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ABSTRACT

Recently, to mitigate the confusion between different lan-
guages in code-switching (CS) automatic speech recogni-
tion (ASR), the conditionally factorized models, such as the
language-aware encoder (LAE), explicitly disregard the con-
textual information between different languages. However,
this information may be helpful for ASR modeling. To al-
leviate this issue, we propose the LAE-ST-MoE framework.
It incorporates speech translation (ST) tasks into LAE and
utilizes ST to learn the contextual information between dif-
ferent languages. It introduces a task-based mixture of expert
modules, employing separate feed-forward networks for the
ASR and ST tasks. Experimental results on the ASRU 2019
Mandarin-English CS challenge dataset demonstrate that,
compared to the LAE-based CTC, the LAE-ST-MoE model
achieves a 9.26% mix error reduction on the CS test with
the same decoding parameter. Moreover, the well-trained
LAE-ST-MoE model can perform ST tasks from CS speech
to Mandarin or English text.

Index Terms— Automatic speech recognition, Mandarin-
English code-switching, speech translation, mixture of expert

1. INTRODUCTION

With the rise of end-to-end (E2E) automatic speech recog-
nition (ASR), researchers [1–25] explore different E2E ASR
scenarios. An utterance that includes two or more languages
is known as a code-switching (CS) scenario, which is gen-
erally divided into occurring at an utterance level (extra-
sentential CS) or within an utterance (intra-sentential CS). It
is still a challenging ASR scenario.

Several challenges are conventionally encountered in
modeling CS speech: firstly, the real paired CS audio is data-
scarce, and secondly, the conventional models are not good at
modeling CS speech due to the confusion between different
languages. To alleviate the first issue, researchers propose
technical methods to study the rules of CS occurrence and
synthesize CS paired data [11–15] or explore the affection
of monolingual data [26–28]. As for the second issue, the
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structures like Connectionist Temporal Classification (CTC)-,
attention-, and transducer-based E2E models have been inves-
tigated for CS ASR [13–22]. Recently, to mitigate the second
issue, the conditionally factorized frameworks [29–32] are
proposed to decompose the CS task (e.g., Mandarin-English
CS) into two modeling steps: 1) recognizing Mandarin and
English part, respectively, and 2) composing processed mono-
lingual segments into a CS sequence. However, in modeling
step 1) for these methods, the model only utilizes the informa-
tion of the monolingual part. We know that, when modeling
the non-streaming E2E ASR task, the prediction of each unit
generally relies on overall audio contextual information.

To solve the issues of the conditionally factorized mod-
els [29–32] (e.g., LAE [32]), we propose the LAE-ST-MoE
framework. It incorporates speech translation (ST) tasks into
LAE [32] and utilizes ST to facilitate the learning of contex-
tual information between Mandarin and English, thereby im-
pacting the model’s encoder through joint learning. In addi-
tion, inspired by [22–24], the LAE-ST-MoE introduces a task-
based mixture of expert (MoE) approach, employing separate
feed-forward networks (FFNs) for the ASR and ST tasks.

Our experiment is conducted on the classic CS bench-
mark, i.e., ASRU 2019 Mandarin-English CS challenge
dataset [33]. Since the data does not have ST labels, we
use the large machine translation (MT) model from Mod-
eScope to label the data, which is based on the CSANMT
algorithm [34]. In the experiments, compared to the LAE-
based system, the LAE-ST-MoE model achieves a relative
performance improvement of about 6%-9% in ASR tasks on
all test sets. Moreover, our model does not introduce extra
decoding computational complexity. In addition, the trained
LAE-ST-MoE model can perform ST tasks from CS speech
to Mandarin or English text and has achieved good BLEU.
Then, it is easy to extend our model to one-to-many ST tasks.

Our main contributions are as follows: (1) To our best
knowledge, we are the first to propose using the ST task to
introduce richer cross-lingual contextual information to boost
the monolingual modeling stage of LAE; (2) We introduce an
MoE between ASR and ST tasks to make each task more fo-
cused, thereby improving the overall recognition performance
of the model without extra decoding computational complex-
ity; (3) The well-trained LAE-ST-MoE model can perform
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ST tasks from CS speech to Mandarin or English text, and the
structure is easy to extend to one-to-many ST tasks.

