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ABSTRACT

TorchAudio is an open-source audio and speech processing library
built for PyTorch. It aims to accelerate the research and development
of audio and speech technologies by providing well-designed, easy-to-
use, and performant PyTorch components. Its contributors routinely
engage with users to understand their needs and fulfill them by devel-
oping impactful features. Here, we survey TorchAudio’s development
principles and contents and highlight key features we include in its
latest version (2.1): self-supervised learning pre-trained pipelines and
training recipes, high-performance CTC decoders, speech recognition
models and training recipes, advanced media I/O capabilities, and
tools for performing forced alignment, multi-channel speech enhance-
ment, and reference-less speech assessment. For a selection of these
features, through empirical studies, we demonstrate their efficacy and
show that they achieve competitive or state-of-the-art performance.

Index Terms— Open-Source Toolkit, Speech Recognition, Au-
dio Processing, Self-Supervised Learning

1. INTRODUCTION

With the rapid advancement and increasing pervasiveness of ma-
chine learning technologies, usage of open-source toolkits such as
Tensorflow [1] and PyTorch [2] for developing machine learning ap-
plications has grown significantly. Many modern machine learning
applications interface with modalities such as vision, text, and au-
dio. Building such applications, however, requires modality-specific
functionality not covered by said general-purpose toolkits.

To address the need for audio and speech facilities in particular,
the TorchAudio library has been developed [3]. TorchAudio sup-
plements PyTorch with easy-to-use and performant components for
developing audio and speech machine learning models. As a natural
extension of PyTorch to the audio domain, TorchAudio embodies
many of the same design principles that PyTorch does. Its compo-
nents support automatic differentiation to facilitate building neural
networks and training them end to end. It supports GPU acceleration,
which can greatly improve training and inference throughput. It em-
phasizes composability, simple interfaces shared with PyTorch, and

∗ Equal contribution.
† Work done while at Meta.

Version Contrib. Commits Stars Forks Dep. repos

0.10 (Sep 2021) 144 1,013 1,428 351 5,420
2.1 (Jul 2023) 204 2,154 2,149 585 31,173

Table 1. TorchAudio’s Github activity statistics, covering unique
contributors, commits, stars, forks, and repositories depending on Tor-
chAudio. Statistics for Version 0.10 gleaned from web.archive.
org and [3].

minimal dependencies to allow for easily integrating its components
into any application that uses PyTorch.

TorchAudio has been widely adopted and actively developed
by the PyTorch community, with its Github development statistics
having grown substantially since Version 0.10 was presented in [3]
(Table 1). The dramatic increase in the number of repositories that
depend on TorchAudio in particular strongly reaffirms TorchAudio’s
usefulness to the community and success.

This paper begins by summarizing TorchAudio’s design prin-
ciples and contents. It then expounds significant new features that
have been introduced since Version 0.10 [3], covering self-supervised
learning (Wav2Vec 2.0 [4], HuBERT [5], XLS-R [6], WavLM [7]),
automatic speech recognition (CTC decoder [8], Conformer [9], Em-
former [10], audio-visual speech recognition [AV-ASR]), advanced
media I/O, CTC-based forced alignment, multi-channel speech en-
hancement components, and reference-less speech assessment, of
which several are technically novel, e.g. real-time AV-ASR, Em-
former, CUDA-based CTC decoder, and CUDA-based forced align-
ment API. It concludes by presenting experimental results for the
new features, which demonstrate that they are effective and achieve
or exceed parity in run-time efficiency or output quality with public
implementations.

2. RELATED WORK

Several popular open-source toolkits implement lower-level audio
operations such as I/O, spectrogram generation, and data augmen-
tations. Just as librosa [11] is one such library for Numpy [12] and
tfio.audio for Tensorflow, TorchAudio is one such library for PyTorch.
The broad applicability of TorchAudio’s data componentry has made
it effective in serving more specialized audio data representation li-
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braries such as Lhotse [13], which provides abstractions and utilities
that streamline data preparation for downstream audio tasks.

