
ED-CEC: IMPROVING RARE WORD RECOGNITION USING ASR POSTPROCESSING
BASED ON ERROR DETECTION AND CONTEXT-AWARE ERROR CORRECTION

Jiajun He ⋆ , Zekun Yang ‡, Tomoki Toda ‡

⋆ Graduate School of Informatics, Nagoya University, Japan
‡ Information Technology Center, Nagoya University, Japan

ABSTRACT
Automatic speech recognition (ASR) systems often encounter diffi-
culties in accurately recognizing rare words, leading to errors that
can have a negative impact on downstream tasks such as keyword
spotting, intent detection, and text summarization. To address this
challenge, we present a novel ASR postprocessing method that fo-
cuses on improving the recognition of rare words through error de-
tection and context-aware error correction. Our method optimizes
the decoding process by targeting only the predicted error positions,
minimizing unnecessary computations. Moreover, we leverage a
rare word list to provide additional contextual knowledge, enabling
the model to better correct rare words. Experimental results across
five datasets demonstrate that our proposed method achieves sig-
nificantly lower word error rates (WERs) than previous approaches
while maintaining a reasonable inference speed. Furthermore, our
approach exhibits promising robustness across different ASR sys-
tems.

Index Terms— automatic speech recognition, rare words, error
detection, context-aware error correction, rare word list

1. INTRODUCTION
Automatic speech recognition (ASR) technology has made consider-
able progress in recent years, enabling machines to transcribe speech
with marked accuracy [1, 2]. However, even with state-of-the-art
(SOTA) ASR systems, there remains a persistent challenge in ac-
curately recognizing rare words, such as named entities, technical
terms, and specific names [3]. These rare words are often misrecog-
nized as similar-sounding words in the recognition lexicon, resulting
in errors that significantly degrade the overall transcription quality
[4]. Such errors can have a substantial impact on downstream tasks
such as video summarization [5] and named entity recognition [6, 7].
Consequently, improving the recognition of rare words has become
a crucial objective in enhancing ASR performance.

To tackle the challenge of rare word recognition in ASR, several
techniques have been proposed. These techniques primarily involve
incorporating contextual knowledge into the ASR system [3, 8–10]
and integrating an additional language model (LM) into the decoding
phase to bias recognition results towards contextual knowledge [11–
14]. In these approaches, contextual knowledge is typically repre-
sented by a list of words or phrases, known as contextual items, that
are likely to appear in a given context. Various resources, such as
lecture video slides, meeting minutes, and a user’s contact book, can
be utilized to construct the rare word list [15, 16]. However, these
aforementioned approaches have certain limitations. On one hand,
the method of incorporating contextual knowledge into the ASR sys-
tem can be computationally expensive during both training and in-
ference, and it may require significant modifications to the original
ASR models’ structure [8]. Moreover, this approach may not effec-
tively handle a large rare word list. On the other hand, the method

Audio
ASR model Error

DetectionTranscription
With Errors

Error
Positions

Rare Word ListRare Words

Compose Corrected
Transcription

Error
Correction

Slides

or

Contact Book

Extract

Fig. 1. Pipeline of our proposed method.

of integrating an additional LM into the decoding phase necessitates
careful weight tuning in different scenarios.

To address the limitations of previous approaches, ASR error
correction (AEC) has been proposed [17–21]. An AEC model is de-
signed to be an independent model that does not alter the structure
of the original ASR model, ensuring no risk of performance degra-
dation. This characteristic makes it highly convenient to apply the
AEC model across various domains, as it can be easily integrated
by replacing the existing AEC model without the need for retraining
the original ASR model [19]. Wang et al. [19] integrated contextual
knowledge into an error correction model through a context encoder,
which corrects the ASR output from scratch. However, this process
raised significant concerns regarding inference speed. Interestingly,
it was observed that the majority of words were identical between the
ASR output and the ground truth. Hence, Yang et al. [20] proposed
the use of an operation predictor to constrain the decoding process,
resulting in a notable improvement in inference speed while retain-
ing the capability to correct certain errors. However, owing to the
lack of contextual knowledge integration, this approach could not
effectively correct rare words.