2. PROBLEM FORMULATIONS AND MOTIVATION

In the Mandarin-English CS ASR system [29–32], we know
that the basis is to model the label-to-frame alignments.
For each T-length speech feature sequence X = {xt|t =
1, ...,T} and L-length CS label sequence Y = {yℓ ∈
(VMan

⋃
VEn|ℓ = 1, ...,L)}, there are several possible T-

length label-to-frame sequences Z = {zt ∈ (VMan
⋃

VEn⋃
{∅})|t = 1, ...,T}, where ∅ denotes a blank symbol in CTC

[1] based system, VMan, and VEn respectively represents to
the Mandarin and English part in CS. However, for each CS
Z, there always are two corresponding monolingual label-
to-frame sequences ZMan = {zMan

t ∈ {ZMan
⋃
{∅}}|t =

1, ...,T} and ZEn = {zEn
t ∈ ZEn

⋃
{∅}}|t = 1, ...,T}.

Therefore, the label-to-frame posterior P(Y|X) can thus
be represented in terms of CS, P(Z|X), and monolingual,
P(ZMan|X) and P(ZEn|X), label-to-frame posteriors:

P(Y|X) =
∑
Z∈Z

∑
ZMan∈ZMan

∑
ZEn∈ZEn

P(Z,ZMan,ZEn|X) (1)

where Z and ZMan/En denote sets of all possible CS and
monolingual label-to-frame alignments for a given Y. By ap-
plying Bayes’ formula, the P(Z,ZMan,ZEn|X) in Eq.(1) can
be transformed into the following expression:

P(Z,ZMan,ZEn|X) = P(Z|ZMan,ZEn,X)

×P(ZMan,ZEn|X)
(2)

and
P(ZMan,ZEn|X) = P(ZMan|ZEn,X)× P(ZEn|X). (3)

Two assumptions are made. The first assumption is that
once ZMan and ZEn are given, no additional information from
observation X is needed to determine Z. The second assump-
tion is that ZMan and ZEn are independent, given X. There-
fore, combined with Eq. (1-3), the eq. (1) can be shown:

P(Y|X) ≈
∑
Z∈Z

P(Z|ZMan,ZEn)×
∑

ZMan∈ZMan

P(ZMan|X)

×
∑

ZEn ∈ ZEn

P(ZEn|X).
(4)

To achieve the transformation from Eq. (1) to Eq. (4), the
monolingual-specific encoder is introduced by the condition-
ally factorized structures [29–32] to optimize the representa-
tion of each language separately. For example, the token se-
quence of the CS audio is like “真 正 做 到 happy every
day”. When forwarding Mandarin-specific encoder, the ref-
erence text will be replaced with “真 正 做 到 <En tok>
<En tok> <En tok>” and ignore the English part, where
<En tok> can refer to <UNK> [31] or <Eng> [32]. As
for the English-specific encoder, as shown in Figure 1, it is the
same as the Mandarin-specific encoder. Further consider the

modeling process, e.g., Mandarin-specific encoder, the model
will not learn English contextual information in the CS audio,
which could potentially improve its performance on the Man-
darin part. However, the ST model is capable of converting
contextual information from various languages into one lan-
guage. Therefore, applying ST tasks to enrich the contextual
information between the two languages in CS ASR can be
reasonable and feasible. Based on the LAE architecture [32]
and joint learning mechanism, we propose LAE-ST-MoE ar-
chitecture, which uses ST as an auxiliary task to bring more
contextual information for ASR. The details of our proposed
LAE-ST-MoE will be presented in the next section.