Many higher-level audio and speech machine learning toolkits
exist in the PyTorch ecosystem, e.g. ESPnet [14], SpeechBrain [15],
fairseq [16], and NeMo [17]. These toolkits provide ready-to-use
models, training recipes, and components covering audio and speech
tasks such as text to speech, speech recognition, speech translation,
and speech enhancement. As the aforementioned audio operations are
fundamental to such tasks, all of these toolkits rely on TorchAudio.

In addition to lower-level audio components, TorchAudio also
provides some of the features offered by these higher-level toolkits.
For instance, TorchAudio includes task-specific components such as
decoders for speech recognition, multichannel functions, and model
architectures, as well as ready-to-use models and training recipes.
That being said, as far as such features are concerned, TorchAudio is
distinguished from many of these other toolkits in its focus on stable
and established technologies over the cutting edge. For example,
rather than maintaining an extensive model repository and continually
updating it with the latest state-of-the-art models, we aim to curate a
smaller selection of key models and training recipes to demonstrate
the use of TorchAudio’s components and serve as reliable references.
Ultimately, we intend for TorchAudio to be first and foremost a library
of established components, which allows it to complement rather than
compete with other toolkits in the PyTorch ecosystem.

3. LIBRARY PRINCIPLES

TorchAudio firmly adheres to several design principles, which we
distill from [3] and clarify.

Extend PyTorch to audio. TorchAudio aims to be PyTorch for the
audio domain. Its components compose PyTorch operations, share
the same abstractions and Tensor-based interfaces with PyTorch, and
support foundational PyTorch features such as GPU acceleration and
automatic differentiation. Moreover, its only required dependency
is PyTorch. As a consequence, it behaves as a natural extension
of PyTorch, and its components integrate seamlessly with PyTorch
applications.

Be easy to use. TorchAudio is intuitively designed. Each compo-
nent is implemented closely following C++, Python, and PyTorch
best practices.

It is easy to install. TorchAudio’s binaries are distributed through
standard Python package managers PyPI and Conda and support ma-
jor platforms Linux, macOS, and Windows. Optional dependencies
are similarly installable via standard package managers. For users
who want to use their own custom logic, building TorchAudio from
source is straightforward1.

It is extensively documented. TorchAudio’s official website2

comprehensively covers installation directions and the library’s public
APIs. Moreover, a wide array of tutorials covering basic and advanced
library usages are available on the website and Google Colab. Such
resources educate users of all levels of familiarity with audio and
speech technologies on how to best use TorchAudio to address their
needs.

Favor stability. TorchAudio tends towards mature techniques that
are broadly useful. It offers implementations of models and operations

1https://github.com/pytorch/audio/blob/main/CONTRIBUTING.md
2https://pytorch.org/audio/

that are or will soon become standards in the field. New features are
released following a prototype-beta-stable progression to allow users
to preview them without disrupting the official releases. Backwards
compatibility breaking changes are released after a minimum of two
releases to give users ample time to adapt their use cases. 12,000+
test cases and continuous integration workflows run through Github
Actions ensure that the APIs work as expected.

Promote accessibility. TorchAudio is an open source library. Its
entire source code is available on Github3, where contributions and
feedback are encouraged from all. To enable usage in as many con-
texts as possible, TorchAudio is released under the permissive BSD-2
license.

4. NEW FEATURES

Relative to Version 0.10 [3], TorchAudio 2.1 includes many signif-
icant new features. We elaborate on several of these below. Note
that some of these features are technically novel and the first of their
kind, e.g. the first AV-ASR model to be capable of real-time infer-
ence on CPU, the first public implementation of streaming-capable
transformer-based acoustic model Emformer, the first CUDA-based
CTC beam search decoder, and the first CUDA-based forced align-
ment API.

Self-supervised learning. Self-supervised learning (SSL) ap-
proaches have consistently improved performance for downstream
speech processing tasks. While S3PRL [18] focuses on supporting
downstream tasks and benchmarking, TorchAudio focuses on up-
stream models by providing reliable and production-ready pre-trained
models and training recipes. TorchAudio now provides models and
pre-trained pipelines for Wav2Vec 2.0 [4], HuBERT [5], XLS-R [6],
and WavLM [7]. Each pre-trained pipeline relies on the weights that
the corresponding original model uses and thus produces identical
outputs. Moreover, each pipeline is easy to use, simply expecting
users to call a single method to retrieve a pre-trained model. To
facilitate production usage, TorchAudio’s model implementations
support TorchScript and PyTorch-native quantization and leverage
PyTorch 2.0’s Accelerated Transformers4 to speed up training and
inference.

