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ABSTRACT
Recent work on speech representation models jointly pre-trained
with text has demonstrated the potential of improving speech rep-
resentations by encoding speech and text in a shared space. In
this paper, we leverage such shared representations to address the
persistent challenge of limited data availability in spoken language
understanding tasks. By employing a pre-trained speech-text model,
we find that models fine-tuned on text can be effectively transferred
to speech testing data. With as little as 1 hour of labeled speech data,
our proposed approach achieves comparable performance on spo-
ken language understanding tasks (specifically, sentiment analysis
and named entity recognition) when compared to previous methods
using speech-only pre-trained models fine-tuned on 10 times more
data. Beyond the proof-of-concept study, we also analyze the latent
representations. We find that the bottom layers of speech-text models
are largely task-agnostic and align speech and text representations
into a shared space, while the top layers are more task-specific.

Index Terms— few-shot spoken language understanding,
speech-text pre-training, speech representations, cross-modal repre-
sentations

1. INTRODUCTION
Self-supervised speech representations have emerged as an impor-
tant tool for improving performance and data-efficiency in various
speech applications [1, 2, 3]. These representations encode linguis-
tic content, prosody variations, speaker characteristics, and semantic
information [4]. Through discretization, such representations even
show text-like properties. For example, some discretized speech rep-
resentations are closely related to phonetic units [2] while being less
sensitive to speaker identity changes [5], making them suitable for
tasks such as language modeling and speech translation [6, 7, 8].
Such representation models also appear to encode word-level and
syntax information [9, 10]. This combination of properties positions
self-supervised speech representations as a bridge between surface-
form speech signals and the underlying semantic space.

Building upon these observations, jointly pre-trained speech-
text models have been developed with the goal of mapping speech
and text into a shared representation space, further facilitating the
connection between learned speech representations and written lan-
guage [11, 12, 13, 14]. Speech-text joint pre-training has proven
helpful for speech recognition, synthesis, and translation [12, 13, 14,
15]. However, our understanding of how these models integrate spo-
ken and written language remains limited, and they have not yet been
applied to many spoken language understanding (SLU) tasks.

In this paper, we investigate three speech-text models —
SpeechLM-P, SpeechLM-H [13], and SpeechUT [14]. We ana-
lyze their latent representation space and evaluate their performance
on two SLU tasks: speech Sentiment Analysis (SA) and Named En-
tity Recognition (NER). Our analysis finds that these models follow
a first-align-then-predict pattern [16], similar to the pattern observed
in multilingual BERT pre-training [17]; that is, they encode speech

and text in a shared representation space in the first few layers, be-
fore making predictions in the remaining layers. On the SLU tasks,
we demonstrate that speech-text models outperform speech-only
self-supervised pre-trained models.

We also extend our experiments to few-shot and zero-shot set-
tings. In these settings, we assume limited access to labeled speech
data but have more labeled text data, which is generally easier to
collect. Leveraging the aligned representation space of speech-text
models, we fine-tune the models with labeled text data (and limited
labeled speech data in the few-shot setting) and evaluate their perfor-
mance on speech data. On the SA task, speech-text models exhibit
excellent zero-shot cross-modal transferability, matching the perfor-
mance of models fine-tuned on labeled speech data. On the NER
task, there is a larger gap between zero-shot speech-text models and
fine-tuned speech models (45.1% vs. 63.4% F1 on the SLUE bench-
mark [18]). However, with only 1 hour of labeled speech data, our
proposed approach achieves performance close to that of previous
self-supervised speech models fine-tuned on 10 times more data.

Our main contributions are as follows: (1) we show that speech-
text models achieve comparable or better performance than speech-
only models on multiple SLU tasks; (2) in few-shot and zero-shot
settings, we demonstrate speech-text models’ transferability from
text to speech in SA and NER tasks and achieve close performance to
previous work that used full labeled speech data; (3) we demonstrate
the existence of a first-align-then-predict pattern in speech-text mod-
els, similarly to multilingual pre-training of text models; (4) based on
the observations above, we design a fine-tuning strategy by freezing
the bottom layers and only updating the top layers, which improves
the zero-shot performance of speech-text models.