3. PROPOSED FRAMEWORKS

3.1. LAE-ST-MoE architecture

The LAE structure [32] has a shared encoder module, two
language-specific encoders for Mandarin and English, and a
global ASR decoder. The monolingual-specific encoder is im-
posed by a corresponding monolingual-specific CTC loss. To
alleviate the issues of LAE discussed in section 2, we pro-
pose the LAE-ST-MoE model architecture, as shown in Fig-
ure 1, which introduces two LAE-ST-MoE encoders and two
ST decoders based on LAE. If NShare represents the number
of layers in the shared encoder, and NMono represents the
number of layers in the monolingual-specific encoder. Then,
the LAE-ST-MoE encoder has N layers, where N is equal
to (NEncoder −NShare −NMono) and NEncoder refers to
the overall encoder layers. A common ST cross-entropy loss
imposes the ST decoder, which consists of 6 Transformer-
based blocks. In addition, the ST and ASR tasks are jointly
trained using FFN-based MoE. A detailed explanation of the
proposed LAE-ST-MoE model is presented as follows.

If given the input feature sequence X, the shared Trans-
former encoder will transform it to representation Hshare:

Hshare = Encodershare(X). (5)

Furthermore, the Hshare will be forwarded to the LAE-ST-
MoE encoder, which replaces the FFN of the Transformer
encoder with the FFN-MoE module. It produces the hybrid
ASR-ST representation HMan ASR ST and HEn ASR ST

using multi-head self-attention (MHSA):

HMan ASR ST = MHSA(LNorm(Hshare)) (6)
HEn ASR ST = MHSA(LNorm(Hshare)) (7)

where LNorm denotes LayerNorm [35]. Based on HEn ASR ST

and HMan ASR ST, the FFN-MoE is forward to get ASR
representation H0

En ASR, H0
Man ASR, and ST representa-

tion HMan2En ST, HEn2Man ST, respectively:

H0
Man ASR = LNorm(FFN MoE(HMan ASR ST)) (8)

HEn2Man ST = LNorm(FFN MoE(HMan ASR ST)) (9)
H0

En ASR = LNorm(FFN MoE(HEn ASR ST)) (10)
HMan2En ST = LNorm(FFN MoE(HEn ASR ST)). (11)
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Fig. 1. The framework of the proposed LAE-ST-MoE.

On the ST task side, HEn2Man ST and HMan2En ST

will forward to the En2Man and Man2En ST decoder, respec-
tively. In ASR, it is the same as LAE, based on H0

Man ASR

and H0
En ASR, the Monolingual-specific encoder will pro-

duce the monolingual-specific representation HMan ASR,
HEn ASR and combine these to get the global ASR repre-
sentation HGlobal ASR:

HMan ASR = EncoderMan Spec(H
0
Man ASR)(12)

HEn ASR = EncoderEn Spec(H
0
En ASR) (13)

HGlobal ASR = HMan ASR +HEn ASR. (14)

3.2. Training and Decoding

In the LAE-ST-MoE model training stage, if the label text se-
quence for speech feature X is Y, we will apply the ModelMT

from ModelScope to translate Y into Mandarin YMan and En-
glish YEn text:

YMan = ModelMT En2Man(Y) (15)
YEn = ModelMT Man2En(Y). (16)

Like [31, 32], we replace Y with monolingual-specific
label YMan Spec and YEn Spec using <Eng> and <Man>,
respectively. Based on monolingual-specific ASR represen-
tation HMan ASR and HEn ASR, the monolingual-specific

ASR object LSpec will be shown as follow:

LMan CTC = CTCMan Spec(Y
Man Spec|HMan ASR) (17)

LEn CTC = CTCEn Spec(Y
En Spec|HEn ASR) (18)

LSpec =
(LMan CTC + LEn CTC)

2
. (19)

Moreover, given the global ASR representation HGlobal ASR,
the global ASR decoder object LGlobal Decoder is:

LGlobal Decoder = DecoderGlobal(Y|HGlobal ASR). (20)

Following [31], we also use λSpec (we set it to 0.3 in the
experiments) to combine LSpec and LGlobal Decoder to pro-
duce the overall ASR loss LASR:

LASR=λSpec× LSpec + (1− λSpec)× LGlobal Decoder. (21)

In the CTC-based ASR system, LGlobal Decoder only repre-
sents the CTC loss. Otherwise, in hybrid CTC attention-based
ASR [4], LGlobal Decoder is the combination between CTC
LGlobal CTC and attention LGlobal Att loss using λCTC:

LGlobal Decoder = LGlobal CTC × λCTC

+(1− λCTC)× LGlobal Att.
(22)

On the ST task, given ST representation (HEn2Man ST

and HMan2En ST) and ST label sequence (YMan and YEn),



the overall ST loss LST is shown as follows:

LST Man2En = DecoderMan2En(Y
En|HMan2En ST) (23)

LST En2Man = DecoderEn2Man(Y
Man|HEn2Man ST) (24)

LST =
(LST Man2En + LST En2Man)

2
(25)

where we use the cross-entropy loss for the ST tasks.
Based on the overall ASR loss LASR and ST loss LST, the

final training object LFinal is:

LFinal = LASR + β × LST (26)

where β is used to balance and regulate the ST effect.
In the ASR decoding stage, like the LAE structure [32],

our model only gets the probabilities from the global ASR
decoder. Therefore, compared with [32], our LAE-ST-MoE
model has the same decoding computational complexity. In
the ST decoding, our model uses the custom auto-regressive
manner to forward the corresponding ST branch and get the
final ST results. In addition, for monolingual Mandarin input,
the En2Man ST decoder is comparable to the Mandarin ASR
decoder. Therefore, we can easily fuse it into monolingual
Mandarin decoding through rescoring. The same applies to
monolingual English decoding.

Table 1. The details of the used Datasets

Lang Corpora Dur. (Hrs) Utterance(k)
Train Eval Train Eval

CN ASRU-Man [33] 482.6 14.3 545.2 16.6
EN Librispeech [36] 464.2 10.5 132.5 5.6

CN-EN ASRU-CS [33] 199.0 20.3 186.4 16.2

4. EXPERIMENTS AND RESULTS

4.1. Datasets

We experiment on ASRU 2019 Mandarin-English code-
switching challenge dataset [33]. Like [22], we split the same
Mandarin monolingual subset of the ASRU 2019 dataset as
our CN test. Moreover, we use the test-clean and test-other
datasets from Librispeech [36] to create our monolingual En-
glish test EN. Then, the CS test CN-EN is from the official
challenge test set. The details are presented in Table 1.

The 80-dimensional log filter-bank energy is our input
acoustic features, which are extracted with a stride size 10ms
and a window size 25ms. The cepstral mean and variance
normalization (CMVN), and SpecAugment [37] is applied.
The vocabulary consists of 7075 unique characters and 4989
BPE [38] tokens. In addition, as for the training and test-
ing ST label, the EN2CN1 and CN2EN2 translation model,
which is based on the CSANMT algorithm [34], both from
ModelScope3, is used to get the pseudo labels. Then, we

1https://www.modelscope.cn/models/damo/nlp csanmt translation en2
zh/summary

2https://www.modelscope.cn/models/damo/nlp csanmt translation zh2
en/summary

3https://github.com/modelscope/modelscope

use WeNet’s [39] metrics calculation script4 for ASR scoring,
which includes word (WER), character (CER), mix (MER)
error rate, and the sacrebleu [40] tool for ST scoring, which
includes BLEU and translation error rate (TER).

For simpler expression, in Table 2, Table 3, Table 4, Ta-
ble 5, and Table 6, we will use CN, EN, and ALL to represent
the CER of monolingual Mandarin, the WER of monolingual
English, and the total MER of the CS test set respectively.

4.2. Experimental setup

The experiments are both conducted on the ESPnet toolkit
[41]. We use the hybrid CTC/Attention [4] model with a
NEncoder=12 encoder, NDecoder=6 decoder, and the CTC-
only model with a NEncoder=12, called the Vallina model. In
the hybrid CTC/Attention model, λCTC set to 0.3. In our im-
plementation, following [32], the LAE-based baseline model
contains a shared encoder block NShare=9 and a language-
specific encoder block NMono=3 for each language. As men-
tioned in section 3.1, the layers of the LAE-ST-MoE encoder
N are equal to ( NEncoder - NShare - NMono ), and the
number of layers will be given in the result section. In our
models, all encoders and decoders are stacked Transformer-
based blocks [5, 42] with an attention dimension of 256, 4
attention heads, and a feed-forward dimension of 2048.