TorchAudio also provides end-to-end training recipes that allow
for pre-training and fine-tuning HuBERT models from scratch. The
training recipes have minimal dependencies beyond PyTorch and
TorchAudio and are modularly implemented entirely in imperative
code, which makes them conducive to customization and integration
with other training flows, as their adoption by other frameworks such
as ESPnet [19] demonstrates.

CTC decoder. Beam search is an efficient algorithm that has been
used extensively for decoding speech recognition (ASR) model out-
puts and remains a fast and lightweight alternative to model-based
decoding approaches. We have added a CTC beam search decoder
that wraps Flashlight Text’s [20] high performance beam search de-
coder in an intuitive and flexible Python API. The decoder is general
purpose, working for both lexicon and lexicon-free decoding as well
as various language model types, including KenLM [21] and custom
neural networks, and is easily adaptable to different model outputs.

We have also introduced a CUDA-based CTC beam search de-
coder. By parallelizing computation along the batch, hypothesis, and

3https://github.com/pytorch/audio
4https://pytorch.org/blog/accelerating-large-language-models/

https://github.com/pytorch/audio/blob/main/CONTRIBUTING.md
https://pytorch.org/audio/
https://github.com/pytorch/audio
https://pytorch.org/blog/accelerating-large-language-models/


vocabulary dimensions, it can achieve much higher decoding through-
puts than the CPU-based implementation, which we demonstrate in
Section 5.2. To our knowledge, the implementation is the first and
only publicly available CUDA-compatible CTC decoder.

Conformer. Conformer is a transformer-based acoustic model ar-
chitecture that has achieved state-of-the-art results for ASR [9, 22].
We have developed a PyTorch-based implementation of Conformer
and published an RNN-Transducer ASR training recipe that uses it.
Using the recipe, we produced a model that achieves word-error-rate
(WER) parity with comparable open-source implementations, which
will be discussed in Section 5.3

Emformer. Emformer is a streaming-capable efficient memory
transformer-based acoustic model [10]. For on-device streaming
ASR applications, it has demonstrated state-of-the-art performance
balancing word error rate, latency, and model size. Moreover, because
it applies a novel parallel block processing scheme for training, it can
be trained very efficiently. We have introduced an implementation of
Emformer matching that described in [10] along with an Emformer
transducer ASR training recipe and pre-trained inference pipeline.
Our implementation is the first to be publicly available, and it has
been adopted and extended by icefall5.

Streaming AV-ASR. AV-ASR involves transcribing text from audio
and video. The vast majority of work to date [23, 24, 25] has focused
on developing non-streaming AV-ASR models; studies on stream-
ing AV-ASR, i.e. transcribing text from audio and video streams
in real time, are comparatively limited [26]. Auto-AVSR [25] is
an effective approach to scale up audio-visual data, which enables
training more accurate and robust speech recognition systems. We
extend Auto-AVSR to real-time AV-ASR and provide an example
Emformer transducer training pipeline that incorporates audio-visual
input. As far as we know, the AV-ASR model is the first to be capable
of real-time inference on CPU.

Advanced media I/O. We have added advanced media processing
capabilities to TorchAudio. Class StreamReader can decode not
only audio but also images and videos to PyTorch tensors. Similarly,
StreamWriter can encode tensors as audio, images, and videos.
Both support streaming processing as well as applying transforms
such as resampling and resizing. They are capable of interfacing with
numerous sources and destinations, including file paths and objects,
network locations, and devices, e.g. microphones and webcams.
Using these features, one can for instance stream audio chunk by
chunk from a remote video file and process the corresponding tensors
in an online fashion.

We convey the simplicity and versatility of the API via code
samples. Figure 1 instantiates StreamReader specifying the data
source to be a network location, configures output audio and video
streams, and iterates over tensors representing chunks of audio and
video streamed from the output. Appendix A provides additional
examples that illustrate how to read from media devices and write to
a Real-Time Messaging Protocol server.