2. RELATED WORK

2.1. Few-shot end-to-end spoken language understanding
In this work, we define the task of few-shot end-to-end SLU as learn-
ing an end-to-end SLU model using a small amount of labeled speech
data and potentially more labeled text data. This research direction
has received limited attention so far. Previous attempts have involved
predicting pseudo-labels for speech data using a pre-trained text-
based language understanding model [19, 20], as well as mapping
labeled text data to speech embeddings with a text-to-embedding
predictor to generate pseudo speech data [21]. Another approach to
tackle this problem is to combine the supervision signals from multi-
ple SLU tasks to train a multi-task SLU model [22], which assumes
a certain level of similarity between different SLU tasks.

2.2. Self-supervised speech models and speech-text models
Self-supervised speech models are learned from pretext tasks ap-
plied to unlabeled speech data, such as masked prediction or con-
trastive predictive coding [1, 2, 3]. Incorporating discretization
within the self-supervised learning framework has proven beneficial
for downstream tasks, as it seems to align learned representations
with human-defined linguistic units like phonemes. For example,
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HuBERT [2] employs k-means clustering to update speech repre-
sentations iteratively and uses the resulting cluster IDs as training
targets. This approach enables the use of a BERT-style masked
prediction loss [23], and strengthens the connection between learned
speech representations and linguistic units. This style of pre-trained
model has encouraged a series of approaches for learning shared
representations between speech and text.

Recent models that encode speech and text into a shared repre-
sentation space often rely on supervision signals provided by speech-
transcription pairs. For instance, SLAM [12] incorporates a cross-
modal masked prediction task defined on speech-transcription pairs.
Similarly, mSLAM [24] and MAESTRO [25] directly use a speech
recognition loss. While SpeechLM [13] and SpeechUT [14] do not
directly utilize speech-transcription pairs in training, they still rely
on a speech-to-token or text-to-token model pre-trained with tran-
scribed speech data. Token2vec [26] is the only model in this cate-
gory that does not rely on paired data during pre-training. However,
this model is not publicly available at the moment, so we cannot
further analyze it and explore its potential. In addition to speech-
transcription pairs, paired translation data is commonly employed
to enhance the models’ cross-lingual capabilities [27, 28, 29, 30].
Another line of work explores the effectiveness of speech-text joint
training on speech generation models [15, 29, 30, 31].

Speech-text models have shown impressive performance on var-
ious speech tasks and potential for scaling up to hundreds of lan-
guages [32, 33]. However, exploration of their capabilities for SLU
tasks remains limited. In addition, while certain models have been
found to exhibit cross-modal transfer from speech to text — for ex-
ample, a model fine-tuned on speech-to-text translation can be di-
rectly used for text-to-text translation [24] — their text-to-speech
transfer ability has not been explored.

2.3. Analysis of cross-lingual self-supervised models
The cross-lingual ability of self-supervised models has been long
studied by the natural language processing community [34, 35]. By
pre-training on a multi-lingual corpus, self-supervised text models
can learn general knowledge shared across human languages. Sub-
sequently, when being fine-tuned on a specific language, they can
then use the information learned across the pre-training languages
and enable zero-shot transfer [35]. Analysis of these multi-lingual
models shows that they can be conceptualized as consisting of two
main components: a multilingual encoder which aligns different
languages into a shared representation space, followed by a task-
specific language-agnostic predictor [16]. During fine-tuning, the
encoder remains almost unchanged, while the predictor learns task-
specific knowledge from the supervision signals. This first-align-
then-predict framework provides an explanation for the zero-shot
transfer behavior of multi-lingual models.

Relatedly, it has been found that the degree of cross-lingual
alignment positively correlates with downstream language-transfer
performance [16]. In addition, freezing the bottom layers (i.e., the
multilingual encoder) during fine-tuning in general only leads to
a slight drop in same-language performance [36] but potentially
improves the cross-lingual ability [35].