We use the Adam optimizer with a Transformer-lr scale
of 1 and warmup steps of 25k to train 100 epochs on 8 Tesla
V100 GPUs. The dropout rate is 0.1 to prevent the model
from over-fitting. In the training stage, we adopt a dynamic
batch size strategy with a maximum batch size of 128. More-
over, we use Kenlm [43] to train a 4-gram language model
with all training transcriptions and adopt the CTC prefix beam
search for ST decoder rescore with a fixed beam size 10.

4.3. Experimental Results

4.3.1. Main results

To show the effectiveness of our proposed LAE-ST-MoE
framework, we compare it with LAE-based CTC and attention-
based (AED) ASR models. We set the NMono to 1 and β to
0.6 in these experiments. The ablation on β and NMono will
be shown in section 4.3.4. The results are shown in Table 2.
CTC System: Compared with the LAE-CTC ASR system
(S2), our proposed LAE-ST-MoE CTC model (S3) achieve
9.26%, 8.57%, and 7.55% relative performance gain over
the CS, mono EN, and CN tests, respectively, with the same
decoding parameter. Especially in the English part of the CS
test, our LAE-ST-MoE CTC (S3) shows a 10.09% WER re-
duction over the LAE CTC (S2) system. Moreover, it demon-
strates a superior performance gain compared to Vanilla CTC
(S1), which shows an about 20% error rate reduction in the CS
test. Furthermore, the proposed LAE-ST-MoE CTC achieves
a comparable performance with Conformer-based LAE [32]
and an obvious gain compared to FLR-MoE CTC [22].

4https://github.com/wenet-e2e/wenet/blob/main/tools/compute-wer.py



Table 2. Results of proposed models and the baselines. The numbers in brackets indicates the relative error rate reduction
comparing with the corresponding LAE-based model (S2 and S5).

System Model Infer Params Code-Switch Mono
ALL CN EN EN CN

CTC-based ASR system
Literature
- Conformer CTC [32] - 11.6 - - - -

+ LAE [32] - 9.5 - - - -
- FLR-MoE CTC [22] 25.8 M 10.5 7.7 33.1 10.1 5.1
Our results
S1 Vallina CTC 19.8 M 12.2 9.0 38.9 12.4 7.1
S2 LAE CTC (baseline) 26.5 M 10.8 8.0 33.7 10.5 5.3
S3 LAE-ST-MoE CTC (proposed) 26.5 M 9.8 (9.26% ↓) 7.3 30.3 9.6 (8.57% ↓) 4.9 (7.55% ↓)
Attention-based ASR system
Literature
- Hybrid CTC + Attention [21] 28.8 M 10.9 8.8 28.1 - -

+ Bi-En. (MoE-in-unsup) [21] 45.6 M 9.8 7.7 26.6 - -
- FLR-MoE AED [22] 40.7 M 9.7 7.4 28.4 9.6 4.7
Our results
S4 Vallina AED 34.7 M 11.2 8.6 32.5 11.7 6.3
S5 LAE AED (baseline) 41.4 M 10.0 7.7 29.2 9.9 5.0
S6 LAE-ST-MoE AED (proposed) 41.4 M 9.3 (7% ↓) 7.1 27.4 9.2 (7.07% ↓) 4.7 (6% ↓)

AED System: The results also show that our LAE-ST-MoE-
based system (S6) performs better than the Vallina (S4)
and LAE-based (S5) AED ASR. Moreover, the LAE-ST-
MoE-based AED system (S6) also shows an obvious MER
reduction compared with the Bi-encoder [21] based and FLR-
MoE [22] based system on the CS test.
CTC vs. AED system: We can find that the proposed LAE-
ST-MoE-based CTC (S3) shows a little performance gain to
the LAE AED system (S5) and comparable results with Bi-
Encoder [21] based and FLR-MoE [22] based AED system.

These results suggest that the ST auxiliary task can im-
prove the ASR performance based on the LAE structure,
which is consistent with our motivation.