In this paper, we propose a novel method based on error de-
tection and context-aware error correction (ED-CEC) to address the
challenges associated with inference speed and rare word correction,
as shown in Fig. 1. The rare word list used in the error correction
module can be obtained from various sources such as slide texts or a
contact book. The contributions of this paper are summarized below:

• We propose a method to correct rare words based on ASR results.
Our model includes an error detection module, which identifies in-
correct positions and decodes only those positions to increase in-
ference speed, and a context-aware error correction module, which
corrects rare words by selecting relevant contextual items from a
rare word list.

• We conduct experiments on five datasets. The results demon-
strate that our model achieves a relative word error rate reduction
(WERR) ranging from 15.6% to 38.17% compared with the orig-
inal ASR output and the average relative improvement in biased
word error rate (B-WER) is 46.68%. In addition, the proposed
method achieves an inference speed of 2.8 − 6.0 times higher than
the previous SOTA model.

To appear in Proc. ASRU2023

ar
X

iv
:2

31
0.

05
12

9v
1

 [
cs

.A
I]

 8
 O

ct
 2

02
3

<u1>

director

<u2>

did

<u3>

not

<u4>

ask

<u5>

for

<u6>

Preprocessing &
 W

ordPiece

L
abel Prediction L

ayer

D

K

D

K

D

K

D

K

D

K

<B
O
S>

B
E

R
T

 E
ncoder

battleax rector...

C
om

pletion

the
rector

Contextual Encoder
a

<u7>

cate

##ch

C

D

D

K

D

<no-context>

director

did

not

ask

for

a

catechism

Contextual Decoder

ASR

Inputs

(a) Embedding (b) Error Detection D
ecoder Inputs Transform

er D
ecoder

Rare Word List

(c) Context-aware
Error Correction

g

the
<EO

S>
rector

O
utputs

the

did

not

ask

for

a

catechism

Corrected

rector

##ism

<u8>

K

K

battle ##ax re ##ctor...<no-context> WordPiece

EC

L
inear

pt,k
gen

Softm
ax

L
inear

Softm
ax

Ot,k
con

Ot,k
gen

EI

EI
ek

Et,k
Z

zt,k

Pt,k

pt,k
con

W
eighted Sum

Ot,k
gen

Fig. 2. Overall architecture of the proposed ED-CEC model.

2. METHODOLOGY
In the previous method proposed by Yang et al. [20], a preprocess-
ing step and an error detection module were introduced, which en-
sured inference speed while providing some error correction capabil-
ity. However, it exhibited poor performance in correcting rare word
errors. In this paper, we build upon their error detection module to
preserve inference speed and introduce a novel context-aware error
correction module to effectively handle rare word errors. This con-
stitutes the main innovation of our study. We refer to the combined
model as the ED-CEC model, depicted in Fig. 2. In this section, we
provide a detailed explanation of each module.

2.1. Embedding Module
The contextual error correction problem can be represented as
the mapping function f(S,C) = T , where the source S =
(s1, s2, · · · , sm) is the original ASR output, the context C =
(c1, c2, · · · , cl) is the rare word list containing l contextual items,
and the target T = (t1, t2, · · · , tn) is the corrected transcript. All
the tokens are applied to a predefined WordPiece vocabulary [22].
Similarly to [20], we first insert dummy tokens between every two
consecutive words in S to reduce the ambiguity of possible edit-
ing operations. We then align S and T by determining the longest
common subsequence between them. By inserting these dummy
tokens, we can generate an aligned representation of S denoted
as I = (i1, i2, · · · , i2m+1), where m + 1 represents the number
of inserted dummy tokens. Finally, the aligned tokens are labeled
KEEP (K), whereas the remaining tokens are labeled DELETE (D)
or CHANGE (C). An example is illustrated in Fig. 2.

The hidden representations EI = (e1, e2, · · · , e2m+1) of the
model inputs I are then obtained by using the pretrained language
model BERT [23] as an encoder:

EI = BERT(TE(I) + PE(I)), (1)
where TE and PE denote the token embedding and position embed-
ding, respectively.

