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ABSTRACT

Pre-training speech models on large volumes of data has achieved
remarkable success. OpenAl Whisper is a multilingual multitask
model trained on 680k hours of supervised speech data. It general-
izes well to various speech recognition and translation benchmarks
even in a zero-shot setup. However, the full pipeline for develop-
ing such models (from data collection to training) is not publicly
accessible, which makes it difficult for researchers to further im-
prove its performance and address training-related issues such as ef-
ficiency, robustness, fairness, and bias. This work presents an Open
Whisper-style Speech Model (OWSM), which reproduces Whisper-
style training using an open-source toolkit and publicly available
data. OWSM even supports more translation directions and can
be more efficient to train. We will publicly release all scripts used
for data preparation, training, inference, and scoring as well as pre-
trained models and training logs to promote open science.!

Index Terms— Pre-training, whisper, speech recognition,
speech translation

1. INTRODUCTION

Large-scale Transformers [1] have garnered significant attention in
natural language processing (NLP) [2-7]. These models, trained on
extensive datasets, have showcased remarkable emergent capabili-
ties in diverse downstream tasks. Notably, the application of simi-
lar pre-training techniques has also found success in the domain of
speech processing. Self-supervised learning (SSL) techniques have
demonstrated impressive achievements [8—14]. Furthermore, large-
scale supervised learning has emerged as a promising avenue for
the development of universal speech models capable of performing
multiple speech tasks within a single model [15-18]. OpenAl Whis-
per [15] is a series of multilingual multitask models trained on 680k
hours of labeled speech data which is carefully curated from diverse
sources on the Internet.

Despite the release of pre-trained Whisper models and inference
code, the comprehensive pipeline for model development (from data
preparation to training) remains inaccessible to the public, which
has been a common situation for large language models (LLMs).
This limitation engenders several concerns. Firstly, the utilization
of pre-trained models on novel benchmarks has the potential risk
of data leakage, as users are deprived of knowledge regarding the
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actual training data. Secondly, researchers face significant difficul-
ties in comprehending the underlying mechanisms and elucidating
methods for enhancing the model’s performance, given their lack of
access to the training dynamics. Thirdly, the absence of access to
the complete model development pipeline poses notable challenges
in effectively tackling issues related to robustness, fairness, bias, and
toxicity, all of which frequently arise as a result of the data and train-
ing procedure [19-21].

Recently, there has been a concerted effort to foster open science
in the realm of LLM research by advocating for the release of com-
plete training pipelines [5]. Inspired by this, we present the Open
Whisper-style Speech Model (OWSM)?, which reproduces Whisper-
style training using an open-source toolkit and publicly available
data. OWSM follows the design of Whisper [15] to support essential
tasks such as language identification (LID), multilingual automatic
speech recognition (ASR), and utterance-level segmentation. No-
tably, OWSM also exhibits several technical novelties. It is designed
to support any-to-any speech translation as opposed to solely any-to-
English translation (see Section 3.4 for results). OWSM also adopts
multiple strategies to enhance the efficiency (see Section 2.5 for dis-
cussions).

We will provide reproducible recipes encompassing the entire
pipeline, including data preparation, training, inference, and scoring.
Furthermore, we will release pre-trained models and training logs,
enabling researchers to delve into the specifics of the training pro-
cess and gain valuable insights for their own investigations. While
OWSM shows competitive or even superior performance compared
to Whisper in certain benchmarks, it is essential to clarify that our
objective is not to engage in a comprehensive competition with
Whisper. The scope of our endeavor is constrained by the fact that
our largest dataset comprises only a quarter of the training set used
by Whisper, and our resource limitations restrict us from conducting
multiple trial runs. Instead, by sharing these resources, we aim to
promote transparency and facilitate progress and advancements in
the field of large-scale pre-training for speech processing.

2. WHISPER-STYLE TRAINING

2.1. Multitask data format

OpenAl Whisper [15] employs a single sequence-to-sequence model
to perform multiple speech processing tasks, including LID, multi-
lingual ASR, any-to-English ST, and utterance-level segmentation.

20WSM is pronounced as “awesome”.
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Fig. 1: Multitask data format used by our OWSM, which mostly follows OpenAl Whisper [15]. Different speech processing tasks are
represented in a unified format, which can be predicted by an autoregressive decoder. Note that OWSM is designed to support any-to-
any speech-to-text translation, whereas Whisper can only perform any-to-English translation. Blue boxes denote standard text tokens, while
orange and green boxes are special tokens. SOP, SOS, and EOS represent start-of-prompt, start-of-sentence, and end-of-sentence, respectively.