Furthermore, StreamReader and StreamWriter can lever-
age hardware video processors available on NVIDIA GPUs to greatly
accelerate decoding and encoding.

5https://github.com/k2-fsa/icefall/tree/master/
egs/librispeech/ASR

# Stream video and audio from remote location
r = torchaudio.io.StreamReader(

src="https://example.com/video.mp4")
r.add_basic_audio_stream(

frames_per_chunk=1600,
sample_rate=8000,

)
r.add_basic_video_stream(

frames_per_chunk=5,
frame_rate=25, # change frame rate
width=224, # change width and height
height=196,

)
for (audio, video,) in r.stream():

# audio.shape == [frames, channels]
# video.shape ==
# [frames, channels, height, width]

Fig. 1. StreamReader usage example.

CTC-based forced alignment. We have added support for forced
alignment generation, which computes frame-level alignments be-
tween audio and transcripts using a CTC-trained neural network
model [27]. The function forced_align is compatible with both
CPU [20, 28] and GPU [29], providing flexibility to users. The GPU
implementation is highly scalable and enables efficient processing of
long audio files, and represents the first publicly available GPU-based
solution for computing forced alignments.

We provide a tutorial that demonstrates how to effectively use
the API. The tutorial also explains how to perform forced alignment
for more than 1000 languages using the CTC-based alignment model
from the Massively Multilingual Speech (MMS) project [29].

Multi-channel speech enhancement. Multi-channel speech en-
hancement aims to remove noise and interfering speech from multi-
channel audio by leveraging spatial properties. Relative to single-
channel speech enhancement, multi-channel speech enhancement can
produce higher-quality outputs and further enhance the performance
of downstream tasks such as ASR [30].

Estimating time-frequency masks and applying them to Mini-
mum Variance Distortionless Response (MVDR) beamforming is an
established technique capable of robustly improving multi-channel
speech enhancement [31, 32, 33]. To support such work, we have im-
plemented a time-frequency mask prediction network and an MVDR
beamforming module along with a corresponding training recipe in
TorchAudio.

Reference-less speech assessment. Speech assessment is essen-
tial for developing speech enhancement systems. Existing metrics
require either human listening tests, e.g. Mean Opinion Score (MOS),
which are expensive and unscalable, or reference clean speech, e.g.
Short-Time Objective Intelligibility (STOI), Perceptual Evaluation
of Speech Quality (PESQ), scale-invariant signal-to-distortion ratio
(Si-SDR), which are impractical for real-world usage.

To address the limitations of such metrics, we have introduced
TorchAudio-Squim [34] — TorchAudio-Speech QUality and Intel-
ligibility Measures — which comprises two neural network based
models: one for predicting objective metrics (STOI, wideband PESQ,
Si-SDR), and one for predicting subjective metrics (MOS), without
reference clean speech. Broadly speaking, this speech assessment
feature establishes a protocol for evaluating speech enhancement

https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR
https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR


Subset Greedy Greedy in [19] 4-gram 4-gram in [5]

test-clean 10.9 10.5 4.4 4.3
test-other 17.8 17.6 9.5 9.4

Table 2. WER (%) results of HuBERT fine-tuning model on test
subsets of the LibriSpeech dataset. Greedy refers to greedy search de-
coding and 4-gram to beam search decoding with a 4-gram language
model.

without needing any reference signals. We present a case study of its
effectiveness in Section 5.6.

5. EMPIRICAL EVALUATIONS

We demonstrate the utility of TorchAudio’s new features via studies.

5.1. Self-supervised learning

For the HuBERT recipes, we follow the methodology described in [5]
of first pre-training a model and then fine-tuning it. To pre-train the
model, we run two iterations of training. The first iteration trains a
HuBERT model on the 960-hour LibriSpeech dataset for 250K steps,
with the output targets being clusters mapped from masked frames
by a 100-cluster k-means model trained on MFCC features extracted
from the dataset. The second iteration trains another HuBERT model
on the dataset for 400K steps, with the output targets being clusters
assigned by a 500-cluster k-means model trained on intermediate
feature representations generated by the first iteration’s model. Then,
we fine-tune this final pre-trained model on the 10-hour LibriLight
dataset with CTC loss.