2.2. Error Detection Module
The label prediction layer is a straightforward fully connected net-
work with three classes: K, D, and C. The impact of this module on
the overall system size is minimal, making it a lightweight compo-
nent. However, its contribution to improving the inference speed of
the system is significant.

P (yo|eo) = Softmax(FC(eo)), (2)

where eo ∈ EI and yo, o ∈ {1, · · · , 2m + 1} are the output of the
BERT encoder and predicted labeling operations, respectively. FC
is a fully connected layer.

2.3. Context-aware Error Correction Module
The context-aware error correction module plays a crucial role in
correcting rare word errors and represents the main innovation of
this study. Unlike conventional autoregressive decoders that start
decoding from scratch, our decoder operates in parallel to the tokens
predicted as C. More specifically, once the C positions are identi-
fied, the decoder takes as input a sequence consisting of these tokens
and their surrounding context. This input sequence is then fed into
the transformer decoder to generate correction candidates for all the
tokens requiring correction simultaneously.

For the kth change position, the decoding sequence can be rep-
resented as Zk = (z1,k, z2,k, · · · , zT,k), where T is the length of
the decoding sequence, generated by the transformer decoder. We
compute the decoder inputs at step t as follows:

EZ
t,k = FC((TE(zt,k) + PE(zt,k))⊕ ek), (3)

where TE and PE are the same token embedding and position em-
bedding as in Eq. (1), respectively. z1,k is initialized by a special
start token <BOS>. ek is the output of the BERT encoder at the
kth change position. “⊕” denotes a concatenate function. FC is the
fully connected layer that maps the decoder inputs back to the same
dimension as the embedding of zt,k. Then, a transformer decoder is

applied to obtain the decoder layer output, where the query input Q
is the decoder input. Both the key input K and the value input V are
the output of the BERT encoder of the model input I:

Q = EZ
t,k,K = EI , V = EI (4)

Ogen
t+1,k = TransformerDecoder(Q,K, V), (5)

where Ogen
t+1,k is the decoder layer output. Finally, the generation

output is calculated as:

pgent+1,k = Softmax(FC(Ogen
t+1,k)). (6)

To dynamically choose between selecting tokens from the rare
word list and generating new tokens, we also introduce a novel con-
textual mechanism. We use the contextual mechanism comprising
a contextual encoder and a contextual decoder, with the contextual
decoder consisting of context attention and context-item attention.
The following are the detailed descriptions:

Contextual Encoder. We store l contextual items in our rare
word list. The jth contextual item, denoted as cj = (c1j , · · · , cuj),
is represented by WordPiece tokenization mentioned above, where
u indicates the number of tokens in the respective contextual item.
To optimize the model size and increase inference speed, we adopt
parameter sharing between the BERT encoder and the contextual en-
coder. As a result, we utilize the identical BERT encoder to obtain
the hidden representations of the contextual items:

EC = BERT(TE(C) + PE(C)), (7)

where C is the rare word list mentioned in Section 2.1. TE and PE
are the token embedding and position embedding mentioned above.
EC = (eC1 , · · · , eCl) is the output of the contextual encoder.

Mean

MatMul

Q K

Scores
Gate

(a) Context Attention

MHA

ArgmaxQ

K

V

(b) Context-item Attention
Contextual Decoder

Linear

sigmoid

g

[:,0]

Mc

M0

em
C

Ec

Ot,k
con

Ot,k
gen

Fig. 3. Overall architecture of contextual decoder.

Contextual Decoder. The model diagram of the contextual de-
coder is shown in Fig. 3. We compute the mean of each encoded con-
textual item and then expand these tokens with a learnable dummy
token <no-context>, which is utilized later to determine situations
where there is no relevant knowledge stored in the rare word list:

MC = M0 ⊕mean(EC), (8)

where M0 is the hidden representation of the learned dummy token
<no-context> and mean is the mean operation on each eCj ∈ EC ,
j ∈ {1, · · · , l}. MC can be interpreted as summary tokens of con-
textual items.

