampled contextual phrase
and its corresponding token in the transcription with a to-
ken that shares the same pronunciation. Specifically, with
a certain probability, we temporarily replace a token in the
randomly sampled contextual phrase with a token that has a
similar pronunciation. At the same time, we also temporar-
ily replace the corresponding token in the transcript of the
utterance. This requires the model to accurately recognize
the replaced token through biasing, forcing it to learn to use
contextual information to modify the recognition result.

3. EXPERIMENTS

3.1. Data

Our experiments are conducted on the open-source Mandarin
biased-word dataset [24] based on the WenetSpeech corpus,
consisting of 1000 hours of data. The test set is divided into
three categories: personal names, place names, and organi-
zation names. The dataset uses the hanlp1 tool to identify
named entities within the dataset. Only named entities that
appear between 5 and 700 times in the training set are re-
tained. This process is used to construct biasing lists for per-
son names, location names, and organization names test sets.

We train the model using the entire 1000-hour training
set and use the combined bias list (consisting of 298 contex-
tual phrases) derived from merging the bias lists of the three
test sets for evaluation. Additionally, to evaluate the model’s
ability to handle few-shot contextual phrases, we construct
few-shot test sets using a subset of the WenetSpeech corpus.
Specifically, we select named entities that appeared no more
than 0, 3, 10, and 50 times in the training set and search for ut-
terances in the WenetSpeech corpus that contain these named



Table 1. CER results on each test set. U-CER and B-CER
represent the average results across all test sets.

Model Type Organization Person Place U-CER B-CER

Baseline 10.42 16.50 14.49 9.07 37.49

CPPN 7.68 10.67 10.42 9.09 12.54

STCB-Implicit 7.32 10.49 10.33 9.02 11.76

STCB-Explicit 7.99 12.36 11.74 9.07 19.43

Table 2. B-CER results on the few-shot test sets.

Model Type 0-shot 3-shot 10-shot 50-shot

Baseline 46.80 42.89 27.94 22.99

STCB-Implicit 19.13 18.15 17.32 13.97

STCB-Explicit 26.05 22.89 19.06 15.03

entities, resulting in the creation of 0-shot, 3-shot, 10-shot,
and 50-shot test sets, respectively. Each few-shot test set con-
sists of 400 utterances, with 100 contextual phrases.

3.2. Experimental Setups

The baseline model employs 12 conformer layers in the en-
coder and 6 transformer layers in the decoder, both with 256-
dimensional inputs and 4 self-attention heads.

The spike-triggered contextual biasing model extends the
baseline model by incorporating a context encoder, context
integration module, and context decoder. The context encoder
consists of 1 BLSTM layer and a linear layer. The context
integration module includes a convolutional layer, 4-head at-
tention layers, and another linear layer. The context decoder
comprises a linear layer that projects the input dimension to
the size of the vocabulary. The CTC loss weight λ1 is set to
0.3, while the bias loss weight λ2 is set to 0.2.

We use the contextual biasing model based on the contex-
tual phrase prediction network [23] as our deep biasing base-
line. The configurations of its context encoder, biasing layer,
and context decoder align with the corresponding modules in
the spike-triggered contextual biasing model.

First, we conduct 60 rounds of training on the training set
to obtain a baseline model by averaging the performance of
the final 10 rounds. Then, we freeze the parameters of the
baseline model and incorporate the context-aware modules.
Fine-tune it for an additional 30 rounds to obtain the contex-
tual biasing model. We use the attention rescore approach for
decoding, which involves using the AED Decoder to score
the results of the CTC beam search, combining the CTC and
AED scores to obtain the final decoding results.

During the training phase, we randomly select three sub-
strings with a length of 2 to 6 characters from the transcripts
of each utterance. Additionally, we randomly select up to 5

contextual phrases from the biasing lists of other utterances as
the biasing list for each utterance. We choose to use smaller
biasing lists as the contextual phrase filtering algorithm is ap-
plied during inference. Using smaller biasing lists ensures
consistency between training and inference. The probability
of applying contextual phrase sampling augmentation is set
to 0.1. The confidence threshold q for the contextual phrase
filtering algorithm is -6, and the penalty score p is set to -12.

In addition to the CER, we also use the biased character
error rate (B-CER) and unbiased character error rate (U-CER)
to evaluate. U-CER measures the error rate for characters not
present in the biasing list, while B-CER assesses the error rate
for characters in the biasing list. Regarding insertion errors, if
the inserted phrase is in the biasing list, it is counted towards
B-CER and U-CER otherwise.

3.3. Contextual ASR Accuracy

In this section, we evaluate the performance of the base-
line model and the contextual biasing model, referred to
as STCB, comparing them with the Contextual phrase pre-
diction network-based deep biasing method, referred to as
CPPN [23]. As shown in Table 1, for each test set, both ex-
plicit and implicit contextual biasing based on spike-triggered
achieve significant improvements in CER compared to the
baseline model. The implicit biasing results in an average
relative reduction of 32.0% in CER and 68.6% in B-CER
compared to the baseline model. Moreover, the implicit bias-
ing based on Spike triggered outperforms the CPPN method,
which also employs implicit biasing.