Our OWSM mostly follows this design, but extends it to potentially
support any-to-any ST. Figure 1 illustrates the multitask data format.
Data samples from different tasks are represented in a unified format,
which can be predicted by the decoder in an autoregressive manner.
Specifically, each sample is converted to a sequence of tokens with
two segments separated by special tokens. The first segment (be-
fore “SOS”) is an optional text prompt used as a condition, while
the second segment is the actual target. The target starts with a spe-
cial token denoting the language of the input speech. Then, it uses
a task token to distinguish between ASR and ST. There is a sepa-
rate ST token for each target language, which enables translation to
any language. Finally, it appends the text transcription either with
or without utterance-level timestamps. All timestamps are quantized
and represented as special tokens.

2.2. Data preparation

Whisper is pre-trained on 680k hours of labeled audio data sourced
from the Internet, which is not publicly accessible. To construct a
speech dataset for large-scale supervised learning, we combine train-
ing sets from various publicly available ASR and ST corpora. These
diverse corpora encompass a wide range of speaking styles, record-
ing environments, and languages. Our datasets are prepared using
an open-source toolkit, ESPnet [22]. However, OWSM is trained on
long-form audio data, which deviates from previous recipes in ESP-
net. Consequently, we have developed new data preparation scripts
tailored specifically for Whisper-style training. We concatenate con-
secutive utterances within the same long talk based on their original
timestamps. Each long-form utterance is limited to a maximum du-
ration of 30 seconds. During training, all utterances are padded to
precisely 30 seconds, optimizing the utilization of computational re-
sources.

To date, we have developed three versions at different scales,
denoted as OWSM vl, v2, and v3 in Table 1. Our largest dataset,
v3, comprises 180k hours of labeled audio data. This constitutes
approximately one quarter of the total data employed by OpenAl
Whisper in its training process [15]. The individual datasets utilized
by our models are listed below:

e OWSM vl: AISHELL-1 [23], CoVoST2 [24], GigaSpeech [25],

LibriSpeech [26], MuST-C [27], SPGISpeech [28], and
TEDLIUM3 [29].

* OWSM v2: all data in v1, GigaST [30], Multilingual Lib-
riSpeech [31], and WenetSpeech [32].

e OWSM v3: all data in v2, AIDATATANG [33], AMI [34],
Babel [35], Common Voice [36], Fisher (Switchboard) [37],
Fisher Callhome Spanish [38], FLEURS [39], Googleilgn3 s
KsponSpeech [40], MagicData [41], ReazonSpeech [42],
Russian Open STT [43], VCTK [44], VoxForge [45], Vox-
Populi [46], and WSJ [47].

2.3. Model architectures

OWSM follows Whisper to utilize a Transformer encoder-decoder
architecture [1], where the encoder and decoder have the same num-
ber of layers. However, OWSM additionally employs a joint CTC
loss for ASR targets [48], which was empirically shown to stabi-
lize our training process. The input waveforms are converted to 80-
dimensional log Mel filterbanks with a window length of 25ms and
a hop length of 10ms. The extracted features are augmented using
SpecAugment [49] and normalized by their global mean and vari-
ance. The features are then processed by a two-dimensional convo-
lution module to reduce the sequence length. OpenAl Whisper [15]
always downsamples the sequence by 2, resulting in a time resolu-
tion of 20ms. Our OWSM v2 and v3 perform 4 times downsampling,
which further improves efficiency. The detailed configurations of
Transformer encoder and decoder layers are summarized in Table 1.
OWSM v1 and v3 use the same configurations as Whisper small and
medium, respectively, while OWSM V2 is slightly smaller than v3. *

For inference, OpenAl Whisper implements both greedy decod-
ing and beam search with temperature fallback. The latter is a com-
plicated procedure relying on many heuristics and hyperparameters
such as beam sizes, temperatures, log probability threshold, and gzip
compression rate threshold. Our OWSM utilizes the ESPnet frame-
work [22], thereby ensuring compatibility with various decoding al-
gorithms originally supported by ESPnet, including greedy search,
beam search, and joint CTC/attention decoding (for ASR only) [50].