At step t, the contextual decoder begins with a context attention
layer that identifies the availability and location of a relevant contex-
tual item in the rare word list by computing similarity scores, where

the query input Qt and the key input Kt are the output of the de-
coder layer and the summary tokens of contextual items at step t,
respectively:

Qt = Ogen
t,k ,Kt = MC (9)

scorest = QtK
T
t (10)

gatet = scorest[:, 0], (11)
where scorest[:, 0], namely, gatet are the similarity scores cor-
responding to the <no-context> token M0. We define the in-
dex of the highest similarity score for the query Qt at step t as
m = argmax(scorest). If m is non-zero, indicating the presence
of relevant contextual knowledge in the rare word list, we compute
the contextual output using the context-item attention layer. This
layer extracts the relevant information from a specific contextual
item using a multihead attention (MHA) mechanism. In the MHA
layer, the query input Qt is the output of the decoder layer, while
the key input Kt and the value input Vt are both obtained from the
contextual encoder of the mth contextual item at step t:

Qt = Ogen
t,k ,Kt = eCm, Vt = eCm (12)

Ocon
t+1,k = Softmax(

QtK
T
t√

d
)Vt (13)

pcont,k = Softmax(FC(Ocon
t,k)), (14)

where the scaling factor
√
d is for numerical stability. Ocon

t,k is the
output of the context-item attention layer.

Then, the predicted word is acquired by a weighted sum between
the generation output pgent,k and the contextual output pcont,k :

g = σ(FCdim=1(gatet)) (15)

Pt,k = g · pgent,k + (1− g) · pcont,k , (16)

where FCdim=1 denotes one fully connected layer with one output
neuron, σ is the sigmoid function and g is the gate to make a trade-off
between the chosen token from the rare word list and the generated
token.

2.4. Joint Training and Completion
The learning process is optimized through two objectives that corre-
spond to error detection and context-aware error correction.

Lossd = −
∑
o

log(P (yo|io)) (17)

Losse = −(
∑
k

∑
t

log(Pt,k)+∑
k

∑
t

log(P (labelt,k|scorest,k)),
(18)

where the loss function Lossd is the cross entropy loss for the detec-
tion network and the loss function Losse consists of two parts of the
cross entropy loss for the context-aware correction network. Further-
more, scorest,k are the score outputs of the context attention layer
and labelt,k is the contextual label that contains the index of the
corresponding contextual item. The two loss functions are linearly
combined as the overall objective in the learning phase:

Loss = γ · Lossd + Losse, (19)

where γ is the hyperparameter for adjusting the weight between
Lossd and Losse.

During the completion process, we convert the predicted op-
eration labels and the generated words into a complete utterance.
Specifically, as depicted in Fig. 2, we preserve the tokens labeled
K and remove those labeled D from the inputs. We then replace the
tokens labeled C with the corresponding generated words.

3. EXPERIMENTAL EVALUATIONS

3.1. Experiment Settings
Our method was implemented using Python 3.7 and Pytorch 1.11.0.
The model was trained and evaluated on a computer with In-
tel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, 32GB RAM, and
one NVIDIA Tesla V100 GPU.

Both the BERT encoder and the contextual encoder employed
the same bert-base-uncased model [23] for initialization. The vo-
cabulary size for word tokenization was 30522. We set the hidden
size as 768, the number of attention layers as 12, and the number
of attention heads as 12. The transformer decoder adopted a single-
layer transformer with a hidden size of 768. We used Adam [24]
as the optimizer with a batch size of 32 and set γ to 3. The initial
learning rate was 0.00005. All the hyperparameters were fine-tuned
on the standard validation data.

3.2. Data
To assess the effectiveness and robustness of our proposed model, we
employ five datasets that utilize various ASR engines. The statistics
of the datasets are shown in Table 1.

• The ATIS dataset [25] includes 8 hours of audio recordings of peo-
ple making flight reservations, along with their corresponding hu-
man transcripts. ASR transcripts were generated by a LAS ASR
system [26].

• The SNIPS dataset [27] is collected from the SNIPS voice assis-
tant, focusing on natural language understanding. The Kaldi1 ASR
toolkit was used to obtain the corresponding transcripts.

