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ABSTRACT

We present the latest iteration of the voice conversion challenge
(VCC) series, a bi-annual scientific event aiming to compare and
understand different voice conversion (VC) systems based on a
common dataset. This year we shifted our focus to singing voice
conversion (SVC), thus named the challenge the Singing Voice Con-
version Challenge (SVCC). A new database was constructed for two
tasks, namely in-domain and cross-domain SVC. The challenge was
run for two months, and in total we received 26 submissions, in-
cluding 2 baselines. Through a large-scale crowd-sourced listening
test, we observed that for both tasks, although human-level natural-
ness was achieved by the top system, no team was able to obtain a
similarity score as high as the target speakers. Also, as expected,
cross-domain SVC is harder than in-domain SVC, especially in the
similarity aspect. We also investigated whether existing objective
measurements were able to predict perceptual performance, and
found that only few of them could reach a significant correlation.

Index Terms— voice conversion, voice conversion challenge,
singing voice conversion

1. INTRODUCTION

Voice conversion (VC) refers to the task of converting one kind of
speech to another without changing the linguistic contents [1,2]. VC
has a wide range of applications covering from medical solutions
to entertainment, such as speaking aid devices for patients [3, 4],
computer-assisted language learning leveraging accent conversion
[5], personalized expressive voice assistants [6] and silent speech
interfaces [7]. It was believed that the underlying VC techniques are
although shared but difficult to be compared, because of the various
applications and the consequent datasets that are being used.

In light of this, the Voice Conversion Challenge (VCC) was
first launched in 2016 [8], followed by there precedent versions in
2018 [9] and 2020 [10]. The objective of the VCC series was to
better understand different VC techniques by looking at a common
goal and dataset, and to share views about unsolved problems and
challenges faced by current VC techniques. In the past three VCCs,
speaker conversion, the transformation of speaker identity, which is
long considered the most fundamental problem in VC, has been cho-
sen as the main task. While the task remains unchanged, we gradu-
ally increased the difficulty, from parallel (supervised) training, non-
parallel (unsupervised) training to cross-lingual conversion. In the
latest challenge [10], it was shown that in terms of naturalness and
speaker similarity, two important evaluation aspects in VC, the top
system scored nearly as high as the ground truth of the target speak-
ers. As described in Section 2, as VC techniques have significantly

Fig. 1: Scatter plots of naturalness and similarity percentage for task
1 (in-domain) and task 2 (cross-domain) from English listeners.

improved through the activities of these challenges, we decided to
move on to a more challenging setting.

In 2023, we launched the fourth edition of the VCC, and by
shifting our focus to singing voices, we renamed it the Singing
Voice Conversion Challenge (SVCC). Singing voice conversion
(SVC) is considered more challenging because: (1) compared to
normal speech, it involves a wider range of varieties in pitch, ener-
gies, expressions, and singing style, (2) from the pitch information
perspective, while the generated singing voice needs to follow the
notes of the song, the singing style can vary from singer to singer,
thus the level of disentanglement needs to be properly modeled. In
the following sections, we describe the organization of the challenge
and present the evaluation results of the submitted systems, where
Figure 1 shows a quick overview of the subjective results.
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2. RELATED WORKS

2.1. Past voice conversion challenges

VCC2016 [8] was held as a special session at INTERSPEECH 2016,
and attracted 17 participants. A parallel VC database consisted of
two source and two target native American English speakers (two
females and two males), each of whom spoke 162 parallel sentences,
was constructed for the only task in VCC2016. It was reported that
the best system in VCC 2016 obtained an average naturalness score
of 3.0 and a similarity score of 70%1. However, it was obvious that
there was a huge gap between the target natural speech and the con-
verted speech.

VCC2018 [9] was held as a special session of the ISCA Speaker
Odyssey Workshop 2018 and attracted 32 participants. The two tasks
were based on a newly constructed but smaller parallel VC database
and a non-parallel VC database. There were four native speakers of
American English (two females and two males) for both the target
and source speakers, each of whom uttered 80 sentences. The same
evaluation methodology in VCC 2016 was adopted for the 2018
challenge, and we observed significant progress. The best system
performed well in both parallel and non-parallel tasks and obtained
an average of 4.1 in naturalness and about 80% in similarity. How-
ever, it was confirmed that there were still statistically significant
differences between the target natural speech and the best converted
speech in terms of both naturalness and speaker similarity.

VCC2020 [10] was held in a joint workshop with the Blizzard
Challenge [11] and attracted 30 participants. There was a semi-
parallel intra-lingual conversion task and a cross-lingual conversion
task, with two corresponding datasets newly built. For more details,
please refer to [10]. The listening test results first showed that for the
intra-lingual semi-parallel task, the speaker similarity scores of sev-
eral systems were as high as the target speakers, while none of them
achieved human-level naturalness. For the relatively harder cross-
lingual task, although the overall naturalness and similarity scores
were lower, the best systems had naturalness scores higher than 4.0
and similarity scores above 70%.

2.2. Singing voice conversion

The task of SVC aims at converting the singing voice of a source
singer to that of a target singer without changing the contents.
Mainstream SVC models can be categorized into two classes: 1)
parallel spectral feature matching models and 2) information dis-
entanglement based models. Early works on SVC use parametric
statistical models, such as Gaussian mixture models (GMMs), to
model source-target spectral conversion function leveraging parallel
singing data [12, 13]. Parallel approaches based on generative ad-
versarial networks (GANs) have also been proposed to improve con-
version performance [14]. Since parallel singing data is expensive
to collect on a large scale, especially in multi-singer applications,
researchers have investigated the use of non-parallel data for SVC.
Both implicit and explicit information disentanglement methods
have been studied to decompose voice identity, pitch, and linguistic
content from a singing voice. CycleGAN and StarGAN-based SVC
models [15,16] use adversarial training and cycle consistency loss to
implicitly disentangle voice identity from other information includ-
ing linguistic content, pitch information, etc. The encoder-decoder
framework is another hot topic in the research of SVC, which ex-
plicitly use either domain confusion loss or textual supervision