3Resources 32, 35, 36, 37, 41, 42, 43, 44, 52, 53, 54, 61, 63, 64, 65, 66,
69,70, 71,72,73,74,75,76,71,78, 79, and 86 from openslr.org.

4OWSM has slightly more parameters than Whisper under the same con-
figuration, because the ESPnet model has a larger convolution downsampling
module and does not share the input embedding and output projection in its
decoder.
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Table 1: Details of data, model architectures, and training config-
urations. We gradually increase data and model sizes from vl to
v3. The model configurations of OWSM v1 and v3 match those of
Whisper small and medium, respectively. Although OWSM v3 cov-
ers more languages than Whisper, our data size remains significantly
smaller, making our task much more challenging. *Our v3 model is
initialized with the pre-trained v2 to reduce training time (see Sec-
tion 2.5).

OpenAl Whisper OWSM (ours)
small medium large v1 v2 = v3”
Data
Total hours (k) 680 38 129 180
- English ASR 438 22 67 73
- Multilingual ASR 117 1 22 67
- Translation 125 15 40 40
Languages 99 22 23 151
BPE vocabulary size 51,865 20k S0k 50k
Model architectures
Parameters (M) 244 769 1550 272 712 889
Hidden size 768 1024 1280 768 1024 1024
Layers 12 24 32 12 18 24
Attention heads 12 16 20 12 16 16
Time resolution (ms) 20 20 20 20 40 40
Training configurations
Batch size 256 256
Total updates 1,048,576 300k 500k 470k
Warmup updates 2048 10k 20k 10k
Learning rate Se-4 2.5e-4 1.75e-4 le-3 Se-4 2.5e-4
Optimizer AdamW AdamW
Joint CTC weight NA 0.3

2.4. Training details

OWSM is implemented in ESPnet [22] based on PyTorch [51]. Ta-
ble 1 compares the training hyperparameters of different models.
OWSM uses the same batch size as Whisper, but the number of to-
tal updates is smaller. OWSM is trained on NVIDIA A100 (40GB)
GPUs. Each GPU takes two samples, and gradient accumulation
is applied whenever necessary to ensure the total batch size is 256.
Specifically, OWSM vl is trained for around 7 days on 32 A100
GPUs and OWSM v2 and v3 are trained for around 10 days on 64
A100 GPUs. After training, five checkpoints with the highest vali-
dation accuracies are averaged to generate the final checkpoint.

2.5. Challenges and training tips

Large-scale distributed training presents significant challenges, par-
ticularly when the computation budget is limited. As we scale up
from a few thousand hours of data to nearly 200 thousand hours, we
have encountered a range of issues. Here, we discuss some of the
challenges and provide valuable training tips to help overcome these
obstacles effectively. We will release our scripts that support these
techniques.

Time resolution: Whisper employs a time resolution of 20ms
within its encoder module, resulting in a sequence length of 1500 for
30-second inputs. This significantly increases GPU memory con-
sumption and makes training slower and more difficult. In con-
trast, contemporary state-of-the-art ASR and ST models [52-55]
adopt larger downsampling rates. Starting from OWSM v2, we have
adopted a time resolution of 40ms, effectively reducing the sequence

Table 2: WER % ({) of English ASR using greedy search. Ope-
nAl Whisper uses 438k hours of English ASR data, while OWSM
uses at most 73k hours. As shown in Table 1, the configurations of
OWSM vl and v3 match those of Whisper small and medium, re-
spectively. Whisper large is significantly larger, so it is not included
in the comparison. The larger degradation of OWSM v3 on WSJ
is likely caused by inconsistent case and punctuation of the training
data (see the last paragraph in Section 2.5). The gray color means
OWSM is better than Whisper small and medium.

Dataset OpenAl Whisper OWSM (ours)

small medium vl v2 v3

Common Voice en 15.7 11.9 20.1 144 145
FLEURS en 9.6 6.4 132 109 109
LibriSpeech test-clean 3.3 2.8 5.4 22 2.7
LibriSpeech test-other 7.7 6.5 109 = 5.1 6.0
Switchboard eval2000  22.2 19.4 287 204 @ 17.2
TEDLIUM test 4.6 5.1 6.6 4.6 4.8
VoxPopuli en 8.5 7.6 142 103 92
WSJ eval92 4.3 2.9 43 37 1341

length and mitigating the associated computational demands. We
have also found that a shorter sequence length facilitates easier con-
vergence of the model.