• The Librispeech dataset [28] is a collection of 960 hours of audio-
books. The ESPNet [29] ASR toolkit was utilized to obtain related
transcripts. We used dev-clean and test-clean as the validation and
test sets, respectively.

• The MELD dataset [30] consists of more than 1400 dialogues and
13000 utterances extracted from the Friends TV series. We uti-
lized Whisper [31] to obtain transcripts.

• The PRLVS dataset [32] comprises a complete semester course
consisting of pattern recognition lecture videos accompanied by
slides. The course consists of 43 videos, with a total duration of
11.4 hours. We employed SpeechBrain [33] to obtain the tran-
scripts related to the videos.

Dataset ATIS SNIPS Librispeech MELD PRLVS
Train 3867 13084 252691 9989 3680
Valid 967 700 2703 1109 460
Test 800 700 2620 2610 460

Table 1. Numbers of utterances in different datasets.

3.3. Rare Word List Construction

Owing to the lack of available rare word lists for the ATIS, SNIPS,
Librispeech, and MELD datasets, we followed the approach pro-
posed in [34] to construct rare word lists for each dataset. Specif-
ically, a complete rare word list was initially compiled for the Lib-
rispeech dataset, consisting of 209.2K distinct words, by excluding
the top 5,000 most common words from the Librispeech LM train-
ing corpus. Next, the rare word lists were constructed by identifying
words from the reference of each utterance that were present in the
complete rare word list. Additionally, a specified number of distrac-
tors (e.g., 1,000) were added to each rare word list, as determined
by the experiment requirements. By utilizing this approach, we can

1https://github.com/kaldi-asr/kaldi

effectively organize the rare word lists for each utterance2, contain-
ing words from the complete rare word list and supplementing them
with distractors. Similar methods were employed to construct rare
word lists for the remaining ATIS, SNIPS, and MELD datasets.

To demonstrate the feasibility of obtaining rare word lists in
practice, we focused on the PRLVS dataset. The construction pro-
cess involved collecting slides for each lecture and utilizing the
Tesseract 4 OCR engine3 for text extraction. Distinct word tokens
were then extracted from the OCR output files. Among these tokens,
only those belonging to the complete rare word list and appearing
fewer than 15 times in the PRLVS train set were included in the
lecture-specific rare word list. These rare word lists were subse-
quently applied for the context-aware correction of all utterances
within the corresponding lectures [35].

3.4. Baselines and Metrics
We evaluate the error correction performance of our proposed
method, as well as four baselines:
• Original denotes the original ASR output.
• SC BART [36] has demonstrated superior performance in ASR

error correction tasks, achieving SOTA results.
• distillBART [37] is a distilled version of the BART large model.
• ConstDecodertrans [20] is a constrained decoding method de-

signed to improve the inference speed of ASR error correction
while preserving a certain level of error correction performance.

In addition, we use the following four evaluation metrics to as-
sess the performance:
• WER is the overall word error rate (WER) on all words.
• WERR quantifies the WER reduction across all words.
• U-WER calculates the unbiased WER on words not included in

the rare word list.
• B-WER computes the biased WER on words present in the rare

word list.
In the case of insertion errors, if the inserted word is found in

the rare word list, it will contribute to B-WER; otherwise, it will
be considered for U-WER. The objective of contextualization is to
improve B-WER while minimizing any significant degradation in
the U-WER [34].

Method ATIS SNIPS Librispeech MELD PRLVS
SC BART 90.30 75.30 152.93 25.70 103.62

distillBART 45.55 41.55 73.29 11.99 57.60
ConstDecodertrans 25.61 26.66 17.10 4.23 18.29
ED-CEC (Proposed) 32.59 31.87 25.48 5.71 22.86

vs SC BART 2.8× 2.4× 6.0× 4.5× 4.5×
vs distillBART 1.4× 1.3× 2.9× 2.1× 2.51×

vs ConstDecodertrans 0.8× 0.8× 0.7× 0.7× 0.8×

Table 2. Average inference time in milliseconds (ms).