1Defined as the percentage of a system’s converted samples that were
judged to be the same as the target speakers.

to obtain pitch-invariant and singer-invariant content representa-
tion. An auto-encoder-based unsupervised SVC model is studied,
which uses speaker confusion techniques to disentangle singer in-
formation from the encoder output [17]. Based on this model,
PitchNet [18] employs an additional adversarial pitch confusion
term to extract pitch-invariant and singer-invariant features from the
encoder. Rather than relying on domain confusion losses, various
models separately train a content encoder model and an information-
fusion decoder model to tackle the task of SVC. The encoder uses
text supervision to obtain singer-invariant content features, either
through phonetic posteriorgrams (PPGs) [19] or features extracted
from some intermediate layer in an ASR acoustic model [20, 21].
To increase the expressiveness of the model, it is likely that the
decoder incorporates generative modeling, such as auto-regressive
models [19], GANs [20–22], or denoising diffusion probabilistic
models (DDPMs) [23].

It is worthwhile to note that the SVC open-source community
has been extremely active recently. The most popular project, so-
vits-svc, has over 15k stars on its Github repository2. It is a collective
effort of over 30 contributors, providing training scripts on a variety
of encoders, acoustic models, and vocoders.

3. TASKS, DATABASES, AND TIMELINE FOR SINGING
VOICE CONVERSION CHALLENGE 2023

Similar to the past VCC iterations, the primary objective is to con-
duct speaker conversion. For SVCC 2023, we separate the challenge
into two any-to-one tasks: in-domain SVC and cross-domain SVC.
The organizers developed a dedicated challenge dataset for the chal-
lenge and released the dataset in a manner that gave the participants
around two months to train their models.
Task 1: In-domain SVC: For Task 1, the main task was to con-
vert to a target speaker, by using the target speakers’ singing voices
as training data. Compared to speech, the prosody of singing voices
mostly follows musical notes rather than that of the spoken language.
Although some previous VC methods could be directly applied to
singing datasets, the main point of the task was to verify which meth-
ods could effectively replicate how the target singer sings the musical
notes.
Task 2: Cross-domain SVC: For Task 2, the main task was to con-
vert to a target speaker, by using the target speakers’ speech data.
Compared to Task 1, Task 2 is generally considered harder as the
model does not see how the target speaker’s singing voice sounds,
as the pitch range in the dataset is narrower compared to the one in
Task 1. Moreover, a person’s singing style cannot be seen from their
speech alone. Although a more challenging task, it is important to
note that Task 2 may be a more realistic and generalizable setting, as
not all humans have the formal training to control their vocal cords
and sing songs in the correct notes or key.

3.1. Dataset construction

The SVCC 2023 database is a subset of the NUS-HLT Speak-Sing
(NHSS) dataset [24]. The original database is parallel in the sense
that it contains a speaker’s singing and speech data. Each speaker
records 10 songs from a selection of 20 songs, making the dataset
semi-parallel. For both tasks, we use six songs from each speaker
as the training data. For the evaluation data, we used six phrases
from each of the remaining four songs. We labeled the target singers

2https://github.com/svc-develop-team/so-vits-svc,
accessed on 2023.6.18.

https://github.com/svc-develop-team/so-vits-svc


Table 1: An overview of the SVCC 2023 dataset.
SVCC 2023 ID NHSS ID Minutes No. of phrases

IDM1 M04 11.84 150
IDF1 F01 12.72 159

CDM1 M03 4.31 161
CDF1 F02 6.75 150

SM1 M02 2.35 24
SF1 F04 2.39 24

Table 2: List of participant affiliations of SVCC 2023 in random
order. In addition, five participants did not identify themselves.

Affiliation Task 1 Task 2
University of Sheffield Y Y
RIKEN Guardian Robot Project Y Y
Duke Kunshan University Y N
WIZ.AI Y Y
National Tsing Hua University Y N
Huya.Inc Y Y
Advanced Micro Devices, Inc. Y Y
Samsung Research China-Beijing Y Y
TME Lyra Lab, Northwestern Polytechnical University,
Xian Jiaotong University Y Y

Shanghai Jiao Tong University Y Y
Bilibili Inc. Y Y
The Chinese University of Hong Kong (Shenzhen) Y Y
Northwestern Polytechnical University, TME Lyra Lab Y Y
Soochow University Y Y
Nagoya University Y Y
Parakeet Inc. Y Y
Federal university of Goiás (UFG) Y Y
Individual 1 Y Y
Individual 2 Y Y

for Task 1 with ”ID” and the target speakers ”CD” for Task 2. On
the other hand, the source speakers were labeled with ”S”. Male
speakers were labeled with ”M”, while female speakers were labeled
with ”F”. An overview of the dataset’s details is shown in Table 1.
An open-sourced script3 can be used to generate the SVCC 2023
dataset from the NHSS dataset. Aside from the SVCC 2023 dataset,
we allowed participants to use other external datasets, provided that
these were open-sourced to allow reproducible experiments.

3.2. Timeline

The challenge was first announced and promoted on January 19,
2023. Training data was released on February 17, 2023, while the
evaluation data was released on April 21, 2023, giving participants
around two months to develop their models. Participants were then
asked to submit their converted results on April 28, 2023, along with
a brief description of their systems.

4. PARTICIPANTS AND SUBMITTED SYSTEMS

4.1. Challenge participants

Table 2 shows the participant affiliations and in which tasks they
participated, listed in random order. In total, we have 24 submissions
and 2 baselines systems, ending up with 25 and 24 systems in Tasks
1 and 2, respectively. As in previous VCCs, we anonymized each
team with a unique team ID (T01 to T24 for the participants and
B01 and B02 for the baseline systems), and informed each team of
their own team ID except for five participants who did not submit
system descriptions despite repeated warnings from the organizers.
The ordering is random and different from that in Table 2.