Joint ASR CTC loss: In our preliminary experiments, we
observed suboptimal convergence of the attention-based encoder-
decoder model trained on multiple tasks and diverse data. Incorpo-
rating a joint ASR CTC loss [48] to the encoder output can stabilize
training and expedite convergence.

Warm initialization: When training our largest model, OWSM
v3, we employ a warm initialization technique by leveraging the pre-
trained OWSM v2. Specifically, the first 18 layers of OWSM v3 are
initialized with v2 (which has precisely 18 layers), whereas the re-
maining 6 layers are initialized randomly. This v3 model converges
much faster than training from scratch. However, it remains to be
investigated whether a warm initialization adversely affects the final
performance of the model.

Memory and efficiency issues: We have developed several
strategies to address memory and efficiency issues caused by
large data. To train the BPE tokenization models using Senten-
cePiece [56], we randomly select 10 million text transcriptions
instead of using the whole set to reduce memory usage. For train-
ing, the entire text file is too large to be distributed across different
workers. We partition the training set into 5 to 12 non-overlapping
subsets and use multiple data iterators to construct mini-batches.
We further filter out samples with extremely long transcriptions
(e.g., greater than 600 tokens including both prompt and target)
which are caused by incorrect alignments in the original corpus
(e.g., Common Voice). Without such filtering, the training will
occasionally encounter out-of-memory errors. Additionally, we val-
idate intermediate checkpoints using only 10% of the full validation
set. This might generate slightly inaccurate estimates of the actual
performance, but it significantly reduces the validation time and thus
allows for more frequent validation and checkpoint saving, which is
crucial for large-scale distributed training. In fact, we encountered
various failures mainly due to file system or communication errors,
and we had to manually resume from previous checkpoints.

Inconsistent case and punctuation. Our training data is gath-
ered from many public corpora. Some of them provide raw tran-
scripts in true case with punctuation, but the others only provide



Table 3: WER/CER % () of multilingual ASR using greedy search. Training data sizes (in hours) are also provided. The gray color means
OWSM is better than Whisper small and medium.

Dataset Language Metric OpenAl Whisper OWSM v1 OWSM v2 OWSM v3
hours small medium hours result hours result hours result

English 438k 9.1 10.2 22k 13.7 67k 6.7 73k 7.4

Spanish 11k 9.1 6.1 0.1k 372 1.0k 11.7 2.0k 117

French 10k 13.6 9.7 0.3k 418 13k 130 25k 14.1

- oo German 13k 11.5 8.1 02k 433 22k 11.8 3.7k 119
Multilingual LibriSpeech "y - WER 50 182 122 0007 787 L6k 169 17k 177
Italian 2.6k 213 15.6 0.0k 549 03k 231 0.7k 245

Portuguese 8.6k 13.8 8.9 0.009k 909 0.2k 31.8 03k 282

Polish 43k 125 6.8 0 NA 0.1k 8.7 03k 370

AISHELL-1 Chinese 23k 25.1 15.7 0.2k 22.6 15k 5.9 16k 7.1
KsponSpeech eval-clean 24.0 17.6 20.5
KsponSpeech eval-other Korean CER 8k 15.4 12.8 0 NA 0 NA 1.0k 22.6
ReazonSpeech Japanese 7k 32.5 25.3 ~0 NA ~0 NA 19k 11.3

Table 4: WER % () of long-form ASR on the TEDLIUM2 test set.
Unsegmented long talks are transcribed in chunks of 30 seconds. It
is shifted based on predicted timestamps.

Beamsize OPSRAI Whisper - OWSM (ours)
small medium v2 v3
1 4.4 3.8 72 9.2
5 42 3.8 6.6 7.6

normalized transcripts in lower or upper case without any punctua-
tion. During inference, we find that OWSM models are so powerful
that they are able to recognize the corpus and generate outputs that
are consistent with the training data format. For example, the train-
ing data of WSJ is in upper case. When tested on WSJ test sets,
OWSM also mostly generates text in upper case. Since only a very
small portion of training data is in upper case, OWSM v3 performs
poorly on WSJ (see Table 2). In the future, we will normalize the
text to address this issue. Note that this analysis demonstrates the
benefit of using public data and open-source code, without which
we cannot discover such issues.