Table 2 shows WERs produced in [5] and [19] by evaluating
the fine-tuned "Base" model described in the original publication [5]
on LibriSpeech’s test subsets, alongside WERs produced using the
same model trained via our recipe and the same decoding strategies.
The results validate that our HuBERT training recipes are capable of
producing models of quality similar to those described in [5] and [19].
These along with the aforementioned modularity and usability bene-
fits make the models and training recipes particularly promising for
users to build upon. Indeed, Chen et al. [19] adopt TorchAudio’s
HuBERT implementation and fine-tuning recipe applying slightly dif-
ferent training approaches, e.g. different k-means training strategies
and mixed-precision training with brain floating-point (bfloat16), and
achieve better performance than the original (7.6% and 7.4% rela-
tive WER improvement on test-clean and test-other subsets) while
consuming far fewer GPU hours.

5.2. CTC decoder

CPU CTC decoder. The experiments in Figure 2 are conducted on
LibriSpeech’s test-other set on a Wav2Vec 2.0 base model trained on
100 hours of audio. Decoding uses the official KenLM 4-gram LM
and takes place on a single thread Intel® Xeon® E5-2696 v3 CPU.
Because different decoder libraries support different parameters and
have different underlying implementations, we first do a sweep for
each decoder library for its baseline hyperparameters, and then run
decoding with increasing beam sizes for additional data points. We
display the wall-clock-time-WER relationship with pyctcdecode6 and
NeMo [17], where the time in seconds is for decoding the entirety
of the test-other dataset. The results show that, for a given target

6https://github.com/kensho-technologies/pyctcdecode

Fig. 2. Comparison of WER (%) vs. time (s) for CPU beam search
decoding for TorchAudio, pyctcdecode, and NeMo.

Decoder Configuration WER (%) Oracle WER (%) Time (s)

CUDA a = 0.95 5.81 4.11 2.57
CUDA a = 1.0 5.81 4.09 6.24
CPU b = 10 5.86 4.30 28.61
CPU b = 500 5.86 4.30 791.80

Table 3. Comparison of decoding performance for TorchAudio’s
CUDA and CPU CTC decoders. a is the blank frame skip threshold
and b the max tokens per step.

WER, TorchAudio’s decoder runs in less time than the baselines.
TorchAudio also supports a wider variety of customizable parameters
for better hyperparameter tuning and overall WERs.

CUDA CTC decoder. The experiments in Table 3 are conducted
on LibriSpeech’s test-other set using a single V100 GPU and Intel®

Xeon® E5-2698 v4 CPU. For both recipes, a batch size of 4 and
a beam size of 10 were applied. The CUDA CTC Decoder uses a
CUDA kernel to implement the blank collapse method in [35]. By
setting the blank frame skip threshold to 0.95, the decoding speed
can be increased by 2.4 times without sacrificing accuracy. Since the
CPU decoder does not support blank collapsing, the CPU decoder’s
effective blank frame skip threshold is 1.0. For comparability’s sake,
then, we include results for the CUDA decoder configured with a
blank frame skip threshold of 1.0. By way of CUDA’s parallelism, the
CUDA decoder allows for performing beam search on all tokens at
every step. Thus, the CUDA decoder’s effective max tokens per step is
the vocabulary size, which is 500 in this experiment. Accordingly, we
include results for the CPU decoder configured with a max tokens per
step of 500 to mimic the CUDA decoder’s behavior. Our experimental
results show that, compared to the CPU decoder, the CUDA decoder
achieves a lower WER and N-best oracle WER while increasing
decoding speed by a factor of roughly 10.