3https://github.com/lesterphillip/SVCC23_
FastSVC/tree/main/egs/generate_dataset

Table 3: Details of participating systems in SVCC 2023.
ID Content Feature VAE Vocoder

B01 PPG N HiFi-GAN
B02 HuBERT N HN-uSFGAN
T01 PPG N HiFi-GAN + BigVGAN∗
T02 HuBERT Y DSPGAN
T03 HuBERT Y HiFi-GAN
T04 Unknown
T05 PPG N HiFi-GAN
T06 ContentVec Y N/A (nsf-HiFi-GAN)‡
T07 HuBERT Y N/A (HiFi-GAN)‡
T08 Unknown
T09 Uncertain Y nsf-HiFi-GAN
T10 WavLM N BigVGAN
T11 PPG N HiFi-GAN
T12 HuBERT N HiFi-GAN
T13 ContentVec N SiFi-GAN
T14 Unknown
T15 None (Melspec)† N nsf-HiFi-GAN
T16 PPG N BigVGAN
T17 HuBERT N nsf-HiFi-GAN
T18 Unknown
T19 None (Melspec)† N HiFi-GAN
T20 HuBERT Y nsf-HiFi-GAN
T21 ContentVec Y nsf-HiFi-GAN
T22 PPG+ContentVec N BigVGAN
T23 PPG Y DSPGAN
T24 Unknown
”Unknown” implies teams who did not submit their system description.
∗: BigVGAN was used as a postfilter.
†: No content feature as only the melspectrogram was used.
‡: No vocoder was used since the decoder outputs waveform.

4.2. Baseline systems

B01 (DiffSVC System): The first baseline system is similar to the
system presented in the DiffSVC paper [23], which was considered
state-of-the-art as we organized this challenge. The detailed descrip-
tion is presented in Appendix D.
B02 (Decomposed FastSVC System): The second baseline system
aims to provide a simple open-sourced baseline4 for the challenge.
The network is similar to FastSVC [21], but decomposed into an
acoustic model and a vocoder to reduce training time. A detailed
description of the system is found in Appendix E.

4.3. Description of the submitted systems

4.3.1. Common components

Most systems this year adopt the recognition-synthesis (rec-syn)
framework5, where several encoders (or recognizer) are first used
to extract a set of features, including a content feature which con-
tains compact linguistic or phonetic information from the input, and
prosodic related features such as f0, energy, etc. Then, conversion
is mostly carried out by a decoder (or synthesizer) to inject target
information. The content feature encoder is usually trained to be
speaker-independent, thus is assumed to be capable of handling
any unseen speaker. The decoder training is often conducted by
pre-training on a multi-speaker/singer dataset, and then fine-tuned
on the target dataset or directly uses a speaker embedding to control
the identity. Exceptions are T15 and T19, both of whom adopted
StarGANv2-VC [16] which jointly trains the encoders and decoder.
Finally, we noticed that most teams did not develop special tech-
niques for individual tasks.

4https://github.com/lesterphillip/SVCC23_FastSVC
5Following the definition in [25], any VC system that separately trains the

recognizer and synthesizer can be categorized as the rec-syn framework.

https://github.com/lesterphillip/SVCC23_FastSVC/tree/main/egs/generate_dataset
https://github.com/lesterphillip/SVCC23_FastSVC/tree/main/egs/generate_dataset
https://github.com/lesterphillip/SVCC23_FastSVC


4.3.2. Taxonomy

While the VCC 2020 analysis paper [10] analyzed the submitted sys-
tems by the feature conversion model and the vocoder, we found
that the viewpoint should advance along with the development of
VC techniques. This year, we base our analysis on three aspects
that give the largest variations among different systems: content fea-
ture type, use of variational autoencoders (VAEs), and vocoder type.
Note that the goal of this section is not to derive meaningful tenden-
cies or scientific differences, but rather a trend of popular techniques
used in the current moment.
Content feature type. The content feature plays an important role
in rec-syn based VC. A good content feature should be rich in con-
tent but contains little to no speaker information [25]. To facilitate
this property, the PPG is a straightforward choice as it is derived
from an ASR model which is trained in a supervised fashion to ex-
tract linguistic information. A total of 7 teams used PPGs. In re-
cent years, self-supervised learning (SSL) based speech representa-
tions are drawing attention in VC as they benefit from large-scale
unlabeled corpora and are shown to be able to disentangle speaker
information. Among the 12 teams that used SSL speech represen-
tations, popular choices included HuBERT [26], WavLM [27] and
ContentVec [28].
Use of VAEs. Introducing the VAE probabilistic framework in
conditional generative models improves the generalization ability
to unseen condition combinations [29, 30], which is essential in
low-resource tasks like SVC. This is backed by the fact that, among
the 8 teams that adopted VAE, many of them ranked in the top three
in Tasks 1 and 2, as we will show in later sections.
Vocoder type. Despite the development of end-to-end SVC sys-
tems [17], we observed that most teams still adopt a two-stage frame-
work such that a converted acoustic feature (mostly mel spectro-
gram) is first generated, and then a vocoder is used to generate the
final waveform. Exceptions are T06 and T07, who directly trained
their decoders to generate the converted waveform. All vocoders
used by this year’s teams are still based on GANs, showing that these
are still the most popular choice when it comes to vocoders, despite
the progress in other generative frameworks like flow-based mod-
els or DDPMs. While 8 teams used the original HiFi-GAN [31],
5 teams used its neural source filter (NSF) extension, which com-
bines NSF [32] to improve the generalization ability. Other popular
choices include BiGVGAN [33], SiFi-GAN [34] and DSPGAN [35].
We noticed that both T23 and T02, the top systems for Tasks 1 and 2
in naturalness, respectively, adopted DSPGAN. However, this sam-
ple size is too small to conclude that DSPGAN is the ideal choice
for SVC.
Other notable observations. Due to the scarcity of singing voice
datasets, many teams included speech data to train their models. For
example, T07 used more than 1000 hours of speech training data.
While 7 teams applied DDPMs, most teams still used classical deep
learning frameworks like VAEs or GANs. Finally, 5 teams men-
tioned that they directly based their system on the so-vits-svc project.