3.5. Results and Analysis
Tables 2 and 3 provide evidence that our model achieves significant
improvements in inference speed and WER results compared with
the previous SOTA model on all five datasets when the rare word list
size is set to 100. Compared with the original ASR output, our model
achieves a marked WERR, ranging from 15.6% to 38.17%. The
average relative improvement in B-WER is 46.68%. Furthermore,
our model demonstrates considerable gains in inference speed, being
2.4 to 6.0 times higher than the previous SOTA model. This proves
that our model achieves a good tradeoff between inference speed

2https://github.com/facebookresearch/
fbai-speech/tree/master/is21_deep_bias

3https://github.com/tesseract-ocr/tesseract

https://github.com/kaldi-asr/kaldi
https://github.com/facebookresearch/fbai-speech/tree/master/is21_deep_bias
https://github.com/facebookresearch/fbai-speech/tree/master/is21_deep_bias
https://github.com/tesseract-ocr/tesseract

Method
ATIS SNIPS Librispeech MELD PRLVS

WER/WERR WER/WERR WER/WERR WER/WERR WER/WERR
(U-WER/B-WER) (U-WER/B-WER) (U-WER/B-WER) (U-WER/B-WER) (U-WER/B-WER)

Original 30.65/- 45.73/- 6.75/ - 31.08/ - 18.66/ -
(20.58/ 87.78) (34.20/99.64) (3.13/30.26) (25.31/ 74.62) (10.66/ 47.24)

SC BART 21.47/29.95 30.35/33.63 5.78/14.37 29.51/ 5.05 15.14/ 18.86
(14.63/49.25) (21.86/70.25) (3.80/18.45) (24.25/67.73) (10.43/27.67)

distillBART 26.51/13.51 33.28/27.23 6.36/5.78 30.76/1.03 17.98/ 3.64
(18.54/74.67) (24.08/76.43) (3.88/23.49) (25.06/73.89) (10.64/ 43.57)

ConstDecodertrans
21.74/29.07 30.98/32.25 5.89/12.74 29.98/ 3.54 15.31/ 17.95

(14.78/50.57) (22.09/71.43) (3.68/19.94) (24.70/69.42) (10.95/28.33)

ED-CEC (Proposed) 18.95/38.17 28.57/37.52 5.08/24.74 26.23/15.60 13.17/ 29.42
(14.88/38.38) (21.47/62.79) (3.77/12.38) (21.31/56.02) (10.01/ 20.72)

Table 3. Measurements of error correction performance on five datasets.

and WER. Additionally, the performance improvements across five
different ASR systems prove the robustness of our model.

We also experimented on the PRLVS dataset with varying rare
word list sizes, created by augmenting the rare word lists with dis-
tractors, ranging from 100 to 1000 contextual items. The best WER
results were observed with a rare word list size of 100, as shown in
Fig. 4. Increasing the rare word list size to 1000 showed a minor
upward trend in WER, possibly due to false positives. Importantly,
an empty rare word list resulted in a significant WER increase, high-
lighting the model’s reliance on contextual items for rare word cor-
rection. Furthermore, we conducted an “anti-context” experiment,
employing a rare word list only containing 100 unrelated distractors.
In this case, the WER was 15.45%. Thus, our approach yields op-
timal results when combined with a small number of relevant rare
words that the model should prioritize.

0 100 200 300 400 500 600 700 800 900 1000
Rare Word List Size

13.5

14.0

14.5

15.0

15.5

16.0

W
ER

(%
)

WER

Fig. 4. WER results of PRLVS with different rare word list sizes.

Fig. 5 shows a specific example of correcting rare words “mus-
sulmans” and “giaours”. The ASR refers to the original ASR output.
In (a), decoding is performed with an empty rare word list, whereas
in (b), decoding is performed with a rare word list of size 10 con-
taining the rare words “mussulmans” and “giaour”. The GT denotes
the ground truth transcript. When the rare word list is empty, the
heat map of the gate (the weights between the original transformer
decoder and the contextual decoder) indicates a stronger preference
towards the output of the original transformer decoder. The gener-
ated words “mumen” and “gas” significantly deviate from the ground
truth. However, when the rare word list contains the target rare
words, the gate tends to favor the output of the contextual decoder,
and the heat map of the rare word list shows that the model correctly
selects the positions of the rare words.