5.3. Conformer

Model architecture. Rather than pursuing state-of-the-art perfor-
mance, our primary goal is to validate TorchAudio’s implementations
of Conformer, RNN-T loss, and data operations. Accordingly, we
adopt an architecture similar to that used in the baseline Conformer

https://github.com/kensho-technologies/pyctcdecode


WER (%)
Toolkit # param. Vocab. size test-clean test-other

ESPnet 91.8M/94.3M* 5000 3.1/2.8* 7.4/6.6*
TorchAudio 87.4M 1024 2.89 7.08

Table 4. Comparison of Conformer transducer recipe model perfor-
mance between ESPnet and TorchAudio. *With CTC auxiliary loss.

transducer recipes in the ESPnet7 and icefall8 toolkits. To ensure
comparability, we configure the model architecture to be as similar
as possible to those of the baselines. As in the baselines, the encoder
has a 512-d output, a subsampling rate of 4, a kernel size of 31, and 8
attention heads with a 2048-d feed-forward unit. In total, our model
has 87.4M parameters, with the encoder owning 92% of them. In
contrast, ESPnet’s has 94.3M parameters, while icefall’s has 84.0M.
The differences in parameter count stem mostly from small differ-
ences in model architecture, which empirically do not significantly
impact performance. For instance, whereas the baselines’ encoders
use positional embeddings, ours does not.

Training strategy. Building upon TorchAudio’s base LibriSpeech
Conformer transducer recipe, we create two training recipes, with
one reproducing ESPnet’s recipe and the other icefall’s. Both ap-
ply online speed perturbation with factors uniformly sampled from
{0.9, 1.0, 1.1}. The former applies SpecAugment [36] with parame-
ters (T,mT , F,mF ) = (40, 2, 30, 2) and omits additive noise. The
latter applies SpecAugment with parameters (100, 10, 27, 2) and in-
cludes additive noise, which entails sampling a waveform from MU-
SAN’s “noise” and “music” subsets [37] and adding it to a training
sample with probability 0.5 and signal-to-noise ratio (SNR) uniformly
sampled from (15, 30) dB.

Both recipes use the Adam optimizer with weight decay factor
2e-6. Our learning rate scheduler is similar to Noam [38] in warmup
(up to 40 epochs) and annealing (starting from epoch 120 with factor
0.96) steps, with the addition of an 80-epoch plateau at value 8e-4.

Results. With comparable model architectures and training setups,
our Conformer transducer recipe performs similarly to or better than
ESPnet’s and icefall’s.

Table 4 shows that the performance of our recipe lies between
those of the two ESPnet baselines. Compared with the baseline
without CTC auxiliary loss, our recipe produces a model that achieves
a 4.3%/7.8% relative improvement on test-other/clean. We note,
however, that including the auxiliary loss allows the ESPnet recipe to
achieve a 10.8%/9.7% relative improvement on test-other/test-clean.
With the same SpecAugment policy and usage of additive noise, our
model performs similarly to icefall’s on test-clean and outperforms it
by 9.1% on test-other (Table 5).

5.4. Streaming AV-ASR

Datasets9. In this study, we use the LRS3 dataset [39], which con-
sists of 151,819 TED Talk video clips totaling 438 hours. Follow-
ing [25], we also include English-speaking videos from AVSpeech
(1,323 hours) [40] and VoxCeleb2 (1,307 hours) [41] as additional

7https://github.com/espnet/espnet/tree/master/egs2/
librispeech/asr1#conformer-rnn-transducer

8https://github.com/k2-fsa/icefall/blob/master/egs/
librispeech/ASR/RESULTS.md#2022-04-19

9All data collection and processing performed at Imperial College London.

WER (%)
Toolkit # param. Vocab. size test-clean test-other

icefall 84.0M 500 2.59 6.15
TorchAudio 87.4M 1024 2.54 5.59

Table 5. Comparison of Conformer transducer recipe model perfor-
mance between icefall and TorchAudio.

training data along with automatically-generated transcriptions. Our
model is fed raw audio waveforms and face region of interests (ROIs).
We do not use mouth ROIs as in [25, 42, 43] or facial landmarks or
attributes during both training and testing.

Model architecture and training. We consider two configurations:
Small with 12 Emformer blocks and Large with 28, with 34.9M and
383.3M parameters, respectively. Each AV-ASR model composes
frontend encoders, a fusion module, an Emformer encoder, and a
transducer model. We use convolutional frontends [25] to extract
features from raw audio waveforms and facial images. The features
are concatenated to form 1024-d features, which are then passed
through a two-layer multi-layer perceptron and an Emformer trans-
ducer model [10]. The entire network is trained using RNN-T loss.