3. METHODS
3.1. Pre-trained speech-text models
In this work, we build upon SpeechLM [13] and SpeechUT [14].1

As shown in Figure 1, the SpeechLM model contains two off-line
discrete tokenizers for speech and text inputs, a 6-layer speech
Transformer and a 6-layer shared Transformer. The model uses the

1We use the Base configuration for all models.

tokenizers to map speech and text into a shared set of discrete tokens
to encourage learning shared representations. There are two variants
of SpeechLM, SpeechLM-P (P for Phoneme) and SpeechLM-H (H
for Hidden units), corresponding to different choices of discrete
token sets. SpeechLM-P uses phoneme units as the discrete tokens;
a speech recognition system and a pre-defined lexicon are used to
convert speech signals and text into phoneme units, respectively.
On the other hand, SpeechLM-H uses hidden units derived from a
k-means model trained on HuBERT [2] features as the discrete to-
kens; the k-means model is also used as the speech tokenizer, while
a non-autoregressive text-to-hidden-unit model trained on paired
text-unit data is used as the text tokenizer.

Both variants of SpeechLM follow exactly the same training
procedure, and are trained with a combination of unpaired speech,
unpaired text, and a small amount of paired speech-text data. For
speech input, a CNN feature extractor and a 6-layer speech Trans-
former are trained to predict the discrete tokens of masked speech
frames in the Unit-based Masked Language Modeling (UMLM)
task. With text token inputs, the shared Transformer is trained with
a Unit-based Connectionist Temporal Classification (UCTC) loss to
predict the target character sequence. Like the speech Transformer,
the shared Transformer is also trained with the UMLM loss given
speech inputs. To align speech and text representations, a random
swapping mechanism is applied to the inputs of the shared Trans-
former, where some positions in the unmasked region of speech are
randomly selected and replaced by tokenized unit embeddings.

The model architecture and training of SpeechUT are very sim-
ilar to those of SpeechLM-H as both of them use HuBERT hidden
units as the intermediate representations between speech and text.
The main difference is that SpeechUT has a text decoder on top of
the shared Transformer, which is trained via Cross Entropy (CE) to
predict the target character sequence when given text inputs. The
shared Transformer is additionally trained on a Masked Unit Model-
ing (MUM) task to predict masked units given tokenized speech or
text as inputs.

All of the models mentioned above are pre-trained on 960 hrs
of untranscribed speech from the LibriSpeech dataset and 40M text
sentences from the LibriSpeech LM corpus [37]. The model size,
training procedure, and datasets all follow the standard setting of
HuBERT-Base [2], which makes our approach directly compara-
ble with previously reported results of HuBERT [2] and Wav2Vec
2.0 [3]. For a fair comparison between SpeechUT and other models,
we discard the pre-trained decoder in our experiments to ensure a
consistent configuration across models.

3.2. Analysis of representation alignment in pre-trained models
Knowledge transfer from text-based training to speech tasks relies
on the shared representation learned during pre-training. To analyze
the alignment between speech and text in the speech-text models, we
use the Average Neuron-Wise Correlation (ANC) [38]. 2

Let X,Y ∈ Rd×T be two different views of the same data in-
stance, each containing a sequence of T vectors of dimension d, rep-
resenting the activation of d neurons in a given model layer across
T time steps. ANC is simply defined as the average correlation
of the activations of individual neurons 1

d

∑d
i=1 corr(Xi, Yi), with

2Another common model analysis tool is Canonical Correlation Analysis
(CCA) [39], which is often applied in model analysis to measure the informa-
tion shared between two views of the same data instance [40, 41]. However,
CCA allows a linear projection between the two views, and so does not reflect
the direct alignment between them. CCA is therefore more applicable in set-
tings where the information content need not be distributed in the same way
across dimensions in the two views. Empirically, in preliminary experiments
in our setting, CCA and ANC analysis largely agree with each other.
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Fig. 1. The pre-training framework of SpeechLM and SpeechUT.
Dashed lines stand for off-line components that are not updated dur-
ing the pre-training and fine-tuning of the speech-text models.

Xi, Yi ∈ R1×T being the activation of one single neuron across T
time steps [38].