The error positions detected
by the error detection module.

Words corrected using an
empty rare word list.

Words corrected using a
valid rare word list.

Correct words.

 mussulmans and giaours throw kerchiefs at a smile and have no ruth for any weeping(b)

 muscle man's and guy wars throw kerchiefs at a smile and have no ruth for any weeping ASR

 mumen and gas throw kerchiefs at a smile and have no ruth for any weeping (a)

 mussulmans and giaours throw kerchiefs at a smile and have no ruth for any weepingGT

(b)

(a)

(a)

Meaning of different highlighted areas:

<n
o-c
on
tex
t>

muss
ulm

an
s

<n
o-c
on
tex
t>

ex
ten

ua
tio

ns

act
err

all
y

ba
llis

ter
s

cal
inc

ou
rt

gia
ou

rs

go
ve

rni
ng liz

e

meli
no

ff's

sha
rsw

oo
d

mu

##ss

##ul

##mans

[SEP]

gia

##ours

[SEP]

mu [SEP]##men ga ##s [SEP]

ga
te

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ga
te

(b)

Fig. 5. Example for correcting rare words.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a fast and efficient contextual ASR error
correction method that incorporates two main modules: an error de-
tection module and a context-aware error correction module. This
approach ensures both a high inference speed and the accurate cor-
rection of rare word errors in the ASR output. Experimental results
on five datasets show the effectiveness and robustness of our model.
In the future, we plan to extend our model by adding an additional
phoneme encoder to recognize error patterns at the phoneme level,
which will enable us to better bias rare words for correction.
Acknowledgement. This work was supported in part by JST
CREST Grant Number JPMJCR22D1, Japan, and a project, JPNP20
-006, commissioned by NEDO.

References
[1] Jinyu Li et al., “Recent advances in end-to-end automatic

speech recognition,” APSIPA Transactions on Signal and In-
formation Processing, vol. 11, no. 1, 2022.

[2] Zhong Meng et al., “Jeit: Joint end-to-end model and inter-
nal language model training for speech recognition,” Proc.
ICASSP, pp. 1–5, 2023.

[3] Christian Huber et al., “Instant one-shot word-learning for
context-specific neural sequence-to-sequence speech recogni-
tion,” Proc. ASRU, pp. 1–7, 2021.

[4] Dhanush Bekal et al., “Remember the context! asr slot error
correction through memorization,” Proc. ASRU, pp. 236–243,
2021.

[5] Roshan Sharma et al., “End-to-end speech summarization us-
ing restricted self-attention,” Proc. ICASSP, pp. 8072–8076,
2022.

[6] Ido Cohn et al., “Audio de-identification: A new entity recog-
nition task,” Proc. NAACL-HLT, pp. 197–204, 2019.

[7] Guillaume Baril et al., “Named entity recognition for audio
de-identification,” Proc. IJCNN, pp. 1–8, 2022.

[8] Golan Pundak et al., “Deep context: end-to-end contextual
speech recognition,” Proc. SLT, pp. 418–425, 2018.

[9] Minglun Han et al., “Improving end-to-end contextual speech
recognition with fine-grained contextual knowledge selection,”
Proc. ICASSP, pp. 8532–8536, 2022.

[10] Yufei Liu et al., “Internal language model estimation through
explicit context vector learning for attention-based encoder-
decoder asr,” Proc. Interspeech, pp. 1666–1670, 2022.

[11] Ian Williams et al., “Contextual speech recognition in end-to-
end neural network systems using beam search.,” Proc. Inter-
speech, pp. 2227–2231, 2018.

[12] Duc Le et al., “Deep shallow fusion for rnn-t personalization,”
Proc. SLT, pp. 251–257, 2021.

[13] Wei Zhou et al., “On language model integration for rnn trans-
ducer based speech recognition,” Proc. ICASSP, pp. 8407–
8411, 2022.

[14] Xie Chen et al., “Factorized neural transducer for efficient lan-
guage model adaptation,” Proc. ICASSP, pp. 8132–8136, 2022.