Results. Non-streaming evaluation results on LRS3 are presented
in Table 6. Our audio-visual model with an algorithmic latency [10]
of 800 ms (160 ms+1280 ms×0.5) yields a WER of 1.3%, which is
on par with those achieved by state-of-the-art offline models such as
AV-HuBERT, RAVEn, and Auto-AVSR. We also perform streaming
evaluation adding babble acoustic noise to the raw audio waveforms
at various signal-to-noise ratios. With increasing noise level, the
performance advantage of our audio-visual model over our audio-
only model grows (Table 7), indicating that incorporating visual
data improves noise robustness. Furthermore, we measure real-time
factors (RTFs) using a laptop with an Intel® Core™ i7-12700 CPU
running at 2.70 GHz and an NVIDIA 3070 GeForce RTX 3070 Ti
GPU. To the best of our knowledge, this is the first AV-ASR model
that reports RTFs on the LRS3 benchmark. The Small model achieves
a WER of 2.6% and an RTF of 0.87 on CPU (Table 8), demonstrating
its potential for real-time on-device inference applications.

Method Total Hours WER (%)

ViT3D-CM [23] 90,000 1.6
AV-HuBERT [43] 1,759 1.4

RAVEn [42] 1,759 1.4
Auto-AVSR [25] 3,448 0.9

Ours 3,068 1.3

Table 6. Non-streaming evaluation results for audio-visual models
on the LRS3 dataset.

5.5. Multi-channel speech enhancement

Datasets. To validate the efficacy of TorchAudio’s MVDR beam-
forming module, we use the L3DAS22 3D speech enhancement task
(Task1) dataset [44] which contains 80 and 6 hours of audio for
training and development, respectively. Each sample in the dataset
comprises a far-field mixture recorded by two four-channel ambisonic

https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1#conformer-rnn-transducer
https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1#conformer-rnn-transducer
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md#2022-04-19
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md#2022-04-19


Type ∞ dB 10 dB 5 dB 0 dB -5 dB -10 dB

A 1.6 1.8 3.2 10.9 27.9 55.5
A+V 1.6 1.7 2.1 6.2 11.7 27.6

Table 7. Streaming evaluation WER (%) results at various signal-to-
noise ratios for our audio-only (A) and audio-visual (A+V) models
on the LRS3 dataset under 0.80-second latency constraints.

Model Device WER (%) RTF

Large GPU 1.6 0.35

Small GPU 2.6 0.33
CPU 0.87

Table 8. Impact of AV-ASR model size and device on WER and
RTF. Note that the RTF calculation includes the pre-processing step
wherein the Ultra-Lightweight Face Detection Slim 320 model is
used to generate face bounding boxes.

microphone arrays and the corresponding target dry clean speech and
transcript.

Model architecture and training. Experiments are conducted fol-
lowing the mask-based MVDR beamforming methodology described
in [31]. First, a Conv-TasNet-based mask network is applied to com-
pute the complex-valued spectrum and estimate the time-frequency
masks for speech and noise. The mask network consists of a short-
time Fourier transform (STFT) layer and a Conv-TasNet model with
its feature encoder and decoder removed. Then, the MVDR mod-
ule is applied to the masks and multi-channel spectrum to produce
the beamforming weights. Finally, the beamforming weights are
multiplied with the multi-channel STFT to produce a single-channel
enhanced STFT from which the enhanced waveform is derived via
inverse STFT. We use Ci-SDR [45] as the loss function since dry
clean signals are generally not aligned with multi-channel inputs in
real-world scenarios. Model configurations and training details can
be found in [46].

Results. We evaluate the impact of the mask-based MVDR beam-
forming model alongside various baselines on downstream ASR
performance. First, we evaluate each model on the test set of the
L3DAS22 dataset to generate the corresponding enhanced speech.
Then, we evaluate the Conformer transducer model presented in Sec-
tion 5.3 on the enhanced speech and compute the WER between
the generated transcriptions and the true transcriptions. Separately,
we also evaluate a Wav2Vec-2.0-based ASR model on the enhanced
speech and dry clean speech and compute the WER between the
two sets of generated transcriptions, per the L3DAS22 Challenge’s
WER metric. The results (Table 9) imply that the mask-based MVDR
model significantly improves ASR performance compared to other
methods, validating the efficacy of TorchAudio’s MVDR module.