In our experiments, we use paired speech and transcription as
inputs to the speech-text models, respectively, and extract the latent
representations from each layer of the shared Transformer for the
ANC computation. Ground-truth alignments between speech and
text sequences are used to ensure frame-wise alignment between the
extracted representations. For SpeechLM-P, we employ a pre-trained
forced alignment tool [42] to obtain accurate phoneme durations and
expand the phoneme sequence accordingly given the text inputs. For
SpeechLM-H and SpeechUT, we apply the HuBERT tokenizer to
convert speech signals into discrete tokens and use them as the text
inputs. With perfectly aligned sequences, the ANC values then re-
flect the degree of alignment between the learned text and speech
representations, which we view as a prerequisite for the zero-shot
and few-shot transferability of speech-text models.

3.3. Zero-shot and few-shot spoken language understanding
Figure 2 shows our workflow for fine-tuning speech-text models for
spoken language understanding tasks. In our zero-shot SLU ex-
periments, we fine-tune the model solely using labeled text inputs
without any speech data. Following the pre-training of SpeechLM-
P [13], we randomly up-sample the phoneme sequence to match the
length distribution of discrete speech tokens and fine-tune the model

with upsampled phonemes. For SpeechLM-H and SpeechUT, we
use the pre-trained text tokenizer to predict hidden units from text,
and fine-tune the model with predicted units.

We also explore the few-shot setting with slightly relaxed data
scarcity restrictions. In this scenario, we assume access to all labeled
text data used in the zero-shot setting, as well as a small fraction of
the labeled speech data. Both types of data are combined for joint
fine-tuning of the speech-text models. Due to the imbalanced data
sizes between speech and text, we apply temperature sampling [43]
to increase the likelihood of speech data being sampled during train-
ing. Specifically, let (ps, pt) denote the ratio of speech and text sen-
tences in the dataset, we re-balance the probability of speech and text
batches being sampled to

(
p′s

p′s+p′t
,

p′t
p′s+p′t

)
with p′ = p

1
T . Follow-

ing prior work, we set T = 5 across all few-shot experiments [43].
To provide a comparison with our zero-shot and few-shot SLU

methods, we establish two performance baselines. The first base-
line involves fine-tuning SpeechLM using all of the available la-
beled speech data. While the second baseline model is created by
fine-tuning SpeechLM with synthesized speech data. The second
baseline simulates the zero-shot scenario, where labeled text data is
available but no corresponding speech data exists. We assume the
presence of an additional speech synthesis model 3 that can be used
to convert the text-label pairs into speech-label pairs.

Inspired by previous layer-wise analyses of self-supervised
models which revealed that different aspects of spoken and written
languages are encoded in different layers [16, 41], we also investi-
gate fine-tuning only the top Transformer layers while keeping the
bottom layers frozen [36]. This exploration allows us to examine
how the performance of the model is affected by fine-tuning spe-
cific layers and gain insights into the encoding of speech and text
representations in different layers of the Transformer model.

3.4. Analysis of latent representations after fine-tuning
In Sec. 3.2, we discussed the application of ANC to analyze the
degree of alignment between speech and text representations in the
pre-trained models, as a presumed prerequisite for zero-shot trans-
fer. Additionally, we also want to understand how the model learns
through different fine-tuning setups. By comparing the ANC be-
tween speech and text representations in the fine-tuned model against
the pre-trained model, we can examine whether the aligned repre-
sentation space is preserved after fine-tuning. On the other hand,
we would also like to know how the fine-tuning tasks and input
modalities (speech or text) result in different behavior of speech-text
models, and whether speech-text models follow the “first-align-then-
predict” pattern observed in multi-lingual text models [16]. To an-
swer this question, we apply ANC analysis to compare the latent rep-
resentations of (1) models fine-tuned on the same tasks but with dif-
ferent input modalities and (2) models fine-tuned on different tasks
with the same input modality, which allows us to discern the task-
agnostic and task-specific components within speech-text models.

4. EXPERIMENTS
4.1. Layer-wise ANC analysis of pre-trained models
To assess the similarity between paired speech and text representa-
tions in the shared Transformer of pre-trained speech-text models,
we use the dev-clean subset of the LibriSpeech dataset [37]. From
this set, we randomly select 500 utterances, calculate the correlation
at each dimension, and then report averaged values. The results are
shown in Fig. 3.