5. SUBJECTIVE EVALUATION

As in the previous VCCs, the perceptual study is considered the main
evaluation method in SVCC 2023. Here we present, to our knowl-
edge, by far the first large-scale subjective evaluation for SVC. In the
following sections, we consider the results of the English subjects’
main results.

5.1. Listening test setup

Two common aspects of VC are evaluated in this challenge, namely
naturalness and similarity. The protocol was basically consistent
with that in the previous VCCs, where listeners were asked to evalu-
ate the naturalness on a five-point scale, and for conversion similar-
ity, a natural target speech and a converted speech were presented,
and listeners were asked to judge whether the two samples were pro-
duced by the same speaker on a four-point scale. For more details,
please refer to the VCC 2020 paper [10].

Crowdsourcing on platforms like Amazon Mechanical Turk has
been attractive in recent years thanks to its efficiency; however, it
suffers from listener quality variations and trustworthy issues. Con-
sidering budget constraints, we followed the same protocol in VCC
2020 and outsourced the recruiting of listeners to two companies.
Specifically, English and Japanese listeners were recruited by the
Inter Group Corporation and Koto Ltd., respectively. The two sets
of perceptual evaluation required a total of more than ¥700,000
Japanese yen. Each evaluation set contained 53 webpages (25 sys-
tems for Task 1, 24 systems for Task 2, and source/target for Tasks 1
and 2), each of which contained one naturalness and one similarity
question to evaluate the same sample. The numbers of total and
average scores per system from the English/Japanese listeners are
12720/38160 and 120/360, respectively.

5.2. Main results on English listeners

5.2.1. Naturalness

Figure 2 shows the boxplot of the naturalness evaluation results of
Tasks 1 and 2. First, baseline B01 was outperformed by around half
and one-thirds of the teams in Tasks 1 and 2, respectively, showing
that the SVC field has made significant progress in naturalness since
DiffSVC was proposed. The top system in Task 1 was T23, which
ranked second in Task 2. On the other hand, T02, the top system in
Task 2, ranked fifth in Task 1. Although no system had a mean score
higher than those of the source and target, Figures 3a and 3c show
that T23, T07, and T02 are in fact not significantly different from
the natural samples, showing that the top systems have reached
human-level naturalness. Finally, we can see that in Task 2, only
8 teams scored more than 3.0, compared to the 14 teams in Task
1, showing that cross-domain SVC is indeed harder than in-domain
SVC.

5.2.2. Similarity

Figure 4 shows the results for the similarity evaluation results of
Tasks 1 and 2. The similarity percentage is defined as the sum of
the percentages from the “same (not sure)” and “same (sure)” cate-
gories, and the averaged scores are also shown. First, different from
the naturalness results, baseline B01 ranked the fifth and the first in
Tasks 1 and 2, respectively. T14, the top system in Task 1, ranked
the second in Task 2. In contrast to naturalness, there is a clear gap
(around 0.4 points) between the target samples and the top system
in both tasks. This can also be observed from Figures 3b and 3d,
which show that the target samples were significantly better than all
other systems in terms of similarity. In conclusion, when it comes
to similarity in SVC, there is still a large room for improvement.

Similar to naturalness, there is a significant similarity degrada-
tion in Task 2. To our surprise, even the target samples suffer from
such a drop (3.4 v.s. 3.0). As we manually inspected the natural
samples, we found that due to the high variation of singing voices,
different phrases of the same singer in the same song can sound like



Fig. 2: Naturalness results for Tasks 1 and 2. MOS scores are ar-
ranged in accordance with their mean (red dot). SOU and TAR rep-
resents the source and target samples, respectively.

different people. We hypothesize that this makes the evaluation more
difficult, as we observe that, from Figures 3b and 3d, when it comes
to similarity, it is harder for listeners to distinguish between different
teams (more red dots compared to Figures 3a and 3c).

Figure 1 shows the scatter plots of naturalness and similarity
percentage of both tasks. It can be clearly observed that there is a
trade-off between naturalness and similarity for most systems, i.e.
no team is dominant in both naturalness and similarity. This implies
that all teams need to improve either similarity or naturalness.

5.3. Do Japanese listeners make similar judgments compared
with English listeners?

We investigate whether non-native listeners (Japanese listeners in
our case) perceive naturalness and similarity in SVC differently
compared to English listeners. First, the linear correlation coeffi-
cients of the scores from English and Japanese listeners are 0.985,
0.975, 0.985 and 0.924 in Task 1 naturalness, Task 1 similarity, Task
2 naturalness and Task 2 similarity, respectively. Despite the high
correlation, to examine whether there exists biases between English
and Japanese listeners, we show their scatter plots in Figure 10. In
general, we found that Japanese listeners tend to give higher scores
in naturalness, and English listeners tend to give higher scores in
similarity. Consequently, Japanese listeners can hardly distinguish
natural singing voices from the converted ones by the top systems.
Our second observation is based on Figures 3 and 9. Since the total
number of scores received from English listeners is smaller, it is ex-
pected that it will be harder for them to distinguish between different
systems (that is, more red dots should be observed). While this hy-
pothesis somehow stands for similarity, it is surprising to see that for

(a) Task 1, naturalness (b) Task 1, similarity

(c) Task 2, naturalness (d) Task 2, similarity

Fig. 3: Pairwise significance between systems, calculated with
Wilcoxon signed-rank tests. Blue dots: significantly different; Red
dots: no significant difference.

naturalness, English listeners can reach a similar level of confidence
with only one-third of the scores. This result somehow implies that
native listeners are more confident in evaluating naturalness.