It is worth noting that although contextual biasing is
generally believed to have a negative impact on the non-
contextual part of data, the U-CER of the contextual biasing
model did not increase and even show a decrease in the test
results. We speculate that this is due to the inclusion of
fragments of contextual phrases from the biasing list in the
test set. Since these fragments are not complete contextual
phrases, they are not counted towards B-CER. However, they
do benefit from contextual bias, leading to improved recogni-
tion accuracy and resulting in a decrease in U-CER.

3.4. Few-shot Performance

As shown in Table 2, we conduct testing on few-shot datasets
to evaluate the effectiveness of spike-triggered contextual bi-
asing for rare words. For the implicit and explicit biasing
methods, the relative decrease in B-CER on the 0-shot test set
is 59.1% and 44.3% compared to the baseline model. On the
10-shot test set, the relative reductions are 38.0% and 31.8%.
The results indicate that our proposed method brings signif-
icant improvements, even for contextual phrases that have
never appeared in the training set. Furthermore, the method
performs best in enhancing the recognition of phrases that oc-
cur less frequently in the training set.



Table 3. CER, U-CER, and B-CER results on the test set
when cascaded with the shallow fusion method.

Model Type Organization Person Place U-CER B-CER

SF 7.78 12.15 11.35 8.99 18.09

STCB-Implicit + SF 6.81 10.19 10.16 8.77 11.23

STCB-Explicit + SF 7.09 10.77 10.55 8.86 13.29

STCB-All + SF 6.87 10.20 10.19 8.75 11.36

Table 4. CER, Recall, and Precision results of applying dif-
ferent contextual phrase filtering algorithms

Model Type Organization Person Place Recall Precision

STCB-Implicit 8.24 11.40 11.57 - -

+ vanilla filtering 7.48 10.61 10.35 0.87 0.41

+ improved filtering 7.32 10.49 10.33 0.91 0.45

3.5. Cascading with Shallow Fusion

Table 3 shows the performance of our proposed method when
used in conjunction with the WFST-based shallow fusion bias
method [8]. The shallow-fusion contextual biasing method,
referred to as SF, also achieves good performance. After
combining our method with the shallow fusion method, we
observe further improvements, regardless of whether explicit
or implicit biasing is used. For the explicit and implicit bias
methods, the average relative reductions in B-CER on the test
set are 64.6% and 70.0% compared to the baseline model.
However, combining implicit biasing with explicit bias did
not yield additional benefits. We believe this is because the
information contained in explicit and implicit biases based
on spike-triggered is similarity. The information provided
by the shallow-fusion biasing method differs significantly
from spike-triggered biasing, making the combined approach
highly effective.

When cascading multiple methods to avoid excessive
bias, it is necessary to add weight for each method. For ex-
plicit biasing and shallow fusion methods, we multiply the
scores by this weight when adding scores during decoding.
For implicit biasing, we multiply cIM by this weight. In
our first two experiments with cascading methods, we set the
weight to 0.75. However, in the final experiment, it is set to
0.5.

3.6. Contextual Phrase Filtering Performance

We compare the results of applying the vanilla contextual
phrase filtering algorithm [25] with our improved algorithm.
From Table 4, it is evident that using contextual phrase fil-
tering is crucial when applying contextual biasing. Despite
using a bias list size of only 298, without the use of the filter-
ing algorithm, there is a noticeable degradation in CER. The

Table 5. CER, U-CER, and B-CER results of ablation study

Model Type Organization Person Place U-CER B-CER

STCB-Implicit 7.32 10.49 10.33 9.02 11.76

- convolution 7.54 10.69 10.50 9.12 12.43

- sampling enhancement 7.34 10.58 10.48 8.96 12.61

- bias loss 7.41 10.54 10.47 9.08 12.08

STCB-Explicit 7.99 12.36 11.74 9.07 19.43

- decoding graph 9.01 13.69 12.63 8.99 26.01

improved contextual filtering algorithm demonstrates higher
recall and precision for contextual phrases and achieves bet-
ter CER results on all test sets.

3.7. Ablation Study

We conduct ablation experiments on the proposed method,
and the results are shown in Table 5. For the spike-triggered
implicit biasing method, we remove the convolutional layer
of the context integration module, context sampling enhance-
ment, and bias loss separately. The results indicate that
the absence of these processes weakens the effectiveness
of contextual biasing. In contrast to the complete loss of
bias ability when removing the bias loss in CPPN [23], the
spike-triggered contextual biasing model still exhibits good
bias ability even after removing the bias loss. This is likely
because the spike-triggered mechanism transmits character-
level alignment information to the model during training, al-
lowing the model to learn how to perform contextual biasing
even without relying on bias loss for training assistance. For
the spike-triggered explicit bias method, we test the results
of using the explicit biasing strategy from Han et al. [16] on
the same model. The results show that our method achieves
better contextual biasing effects.

4. CONCLUSIONS

In this paper, we proposed a spike-triggered contextual bias-
ing method that supports both explicit and implicit biasing on
the AED model. We also introduced a context sampling en-
hancement strategy during the training phase and improved
the contextual phrase filtering algorithm. Compared to pre-
vious deep bias methods, our approach achieves better bias
effects in the Mandarin dataset. Additionally, our method can
be cascaded with shallow fusion methods, leading to further
improvements in contextual phrases. Due to the relatively low
accuracy of emitting frame selection during inference in ASR
models modeled with BPE, the effectiveness of our method on
such models is not significant. Hence, we will further explore
more robust methods for selecting emitting frames during in-
ference in our future investigations.
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