4.3.2. Results of the w/ or w/o MoE in LAE-ST-MoE model

Table 3. Performance of the w/ or w/o MoE.

Model Code-Switch Mono CS → EN CS → CN
ALL CN EN EN CN BLEU BLEU

LAE-ST CTC 10.0 7.4 31.6 9.8 5.2 16.2 65.8
+ MoE 9.8 7.3 30.3 9.6 4.9 17.7 66.6

Table 3’s LAE-ST CTC model replaces the MoE layer
in LAE-ST-MoE with a regular FFN. From the results, we
can see that due to the introduction of the MoE module, the
performance of ASR and ST is both improved obviously,
which further confirms our motivation that introducing the
MoE module will make ASR and ST tasks more focused.

4.3.3. Results of using ST decoder for ASR rescore

Table 4. Performance of using ST decoder rescore.

Model Code-Switch Mono
ALL CN EN EN CN

Vallina CTC 12.2 9.0 38.9 12.4 7.1
LAE CTC 10.8 8.0 33.7 10.5 5.3
LAE-ST-MoE CTC 9.8 7.3 30.3 9.6 4.9

+ En2Man ST Dec. res. 9.7 7.1 31.2 10.2 4.8
+ Man2En ST Dec. res. 10.4 8.1 29.1 9.3 5.6

The En2Man ST decoder is comparable to the Mandarin
ASR decoder for monolingual Mandarin input. Therefore,
we can easily fuse it into monolingual Mandarin decoding
through rescoring. As shown in Table 4, the En2Man ST de-
coder improves the LAE-ST-MoE CTC system in the mono
CN speech. It achieves comparable results to the LAE-ST-
MoE AED system (Table 2’s S6) in the monolingual Man-
darin test. Especially on the Mandarin part of the CS test, the
En2Man ST decoder rescoring performs better than the LAE-
based AED system (Table 2’s S5), which maybe benefit from
the Mandarin-English context representation and the decoder
LM-related information. In addition, the same phenomenon
also can be observed when applying the Man2En ST decoder
rescoring. These results show that the information learned
by the ST decoder differs from that of the ASR decoder, im-
proving the ASR performance. To a certain extent, the above
results also prove the effectiveness of the LAE-ST-MoE.



4.3.4. Results of different β and NMono values in LAE-ST-
MoE

As mentioned in section 3.2, β is used to balance and regulate
the ST effect. Therefore, in Table 5, we conduct experiments
with β values of 1.0, 0.8, 0.6, and 0.4, where we set NShare

= 9 and NMono = 1. From the results, it can be seen that the
performance of CS is basically not affected, and the model
has the best overall performance at 0.6.

Table 5. Results with different β when NShare = 9 and
NMono = 1.

Model β
Code-Switch Mono

ALL CN EN EN CN
Vallina CTC - 12.2 9.0 38.9 12.4 7.1
LAE-ST-MoE CTC 1.0 9.8 7.3 30.3 9.7 5.0
LAE-ST-MoE CTC 0.8 9.8 7.3 30.3 9.7 5.1
LAE-ST-MoE CTC 0.6 9.8 7.3 30.3 9.6 4.9
LAE-ST-MoE CTC 0.4 9.9 7.4 30.5 9.7 5.0

In addition, we set β to 0.6 and NShare to 9. Then, the
effectiveness of NMono is investigated in Table 6. When
NMono is 0, the ASR and ST share all encoder layers except
FFN-MoE. However, when NMono=2, the LAE-ST-MoE en-
coder layer will reduce to 1. From Table 6, we can see the
model achieves the best in NMono=1, which suggests that
the LAE-ST-MoE model needs more layers to perform ST,
and it also needs to reserve some layers to learn the language-
specific ASR representation.

Table 6. Results with different NMono when NShare = 9 and
β = 0.6.