6. OBJECTIVE EVALUATION

6.1. Objective metrics

Similar to the previous VCCs, we investigate objective evaluation
metrics for SVC submissions to motivate future evaluation of SVC
research. Specifically for this year, we adopt objective metrics fo-
cusing on spectrogram distortion, F0, intelligibility, singer similar-
ity, and neural predictors for naturalness.
Spectrogram distortion: We use mel cepstral distortion (MCD) for
the evaluation of spectrogram distortion following previous works
[12, 14, 23, 36–39]. The implementation follows [40, 41].
F0 metrics: F0-related metrics have been widely used in previ-
ous SVC works [13, 18–20, 22, 23, 42]. For this challenge, we se-
lect F0 Root Mean Square Error (RMSE) and correlation coefficient
(CORR) as our objective metrics.
Intelligibility: Lyrics are an important component of singing voices.
Previous investigations in voice conversion challenges [10] have
shown that speech recognition error rate could be an essential in-
dicator of the system’s performance. In this work, we utilize two
Automatic Speech Recognition (ASR) models to conduct lyrics
recognition and use the Character Error Rate (CER) as the evalu-
ation metric. Specifically, we adopt a pre-trained HuBERT-based
Conformer-based model trained over dsing corpus6 [43] with

6https://huggingface.co/espnet/ftshijt_espnet2_
asr_dsing_hubert_conformer

https://huggingface.co/espnet/ftshijt_espnet2_asr_dsing_hubert_conformer
https://huggingface.co/espnet/ftshijt_espnet2_asr_dsing_hubert_conformer


Table 4: Spearman correlation between objective and subjective metrics. Highlights in red indicate the highest correlation with corresponding
subjective metrics among the objective metrics. CER metric refers to Conformer-based speech recognition results, while CER+ refers to
Whisper results. Significance levels are shown by * (Significance levels: ***p <0.01, **p <0.05, *p <0.1).

Sub. Score Listener MCD F0RMSE F0CORR CER CER+ DEmbed UTMOS SSL-MOS

Task 1 MOS JPN -0.28 -0.41** 0.48** -0.62*** -0.80*** -0.58*** 0.77*** 0.53***
ENG -0.24 -0.28 0.45** -0.57*** -0.73*** -0.45** 0.72*** 0.42

Task 1 SIM JPN -0.62*** -0.26 0.37* -0.42** -0.40** -0.83*** 0.49** 0.30
ENG -0.45** -0.10 0.21 -0.26 -0.27 -0.63*** 0.38* 0.13

Task 2 MOS JPN -0.38* -0.27 0.10 -0.62*** -0.77*** -0.58*** 0.60*** 0.15
ENG -0.29 -0.06 -0.16 -0.60*** -0.73*** -0.45** 0.49** 0.11

Task 2 SIM JPN -0.38* -0.67*** 0.03 -0.25 -0.53*** -0.67*** -0.08 -0.27
ENG -0.29 -0.22 -0.37* -0.11 -0.28 -0.41** -0.20 -0.23

Fig. 4: Similarity results for Tasks 1 and 2. Similarity scores are
arranged in accordance with their mean value (red dot). SOU and
TAR represents the source and target samples, respectively.

ESPnet+S3PRL [44–46] and the whisper-large ASR model7 [47].
Speaker similarity: Previous works in SVC have explored using a
singer identification/verification model to estimate singer conversion
accuracy [17, 20, 48]. Some other works also estimate the singer
similarity with pre-trained singer embedding [21, 22]. In this work,
we adopt RawNet-3 based speaker embedding [49] to estimate the
singer similarity by calculating their cosine similarity (i.e., Dembed).
Neural MOS predictor: As a previous work also use Neural MOS
predictor [22], we also examine the performance of pretrained neu-
ral MOS predictor with the baseline system (SSL-MOS) and best
system (UTMOS) in VoiceMOS Challenge 2022 [50, 51].

7https://github.com/openai/whisper

6.2. Analysis with subjective evaluation

In order to examine the relationship between subjective and objec-
tive evaluation metrics, we computed the Spearman correlation co-
efficients for each metric. The detailed results can be found in Ta-
ble 4. (1) In most cases, metrics related to spectrogram and fun-
damental frequencies do not exhibit a significant correlation with
subjective evaluation, which diverges from the findings of previous
studies on VC in speech. (2) Speech recognition measures, both for
the Conformer-based recognizer and Whisper, demonstrate a note-
worthy correlation with the subjective MOS. (3) Currently, it is chal-
lenging to accurately assess singer similarity using objective metrics.
The singer embedding cosine distance performs the best among the
metrics, showing statistical significance for both Task 1 and Task 2
evaluations among Japanese and English speakers. However, even
this metric yields insignificant results when assessing the similarity
of Task 2 subjective measures with native speakers. (4) Despite be-
ing trained on speech corpora, the existing MOS predictor, UTMOS,
exhibits a moderate correlation with subjective measures of natural-
ness, indicating its generalization capability.

7. CONCLUSION

The singing voice conversion challenge 2023 is the fourth edition of
the voice conversion challenge series, held to compare and under-
stand different VC systems built on a common dataset. We intro-
duced two tasks, namely any-to-one in-domain SVC and any-to-one
cross-domain SVC, and curated a database which is essentially a
subset of the NHSS dataset. After giving participants two and a half
months to train their SVC systems, we received a total of 26 sub-
missions, including 2 baselines. As the first large-scale listening test
for SVC, we observed that the top SVC systems in both tasks have
achieved human-level naturalness. However, we also confirmed that
there is a significantly large gap between the similarity scores of the
target and all submitted systems. In addition, we confirmed that the
cross-domain task is indeed a more difficult task, as the overall natu-
ralness and similarity scores were lower. Finally, we showed that as
few objective evaluation metrics can moderately correlate with the
subjective scores, even the metric that best correlates with the sim-
ilarity scores only yields a weak correlation, showing that objective
assessment for SVC still has a lot to improve.
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A. LISTENER DETAILS

We recruited 40 unique English listeners (17 female, 22 male, and
1 unknown), and Figure 5 shows the accent and age distributions of
the English and Japanese listeners. Half of the English participants
were in their 30s or 40s, and most of them had an American accent.
For Japanese listeners, we had a total of 319 unique valid listeners
(162 male and 157 female). Figure 5 also shows that most of the
Japanese listeners were in their 30s or 40s.