3We use the ESPnet implementation [44] of VITS [45] pre-trained on the
LibriTTS [46] corpus and randomly sample speakers to generate a synthe-
sized speech dataset with the same size as the original speech dataset.
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Fig. 2. Fine-tuning configurations compared in our work. (1) is
the default all-speech fine-tuning setting of the SLUE [18] bench-
mark, while (2) and (3) refers to the few-shot and zero-shot SLU
fine-tuning studied in this work. All fine-tuning settings are evalu-
ated with speech input.

As the the results of the ANC analysis show, despite the inputs
of the shared Transformer not being perfectly aligned (in layer 6),
the models effectively learn to map text and speech into a shared
representation space, as evidenced by the high correlation scores
at around layers 9 and 10. However, in the final layers, a decline in
ANC scores can be observed in all models, which might be attributed
to the utilization of distinct pre-training losses for speech and text
inputs. Overall, the observed trend verifies that the bottom few layers
in the shared Transformer are capable of aligning speech and text
representations in a shared representation space.
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Fig. 3. ANC analysis of speech and text representations in three
pre-trained speech-text models. “Layer 6” refers to the input of the
shared Transformer.

4.2. SLUE Sentiment Analysis
To assess the cross-modal transferability of the jointly pre-trained
speech-text models, we employ the Spoken Language Understand-
ing Evaluation (SLUE) benchmark [18], which includes a sentiment
analysis (SA) task and a named entity recognition (NER) task. To
fine-tune the models on SA, we follow the standard setup in the
SLUE toolkit: A self-attention pooler is added on top on the pre-
trained model to produce a fixed-dimensional feature vector from
inputs with variable lengths, followed by a 2-layer classifier trained
with cross entropy loss to predict the sentiment class label. The
model is trained for 30k updates with a batch size of 1.4M speech
frames. For text inputs, we set the batch size to 4375 tokens to ensure

Table 1. F1 scores (%) of the Sentiment Analysis task on the SLUE
dev set.

Labeled Data Models

Speech Text W2V2 HuBERT Speech- Speech- Speech-
[18] [18] LM-P LM-H UT

Baselines
1 hr - 36.9 37.7 39.6
12.8 hrs - 43.3 43.0 45.6 45.3 44.8
12.8 hrs (syn) - 46.4 46.3 46.1

Proposed
- full 45.2 45.2 47.0
10 mins full 45.2 38.3 39.5
1 hr full 46.4 43.4 45.4

roughly equal numbers of sentences in speech and text batches.
To evaluate the SA fine-tuning, we report the macro-averaged F1

scores on the dev subset under our few-shot and zero-shot settings.
A performance evaluation with comparison to prior work is shown in
Table 1. When fine-tuned on speech inputs, speech-text models al-
ready show better performance than speech-only pre-trained models
(44.8–45.6% vs. 43.3–44.0%). In the zero-shot setting, the mod-
els demonstrate excellent transferability from text to speech inputs
with SpeechUT achieving an F1 score of 47.0%, which outperforms
all speech-text models and speech-only models fine-tuned on speech.
However, it is worth noting that combining a small amount of speech
data with text does not help the models improve the SA performance,
which may result from the interference between training signals.

4.3. SLUE Named Entity Recognition
To set up the model for NER fine-tuning, we follow the default con-
figuration of the SLUE toolkit, which adds a linear layer on top of
the pre-trained model and trains the models with a character-level
Connectionist Temporal Classification (CTC) loss. The models are
trained for 20k steps with a batch size of 3.2M frames for speech
inputs and 10k tokens for text inputs.

We evaluate the NER performance on the dev set of the SLUE
dataset and report the micro-averaged F1 and label-F1 scores.
Label-F1 score considers only the tag predictions and ignores any
misspelling and segmentation errors in speech-to-text conversion..
There is an option to utilize an offline 4-gram language model (LM)
for decoding the model output. The language model is trained inde-
pendently on the fine-tune set and generally improves performance.