Model NMono
Code-Switch Mono

ALL CN EN EN CN
Vallina CTC - 12.2 9.0 38.9 12.4 7.1
LAE-ST-MoE CTC 0 10.1 7.5 31.6 9.9 5.1
LAE-ST-MoE CTC 1 9.8 7.3 30.3 9.6 4.9
LAE-ST-MoE CTC 2 9.9 7.4 30.8 9.7 5.0

4.3.5. The results of ST auxiliary task in LAE-ST-MoE mod-
els

We use ModelScope’s MT model to generate pseudo-labels
for the test set. From Tables 7 and 8, which show the BLEU
score and translation error rate (TER) of our models, we can
see that ST is less affected by β but more affected by NMono.
Furthermore, by combining Tables 5, 6, 7, and 8, we can ob-
serve that when the ST BLEU change, the ASR remain basi-
cally unchanged. It may be because there is also some con-
fusion between the information on ASR and ST. However,
the helpful and confusing information needs to be balanced.
Our experimental CS data is Mandarin-dominant, so we have
more Mandarin-to-English ST training data than English-to-
Mandarin, which results in better BLEU for Mandarin-to-
English ST. Furthermore, we test the best ST model on mono-
lingual data in Table 9, and we can see that our model also has

Table 7. ST results on the CS test when NShare = 9 and
NMono = 1.

Model β
CS → EN CS → CN

BLEU TER (↓) BLEU TER (↓)
LAE-ST-MoE CTC 1.0 18.4 69.6 67.0 21.3
LAE-ST-MoE CTC 0.8 18.1 70.0 66.8 21.5
LAE-ST-MoE CTC 0.6 17.7 70.3 66.6 21.6
LAE-ST-MoE CTC 0.4 17.3 70.6 66.2 21.9

Table 8. ST results on the CS test when NShare = 9 and β =
0.6.

Model NMono
CS → EN CS → CN

BLEU TER (↓) BLEU TER (↓)
LAE-ST-MoE CTC 0 18.6 69.0 67.0 21.3
LAE-ST-MoE CTC 1 17.7 70.3 66.6 21.6
LAE-ST-MoE CTC 2 16.3 72.6 65.5 22.4

Table 9. ST results on the monolingual test.

Model CN → EN EN → CN
BLEU TER (↓) BLEU TER (↓)

LAE-ST-MoE CTC 33.9 44.8 31.5 59.1

CS → CN:                                                                                      CS → EN:     

Audio text: 他的diary标题我都很喜欢                                    他的diary标题我都很喜欢                    

Modelscope (MT): 他的日记标题我都很喜欢                       I liked his diary title                             

Our model (ST): 他的日记标题我都很喜欢                            His diary title I  like it very much
EN → CN:                                                                                      CN → EN:     

Audio text:   I say I've been wondering about this business   给我介绍几首好听的歌                

Modelscope (MT): 我说我一直在想这项业务                         Introduce me some nice songs 

Our model (ST): 我说我一直在想这项业务                             Introduce me some good songs

Fig. 2. The examples translated by ModelScope and our
model respectively.

good BLEU. For CS data with limited English, the BLEU of
CS speech to Mandarin text shows better than CS to English.

Figure 2 provides examples of the translation performed
by ModelScope’s MT model and our model’s ST branch.
Specifically, ModelScope’s model translates text, whereas
ours conducts the ST task. To a certain extent, these exam-
ples demonstrate that our model has learned good ST ability.

5. CONCLUSIONS

In this paper, we propose an LAE-ST-MoE framework that in-
corporates ST tasks into LAE and utilizes ST to learn the con-
textual information between different languages. The experi-
mental results on the ASRU 2019 Mandarin-English CS chal-
lenge dataset demonstrate that, compared to the LAE-based
CTC and AED system, the proposed LAE-ST-MoE model
achieves about 6%-9% relative error rate reduction. Exten-
sive investigations into the w/ or w/o MoE module, compari-
son with the literature results, and ablation on different β and
NMono values have also been carried out and confirm the ef-
fectiveness of the LAE-ST-MoE. Moreover, the well-trained
LAE-ST-MoE model can perform ST tasks from CS speech
to Mandarin or English, and the structure is easy to extend to
one-to-many ST tasks. In the future, we will further explore
the LAE-ST-MoE to multilingual ASR and one-to-many ST.
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