Fig. 5: Age and accent distribution of English and Japanese listeners.

B. EVALUATION RESULTS FROM JAPANESE LISTENERS

B.1. Naturalness

Figure 6 shows the boxplot of the naturalness evaluation results of
Tasks 1 and 2 from the Japanese listeners. In both tasks, baseline
B01 was outperformed by around half of the teams. T23 was the top
system in both tasks. Surprisingly, different from the finding from
the English listener results that no team was on average better than
the natural samples (TAR, SOU), three teams (T23, T07, T02) and
one team (T23) received a naturalness score higher than the natural
samples in Tasks 1 and 2, respectively. Furthermore, the pairwise

significance test results in Figures 9a and 9c show that the natu-
ral samples are not significantly different with six teams (T23, T07,
T02, T06, T14, T20) and two teams (T23, T02) in Tasks 1 and 2, re-
spectively. These findings are in line with our finding that Japanese
listeners tend to give higher scores than those given by English lis-
teners. Finally, we can also observe that the scores received in Task
2 are generally lower than those received in Task 1, again showing
that cross-domain SVC is indeed harder than in-domain SVC.

Fig. 6: Japanese listeners’ naturalness results for Tasks 1 and 2.
MOS scores are arranged in accordance with their mean (red dot).
SOU and TAR represent the source and target samples, respectively.

B.2. Similarity

Figure 7 shows the results for the similarity evaluation results of
Tasks 1 and 2 from the Japanese listeners. Again, the similarity per-
centage is defined as the sum of the percentages from the “same (not
sure)” and “same (sure)” categories, and the averaged scores are also
shown. The baseline B01 received a stronger ranking from Japanese
listeners, ranking second in both tasks. The top system in Task 1,
T14, ranked third in Task 2, while the top system in Task 2, T02,
ranked fourth in Task 1. Similar to English listeners’ results, there
is also a clear gap (around 0.4 points) between the target samples
and the top system in both tasks. This can also be observed from
Figures 9b and 9d, which show that the target samples were sig-
nificantly better than all other systems in terms of similarity. The
conclusion is therefore similar to that of the English listeners: there
is still a lot to work on for similarity.



Fig. 7: Japanese listeners similarity results for Tasks 1 and 2. Sim-
ilarity scores are arranged in accordance with their mean value (red
dot). SOU and TAR represents the source and target samples, re-
spectively.

Figure 8 shows the scatter plots of naturalness and similarity
percentage of both tasks from Japanese listeners. Similar to English
listeners results, there is a trade-off between naturalness and similar-
ity for most systems, i.e. no team is dominant in both naturalness
and similarity. Again, all teams need to improve either similarity or
naturalness.

C. COMPARISON BETWEEN ENGLISH AND JAPANESE
LISTENERS

Figure 10 shows the scatter plots from Japanese and English listen-
ers, and it can be observed that Japanese listeners tend to give higher
scores in naturalness, and English listeners tend to give higher scores
in similarity.

We made a hypothesis in Section 5.3 that the larger the num-
ber of scores, the easier it is to observe statistically significant dif-
ferences between systems, which means fewer red dots should be
observed in Figures Figure 9 and 3. However, by comparing Fig-
ure 9 (Japanese listeners) and Figure 3 (English listeners), we ob-
served that while this hypothesis somehow stands for similarity, it is
surprising to see that for naturalness, English listeners can reach a
similar level of confidence with only one-thirds of scores.

We further examine whether the above-mentioned hypothesis
implies the following statement: the larger the number of scores, the

Fig. 8: Scatter plots of naturalness and similarity percentage for task
1 (in-domain) and task 2 (cross-domain), from Japanese listeners.

smaller the system-level variance. We therefore plotted the system-
level variance from Japanese and English listeners in Figure 11.
However, we did not observe any obvious tendency, thus the above-
mentioned statement was not implied in this challenge.

D. DETAILS OF THE B01 DIFFSVC BASELINE SYSTEM

The first baseline system is much similar to the system presented
in the DiffSVC paper [23]. We use a different PPG model, which
is a Conformer-based phoneme recognizer containing 7 conformer
blocks. The encoder dimension is 256. In total, the PPG model
contains 31.2 million trainable parameters. The training data is a
combination of a random half from the WenetSpeech dataset (Man-
darin Chinese) 8 and a random half from the GigaSpeech dataset
(English) [52], which in total has 10k hours speech data. We take
the feature from the last hidden layer as the content feature.

The PPG-to-Mel-spectrogram model has the same network
structure as that presented in [23]. We extend the model to sup-

8https://wenet.org.cn/WenetSpeech

https://wenet.org.cn/WenetSpeech


(a) Task 1, naturalness (b) Task 1, similarity

(c) Task 2, naturalness (d) Task 2, similarity

Fig. 9: Japanese listeners pairwise significance between systems,
calculated with Wilcoxon signed-rank tests. Blue dots: significantly
different; Red dots: no significant difference.

port multi-singer generation by adding a speaker/singer embedding
vector to every residual block. The training set is a mixture of
the SVCC 2023 dataset, OpenCPOP dataset [53], MultiSinger [54],
VCTK [55], NUS-48N [56] and M4Singer [57]. In total, the training
set contains 116 hours of speech and singing data from 221 speakers
or singers. We do not conduct any finetuning procedure for the target
singers and use the multi-singer model directly for evaluation. We
use a HiFi-GAN V1 [31] to convert the generated Mel spectrogram
to a waveform, which is trained with the same training set.

During conversion, for the task of in-domain SVC (i.e., Task 1),
we shift the source pitch by multiplying a ratio, which is computed as
the ratio of the median of the target pitch and the median of a source
phrase. For the task of cross-domain SVC (i.e., Task 2), we shift the
source pitch down by an octave in female-to-male conversion and
shift the source pitch up by an octave in male-to-female conversion,
respectively.