We evaluate the NER task performance of different fine-tuning
schemes both with and without a language model. A detailed perfor-
mance evaluation on the SLUE dev set is shown in Table 2. Com-
pared to the SA task, which is a simple classification, the NER task
is more complicated and involves decoding the model output into
a character sequence. For SpeechLM, text-only training seems to
be insufficient for guiding the model to learn about speech labeling,
and has significantly worse performance compared to training with
speech data. However, SpeechUT demonstrates impressive zero-
shot ability, attaining a text-only F1 score of 48.4% with the aid
of LM decoding. We also observe a significant improvement in the
NER performance by incorporating as little as 10 minutes of speech
data alongside the text input, which is about 1/100 the size of the full
speech dataset. Without an LM, the 10 mins of speech data improves
performance from 1.2% to 34.7% for SpeechLM-H, and with 1 hr of
speech, the performance further improves to 52.0%. With 3 hrs of
speech, the performance improves to 59.6%, only slightly behind the
64.0% F1 score achieved by fine-tuning with the full speech dataset.



Similar performance improvement can be seen with LM decoding.
The performance for SpeechLM-P is improved from 9.3% with text-
only training to 50.4% with 10 mins of speech data, and is further
improved to 62.5% and 69.7% with 1 hr and 3 hrs of speech data,
respectively.

In Fig. 4, we show the results of fine-tuning speech-text models
for the NER task with varying amounts of speech data. We find
that the benefit of using labeled text data is more significant when
only limited speech data is available. With the full labeled speech
dataset, text data only results in marginal improvement. However,
it is worth noting that the text transcriptions we use to fine-tune the
models only correspond to 14.5 hrs of speech data. The performance
can potentially be further improved by using more text data, which
is generally easier to collect than labeled speech data.

In Table 3, we show the NER performance of the proposed meth-
ods on the SLUE test set 4 with a comparison to prior work. Similar
to the dev set results, SpeechUT demonstrates excellent zero-shot
transfer ability with an F1 score of 45.1% when fine-tuned solely
on text. With 3 hrs of data, we can match the performance of prior
work fine-tuned on full speech data (61.9–63.4%) with any of the
speech-text models (62.6–63.8%).

4.4. ANC analysis of fine-tuned models
We conduct ANC analysis on the latent representations in fine-tuned
models to get a clearer picture of how the models learn through
fine-tuning. In Fig. 5, we show the ANC between speech and text
representations in pre-trained models and fine-tuned models, respec-
tively. We follow the same setup as in Sec. 4.1 for data preparation.
By comparing the curves of pre-trained and fine-tuned models, we
can see that they almost overlap with each other from layer 6 to
layer 10 (with SpeechLM-H fine-tuned on NER with text being an
exception). This shows that fine-tuning only marginally affects the
speech-text alignment in the latent space of the bottom layers. After
layer 11, pre-training and fine-tuning curves diverge, implying that
the top layers are affected more by fine-tuning and thus are more
task-specific. This result, combined with the results in Sec. 4.1
and the zero-shot transferability of the models, shows that speech-
text models follow the “first-align-then-predict” pattern observed in
multi-lingual text models.

In Fig. 6, each curve corresponds to the ANC between speech
representations from two models with different fine-tuning setups.
The solid lines compare models fine-tuned on the same task with
different input modalities , while the dashed lines compare models
fine-tuned on different tasks with the same input modality. It can be
observed that the solid lines are consistently higher than the dashed
lines, which shows that the fine-tuning task affects the latent repre-
sentations more than the input modality. This further supports the
existence of knowledge transfer across different input modalities.

4.5. Fine-tuning with frozen bottom layers
In the previous experiments, we have evaluated the performance of
speech-text models on few-shot and zero-shot SLU, as well as ana-
lyzed the latent representations of speech-text models and identified
the “first-align-then-predict” pattern. We would then like to combine
the two sets of observations to see whether we can further improve
SLU performance by only fine-tuning the task-specific top layers.
We follow the setup in Sec. 4.3 to fine-tune speech-text models on
NER, but with different numbers of bottom layers frozen. The results
are shown in Fig. 7. We find that by training only a few top layers

4We followed the evaluation protocol to get the test set results on the
SLUE benchmark.
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(e.g., train 4 layers and leave 8 layers frozen), we can achieve a per-
formance that is very close to the performance of 0 frozen layers,



Table 2. F1 scores (%) of the Named Entity Recognition task on the SLUE dev set.