5.6. Reference-less speech assessment

As discussed in Section 5.5, it can be challenging to compute signal-
level speech enhancement metrics (e.g., Si-SDR) in real-world sce-
narios since obtaining aligned dry clean signals is difficult. Here, we

Model WER (%) WER∗ (%)

MIMO-UNet [44] (baseline) 9.4 25.0
FasNet [47] - 14.2
DCCRN [48] - 18.8
Demucs v3 [49] - 15.3
Mask-based MVDR 3.5 5.6

Noisy Mixture 11.5 46.7
Dry Clean 2.6 0.0

Table 9. WER results for the mask-based MVDR beamforming
model and other baselines on the test set of the L3DAS22 dataset.
WER corresponds to the WER computed for the Conformer trans-
ducer model and WER∗ to the L3DAS22 Challenge’s WER metric.

Real metrics TorchAudio-Squim
Model WER PESQ Ci-SDR STOI PESQ Si-SDR

MIMO-UNet [44] 9.4 1.93 8.26 0.90 1.83 10.33
mask-based MVDR 3.5 2.46 19.00 0.92 2.25 15.95

Noisy Mixture 11.5 1.21 1.87 0.67 1.22 -1.70
Dry Clean 2.6 4.64 ∞ 0.99 3.56 23.93

Table 10. WER, PESQ, Ci-SDR, and SQUIM metric results for the
mask-based MVDR beamforming model and other baselines on the
test set of the L3DAS22 dataset.

conduct a case study of TorchAudio-Squim’s utility in evaluating en-
hanced signals assuming such scenarios. Using TorchAudio-Squim,
we estimate STOI, PESQ, and Si-SDR for the enhanced speech gen-
erated in Section 5.5. Table 10 suggests that the scores predicted
by TorchAudio-Squim are consistent with actual speech quality and
intelligibility.

By jointly leveraging TorchAudio’s mask-based MVDR beam-
forming model, Conformer transducer model, and TorchAudio-
Squim, we show that one can perform multi-channel speech enhance-
ment, ASR, and speech quality assessment all within TorchAudio.

6. CONCLUSION

TorchAudio 2.1 offers many compelling audio and speech machine
learning components. Not only are its components well-designed and
easy to use, but they are also effective and performant, as corroborated
by our empirical results. Consequently, the library establishes a
sound basis for future work in alignment with its ultimate goal of
accelerating the advancement of audio technologies, and we look
forward to seeing what its incredible community of users will achieve
with it next.
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A. USAGE EXAMPLES

# Stream audio and video from media devices
r = torchaudio.io.StreamReader(

# Use cameras and mics in macOS
format="avfoundation",
# Pick the first video device and
# third audio device
src="0:2",
# Configure the frame rate of the camera
option={"framerate": "30"},

)
r.add_basic_audio_stream(

frames_per_chunk=1600,
sample_rate=8000,

)
r.add_basic_video_stream(

frames_per_chunk=5,
frame_rate=25, # change frame rate
width=224, # change width and height
height=196,

)
for (audio, video,) in r.stream():

# audio.shape == [frames, channels]
# video.shape ==
# [frames, channels, height, width]

Fig. 3. Sample code that uses StreamReader to process streaming
input from media devices.

# Live stream audio and video using
# Real-Time Messaging Protocol
w = torchaudio.io.StreamWriter(

dst="rtmp://localhost:80", format="flv")
w.add_audio_stream(

sample_rate=8000, num_channels=1)
w.add_video_stream(

frame_rate=30, width=128, height=96)

with w.open(option={"listen": "1"}):
for (video_chunk, audio_chunk) in generator():

w.write_audio_chunk(0, audio_chunk)
w.write_video_chunk(1, video_chunk)

Fig. 4. Sample code that uses StreamWriter to live-stream audio-
visual data via Real-Time Messaging Protocol server.
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