E. DETAILS OF THE B02 DECOMPOSED FASTSVC
BASELINE SYSTEM

For the acoustic model, we use Tacotron 2 [58] encoder, along with
an autoregressive decoder due to its success in [10]. The Tacotron 2
encoder consists of two stacks of one-dimension convolutional lay-
ers and a bidirectional long short-term memory (BLSTM) layer. On
the other hand, the decoder is an autoregressive network, due to its
proven ability in the previous challenge [10]. To implement the au-
toregressive loop, the previous output is consumed by the first long
short-term memory with projection (LSTMP) layer at each time step.
The acoustic model predicts the concatenated mel-cepstral coeffi-
cients (mcep) and band-aperiodicity (bap), which are used as in-
puts of the hn-uSFGAN vocoder. For the vocoder, we use HN-

(a) Naturalness

(b) Similarity

Fig. 10: Scatter plots of scores from Japanese listeners and English
listeners.

uSFGAN [59] as is due to its ability to synthesize waveforms outside
the training pitch range.

The network is trained with the SVCC 2023 dataset, along with
the large-scale speech dataset VCTK [55], and large-scale singing
datasets M4Singer [57], MultiSinger [54], OpenCPOP [53], and
NUS-48E [56]. To handle the multilingual datasets, we replace the
PPG encoder with HuBERT soft features due to its proven abil-
ity in cross-lingual VC [60]. To optimize the acoustic model, we
use two loss functions: 1) an L2 reconstruction loss and 2) a sub-
frequency discriminator, which was introduced in [61], to improve
the predicted mcep/bap features. To shift the pitch, we use linear
transformation by using the mean-variance transformation.

F. BREAKDOWN USING DIFFERENT TECHNIQUES

Although we mentioned in Sec. 4.3.2 that the goal of the taxonomy
analysis is not to derive meaningful tendencies or scientific differ-
ences, we still tried to find certain techniques that contribute to a
high performance. In light of this, we created variants of the scatter
plot in Figure 1 by coloring each system with the technique used in
that system. The results are shown in Figure 12.

We did not find particular trends for the content feature, vocoder,
and the use of so-vits-svc. We would like to emphasize that, de-
spite the seeming success of so-vits-svc, SVC systems based on that
toolkit did not necessarily perform better. On the other hand, many
of the VAE-based systems had high rankings in Task 1, which some-
how shows that VAE can be a promising framework for SVC.



Fig. 11: Scatter plots of system-level variance from Japanese and
English listeners.

G. DETAILED OBJECTIVE EVALUATION RESULTS AND
ANALYSIS

Detailed results of the objective evaluation for each team can be
found in Table 5 and Table 6. In general, it is challenging to iden-
tify a universally accepted objective measure that correlates strongly
with subjective evaluation. This observation is consistent with the
findings presented in Table 4 and Table 7. To further assess per-
formance, we conducted linear regression modeling to examine the
impact of different objective measures.

For Task 1, we excluded variables that exhibited high collinear-
ity based on variance inflation factors (VIF). However, for Task 2,
we included all variables since no strong collinearity was observed
among the different factors. Nonetheless, as shown in Table 8 and
Table 9, although the R-squared values are relatively high, there is
limited consensus across different metrics and listening types. One
possible reason for the unsuccessful regression could be the limited
sample size used in the analysis. But at the same time, these results
emphasize the need for further research to identify effective objec-
tive evaluation metrics for the challenging SVC task.



(a) Content feature (b) Vocoder

(c) Using VAE or not (d) Based on so-vits-svc or not

Fig. 12: Scatter plots of naturalness and similarity in tasks 1 and 2 from English listeners, colored on basis of different techniques.

Table 5: Detailed objective evaluation results for each team in Task 1.

Team ID MCD(↓) F0RMSE(↓) F0CORR(↑) CER(Conformer)(↓) CER(Whisper)(↓) DEmbed(↓) UTMOS(↑) SSL-MOS(↑)

B01 11.856 70.018 0.655 34.8 23.6 0.734 1.595 0.784
B02 10.409 59.028 0.664 31.3 18.5 0.454 2.028 1.072
T01 11.880 59.165 0.633 27.1 16.2 0.355 2.399 1.162
T02 8.524 56.187 0.722 29.8 16.1 0.439 2.345 1.112
T03 9.287 78.748 0.599 38.4 33.3 0.419 1.893 1.080
T05 15.867 66.427 0.671 53.4 62.0 0.647 1.917 1.275
T06 11.206 54.839 0.676 29.0 18.1 0.379 2.526 1.173
T07 9.427 60.757 0.680 27.7 15.0 0.357 2.420 1.193
T08 9.333 57.048 0.716 28.5 18.4 0.446 2.070 1.081
T09 12.155 73.416 0.587 35.0 21.4 0.477 2.598 1.145
T10 12.307 65.586 0.679 36.0 30.4 0.560 1.573 0.976
T11 9.160 67.867 0.671 28.8 19.1 0.428 2.246 1.113
T12 12.622 61.391 0.667 28.5 18.3 0.494 2.101 1.149
T13 10.111 68.034 0.692 30.0 18.4 0.464 2.228 1.183
T14 9.762 75.901 0.686 28.7 15.6 0.448 2.057 0.999
T15 10.941 61.391 0.601 34.2 25.3 0.624 1.631 0.963
T16 10.299 55.229 0.707 24.7 12.6 0.537 2.657 1.201
T17 9.454 62.937 0.657 33.3 23.1 0.427 2.082 1.109
T18 14.136 75.119 0.616 30.2 18.9 0.515 2.061 1.040
T19 10.606 75.214 0.673 33.2 23.8 0.544 1.758 0.979
T20 14.229 99.252 0.643 29.9 16.2 0.484 2.313 0.971
T21 12.361 98.740 0.611 31.2 16.0 0.469 2.174 1.116
T22 11.324 57.878 0.692 26.8 15.4 0.523 2.037 1.048
T23 11.536 57.784 0.678 26.8 14.5 0.423 2.717 1.323
T24 11.730 94.873 0.531 29.7 19.2 0.508 1.578 0.870



Table 6: Detailed objective evaluation results for each team in Task 2.