Labeled Data without LM decoding with LM decoding

F1 (%) Label-F1 (%) F1 (%) Label-F1 (%)

Speech Text Speech- Speech- Speech- Speech- Speech- Speech- Speech- Speech- Speech- Speech- Speech- Speech-
LM-P LM-H UT LM-P LM-H UT LM-P LM-H UT LM-P LM-H UT

Baselines
14.5 hrs - 64.2 64.0 62.9 76.4 78.2 77.2 73.0 73.1 72.8 81.8 82.1 81.8
14.5 hrs (syn) - 46.4 41.9 36.3 64.0 60.9 59.6 58.6 56.8 54.4 70.7 68.4 66.8

Proposed
- full ∗0.0 ∗1.2 ∗9.7 ∗0.2 ∗7.1 ∗32.8 ∗9.3 ∗29.4 ∗48.4 ∗9.4 ∗33.3 ∗58.3
10 mins full 35.6 34.7 31.5 45.6 45.8 46.5 50.4 51.7 51.8 56.5 58.1 59.3
1 hr full 50.2 52.0 47.3 65.1 65.9 64.9 62.5 63.4 63.3 71.7 72.2 72.4
3 hrs full 60.0 59.6 58.2 73.4 74.9 73.4 69.7 69.2 69.9 78.8 78.5 78.9

∗ For text-only fine-tuning, we fine-tune the top 3 layers of the shared Transformer.
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Fig. 7. F1 scores for NER on the SLUE dev set with varying number of frozen layers during fine-tuning.

Table 3. F1 scores (%) of the Named Entity Recognition task on the
SLUE test set with LM decoding.

Labeled Data F1 (%) Label-F1 (%)

Speech Text Speech- Speech- Speech- Speech- Speech- Speech-
LM-P LM-H UT LM-P LM-H UT

Baseline
14.5 hrs - 67.1 67.0 66.9 75.8 76.5 75.2

Proposed
- full ∗8.1 ∗25.7 ∗45.1 ∗8.2 ∗30.0 ∗53.9
1 hr full 56.9 58.7 58.3 65.9 67.7 67.2
3 hrs full 62.8 63.8 62.6 72.8 72.9 72.0

Prior work (with 14.5 hrs labeled speech data)
W2V2 [18] 63.4 71.7
HuBERT [18] 61.9 70.3

∗ For text-only fine-tuning, we fine-tune the top 3 layers of the shared Transformer.

in both the few-shot setting and the full-speech fine-tuning setting.
This again aligns with the behavior of multi-lingual natural language
models reported in the literature [36]. On the other hand, in the zero-
shot setting, the best performance is usually achieved with a certain
number of bottom layers frozen (e.g., 9 layers for SpeechLM-H and
SpeechUT). This supports our hypothesis that the bottom layers are
in charge of representation alignment and thus should not be updated
during fine-tuning for the best zero-shot transfer performance.

5. CONCLUSIONS
In this work, we study the problem of zero-shot and few-shot spo-
ken language understanding by fine-tuning speech-text models with
labeled text data. Our results demonstrate zero-shot transferability
of pre-trained speech-text models from text to speech on these tasks.
We also show that, with only a small amount of labeled speech data,
the performance can be significantly improved, almost matching pre-
vious work trained with a much larger amount of labeled speech on
the SLUE benchmark. Our analysis suggests that the bottom lay-
ers of speech-text models learn the alignment between speech and
text representations, which is crucial to the model’s performance in
the absence of enough labeled speech data, while the top layers are
task-specific and tend to be updated more during fine-tuning. This
analysis suggests freezing the bottom layers and only updating the
top layers during fine-tuning, which results in the best performance
under the zero-shot setting.

Our approach can be directly scaled up when more labeled
speech/text data is available. However, it is still an open question
whether the model continues to benefit from text supervision when
more speech data is available. In addition, given the similarity we
have observed between speech-text models and multi-lingual text
models, it will also be interesting to study multilingual speech-text
models with the methods introduced in this paper to see how the
spoken and written forms of different languages can be integrated.
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