[15] Joao Miranda et al., “Improving asr by integrating lecture au-
dio and slides,” Proc. ICASSP, pp. 8131–8135, 2013.

[16] Yuya Akita et al., “Language model adaptation for aca-
demic lectures using character recognition result of presenta-
tion slides,” Proc. ICASSP, pp. 5431–5435, 2015.

[17] Ziji Zhang et al., “Patcorrect: Non-autoregressive phoneme-
augmented transformer for asr error correction,” Proc. Inter-
speech, pp. 3904–3908, 2023.

[18] Samrat Dutta et al., “Error correction in asr using sequence-to-
sequence models,” arXiv:2202.01157, 2022.

[19] Xiaoqiang Wang et al., “Towards contextual spelling correc-
tion for customization of end-to-end speech recognition sys-
tems,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 30, pp. 3089–3097, 2022.

[20] Jingyuan Yang et al., “Asr error correction with constrained
decoding on operation prediction,” Proc. Interspeech, p.
3874–3878, 2022.

[21] Binghuai Lin et al., “Multi-modal asr error correction with
joint asr error detection,” Proc. ICASSP, pp. 1–5, 2023.

[22] Yonghui Wu et al., “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine transla-
tion,” arXiv:1609.08144, 2016.

[23] Jacob Devlin et al., “Bert: Pre-training of deep bidirectional
transformers for language understanding,” Proc. NAACL-HLT,
p. 4171–4186, 2019.

[24] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” Proc. ICLR, pp. 1–11, 2015.

[25] Sundararaman et al., “Phoneme-bert: Joint language modelling
of phoneme sequence and asr transcript,” Proc. Interspeech,
pp. 3236–3240, 2021.

[26] William Chan et al., “Listen, attend and spell: A neural net-
work for large vocabulary conversational speech recognition,”
Proc. ICASSP, pp. 4960–4964, 2016.

[27] Chao-Wei Huang and Yun-Nung Chen, “Learning asr-robust
contextualized embeddings for spoken language understand-
ing,” Proc. ICASSP, pp. 8009–8013, 2020.

[28] Vassil Panayotov et al., “Librispeech: An asr corpus based on
public domain audio books,” Proc. ICASSP, pp. 5206–5210,
2015.

[29] Shinji Watanabe et al., “Espnet: End-to-end speech processing
toolkit,” Proc. Interspeech, pp. 2207–2211, 2018.

[30] Soujanya Poria et al., “Meld: A multimodal multi-party dataset
for emotion recognition in conversations,” Proc. ACL, pp. 527–
536, 2018.

[31] Alec Radford et al., “Robust speech recognition via large-scale
weak supervision,” arXiv:2212.04356, 2022.

[32] Abner Hernandez and Seung Hee Yang, “Multimodal corpus
analysis of autoblog 2020: lecture videos in machine learning,”
Proc. SPECOM, pp. 262–270, 2021.

[33] Mirco Ravanelli et al., “Speechbrain: A general-purpose
speech toolkit,” arXiv:2106.04624, 2021.

[34] Duc Le et al., “Contextualized streaming end-to-end speech
recognition with trie-based deep biasing and shallow fusion,”
Proc. Interspeech, pp. 1772–1776, 2021.

[35] Guangzhi Sun et al., “Tree-constrained pointer generator with
graph neural network encodings for contextual speech recog-
nition,” Proc. Interspeech, pp. 2043–2047, 2022.

[36] Yun Zhao et al., “Bart based semantic correction for mandarin
automatic speech recognition system,” Proc. Interspeech, pp.
2017–2021, 2021.

[37] Sam Shleifer and Alexander M Rush, “Pre-trained summariza-
tion distillation,” arXiv:2010.13002, 2020.

	 Introduction
	 Methodology
	 Embedding Module
	 Error Detection Module
	 Context-aware Error Correction Module
	 Joint Training and Completion

	 Experimental EVALUATIONS
	 Experiment Settings
	 Data
	 Rare Word List Construction
	 Baselines and Metrics
	 Results and Analysis

	 Conclusion And Future Work