Team ID MCD(↓) F0RMSE(↓) F0CORR(↑) CER(Conformer)(↓) CER(Whisper)(↓) DEmbed(↓) UTMOS(↑) SSL-MOS(↑)

B01 12.495 85.693 0.243 36.3 25.0 0.761 1.679 1.023
B02 11.835 51.866 0.478 33.9 22.7 0.552 1.893 1.092
T01 12.218 52.841 0.391 25.9 26.7 0.501 2.468 1.405
T02 10.278 64.436 0.254 30.5 15.5 0.551 2.415 1.223
T03 10.608 64.821 0.205 39.6 30.1 0.560 1.971 1.242
T04 12.317 63.237 0.302 31.3 20.2 0.630 1.811 0.979
T06 10.651 82.362 0.356 28.1 21.4 0.577 2.870 1.792
T07 11.034 58.759 0.277 27.8 14.6 0.525 2.383 1.220
T08 10.188 66.720 0.355 29.3 23.4 0.592 2.199 1.379
T09 12.448 69.065 0.322 35.5 24.5 0.584 2.715 0.969
T10 14.236 63.071 0.336 36.6 28.3 0.651 1.840 1.282
T11 10.642 53.160 0.373 29.6 20.1 0.544 2.159 1.093
T12 13.281 84.585 0.351 28.5 16.4 0.576 2.084 1.178
T13 11.498 66.228 0.358 32.5 21.2 0.578 2.424 1.518
T14 11.863 65.375 0.248 27.6 15.2 0.508 2.076 1.041
T15 13.331 84.585 0.284 38.8 29.0 0.776 1.986 1.476
T16 10.267 78.880 0.368 25.8 15.9 0.652 2.964 1.640
T17 10.654 81.299 0.281 30.2 28.4 0.617 2.540 1.645
T18 13.983 70.474 0.260 29.1 19.8 0.566 2.416 1.200
T19 13.349 69.981 0.386 36.6 31.4 0.694 1.785 1.315
T20 14.213 71.723 0.288 29.0 21.8 0.594 2.576 1.152
T22 12.314 60.867 0.252 27.1 15.4 0.549 1.966 1.020
T23 12.365 63.348 0.264 27.2 15.3 0.534 2.675 1.331
T24 13.236 90.349 -0.013 34.9 28.0 0.585 1.457 1.037

Table 7: Pearson correlation between objective and subjective metrics. Red highlights indicate the highest correlation with corresponding
subjective metrics among the objective metrics. CER metric refers to Conformer-based speech recognition results, while CER+ refers to
Whisper results. Significance levels are shown by *.

Sub. Score Listener MCD F0RMSE F0CORR CER CER+ DEmbed UTMOS SSL-MOS

Task 1 MOS JPN -0.33 -0.23 0.41** -0.57*** -0.58*** -0.68*** 0.82*** 0.58***
ENG -0.28 -0.15 0.39* -0.55*** -0.57*** -0.36* 0.66*** 0.30

Task 1 SIM JPN -0.59*** -0.19 0.27 -0.51** -0.47** -0.89*** 0.51** 0.35*
ENG -0.43** -0.16 0.27 -0.41** -0.40** -0.46** 0.37* 0.04

Task 2 MOS JPN -0.39* -0.37* 0.37* -0.71*** -0.77*** -0.64*** 0.69*** 0.18
ENG -0.37* -0.10 0.10 -0.65*** -0.75*** -0.38* 0.59*** 0.14

Task 2 SIM JPN -0.30 -0.69*** 0.17 -0.35* -0.53*** -0.71*** -0.06 -0.36*
ENG -0.23 -0.20 -0.26 -0.14 -0.25 -0.27 -0.19 -0.32

Significance levels: ***p <0.01, **p <0.05, *p <0.1



Table 8: Task 1 linear regression models over subjective metrics
with objective metrics as inputs. Highlights in orange are coeffi-
cients with statistical significance. CER metric refers to Conformer-
based speech recognition results.

Sub. Score Task 1 MOS Task 1 SIM
Listener JPN ENG JPN ENG

Intercept 3.211*** -3.227 -1.143 2.478*
MCD -0.266 -0.094 -0.024 -0.034
F0RMSE 0.002 0.016 0.010 0.002
F0CORR 1.196 4.122 4.435* 1.004
CER -1.757e-4 -0.037 -0.021 -0.005
DEmbed -2.422*** 2.637 -1.758 -0.540
UTMOS -0.054 1.531*** 1.241*** 0.104

R2 0.855 0.634 0.794 0.332
Adjust R2 0.807 0.511 0.726 0.109
F Significance <1e-3 0.003 <1e-3 0.237

Significance Levels: ***p <0.01, **p <0.05, *p <0.1

Table 9: Task 2 linear regression models over subjective metrics
with objective metrics as inputs. Highlights in orange are coeffi-
cients with statistical significance. CER metric refers to Conformer-
based speech recognition results, while CER+ refers to Whisper re-
sults.

Sub. Score Task 1 MOS Task 1 SIM
Listener JPN ENG JPN ENG

Intercept 3.376** 3.702 4.930*** 4.771***
MCD 0.138 -0.071 -0.033 -0.068
F0RMSE 0.006 0.002 -0.006 -0.005
F0CORR 2.392 -0.571 0.652 -0.884
CER 0.049 -0.006 0.018 -0.014
CER+ -0.099*** -0.085** -0.030** -0.002
DEmbed -5.179** 0.690 -2.517*** 0.230
UTMOS 0.609* 0.683 -0.363** -0.154
SSL-MOS 0.501 -0.068 0.086 -0.235

R2 0.887 0.678 0.828 0.343
Adjust R2 0.827 0.506 0.736 -0.007
F Significance <1e-3 0.011 <1e-3 0.488

Significance Levels: ***p <0.01, **p <0.05, *p <0.1
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