3. EXPERIMENTS

3.1. English speech recognition

Table 2 presents word error rates (WER) on standard English ASR
benchmarks. Greedy search is employed without any external lan-
guage models. To ensure fair comparison, we prepare all test data
in ESPnet and evaluate Whisper in the same setup instead of report-
ing results from their paper [15]. The text is normalized using the
English or basic normalizer provided by Whisper. Whisper large is
not included since it is significantly larger than the other models. Al-
though many public ASR corpora are combined, our English training
data is still significantly smaller than that of Whisper (73k vs 438k
hours). However, our OWSM models achieve competitive results
in most benchmarks. OWSM models even outperform Whisper on
LibriSpeech and Switchboard.

By comparing different versions of OWSM, we observe that
its English ASR capability is largely improved from vl to v2,
demonstrating the effectiveness of scaling up in terms of the number
of model parameters and the amount of training data. However,

OWSM v3 does not show a consistent improvement over v2 in all
benchmarks. OWSM v3 achieves lower WERs on Switchboard
and VoxPopuli test sets, likely because their training sets are newly
added (see Section 2.2). OWSM v3 has slight degradations on Lib-
riSpeech and a large degradation on WSJ. This is probably due to
the shift of data distributions from v2 to v3. As shown in Table 1,
our v3 dataset contains significantly more languages compared to
v2 (151 vs 23), but the model size is only slightly increased (889M
vs 712M). Hence, the model has to adjust its capacity from English
to other languages or from one type of speech to another type. This
issue might be mitigated with larger models and more diverse data.
We will explore it in the future. Please refer to the last paragraph in
Section 2.5 for more discussions.

We have also investigated the inference speed. Specifically, we
select 50 utterances of 30 seconds from our prepared TEDLIUM
dev set, and decode OWSM v3 with greedy search using a single
NVIDIA A40 GPU. The average decoding time for each 30-second
utterance is 2.3 seconds.

3.2. Multilingual speech recognition

Table 3 shows the ASR results on multilingual benchmarks. In gen-
eral, OpenAl Whisper achieves better performance than our OWSM,
because Whisper employs significantly more training data in all lan-
guages except Japanese. For Japanese, OWSM v3 outperforms
Whisper by a large margin (CER: 11.3 vs 25.3) thanks to the larger
amount of training data (19k vs 7k hours) from ReazonSpeech [42].
Notably, OWSM v2 achieves the best results on the English and
Chinese test sets from Multilingual LibriSpeech and AISHELL,
respectively, despite being trained on less data.

The trend across different versions of OWSM is consistent with
that in Section 3.1. OWSM v2 is drastically improved compared to
v1 in all languages, which verifies the benefits of scaling up. OWSM
v3 outperforms v2 in a few languages but achieves comparable or
slightly worse results in the others. Again, this is likely because the
model needs to adjust its capacity to support much more languages
in v3.

3.3. Long-form speech recognition

Similar to Whisper, OWSM performs long-form ASR by consecu-
tively transcribing 30-second audio segments and shifting the win-



Table 5: Examples of ASR on 30-second audio segments, generated by OWSM v2 using greedy search. Utterances can be segmented in
different ways, but the predicted timestamps are usually accurate. Differences between the reference and prediction are marked in red.

#

Groundtruth from the dev set of MuST-C v2

Prediction by OWSM v2

1

<en><asr><0.00> I'm going to talk today about energy and cli-
mate.<3.50><4.28> And that might seem a bit surprising, because
my full-time work at the foundation is mostly about vaccines and seeds,
about the things that we need to invent and deliver to help the poorest
two billion live better lives.<18.38><19.64> But energy and climate
are extremely important to these people; in fact, more important than
to anyone else on the planet.<28.52>

<en><asr><0.00> I'm going to talk today about energy and cli-
mate.<3.52><4.26> And that might seem a bit surprising, because
my full-time work at the foundation is mostly about vaccines and seeds,
about the things that we need to invent and deliver to help the poorest
two billion live better lives.<18.40><19.62> But energy and climate
are extremely important to these people, in fact more important than to
anyone else on the planet.<28.52>

<en><asr><0.00> Several years ago here at TED, Peter Skill-
man introduced a design challenge called the marshmallow
challenge.<5.60><5.80> And the idea’s pretty simple: Teams of
four have to build the tallest free-standing structure out of 20
sticks of spaghetti, one yard of tape, one yard of string and a
marshmallow.<16.52><16.52> The marshmallow has to be on
top.<18.18><18.54> And, though it seems really simple, it’s ac-
tually pretty hard because it forces people to collaborate very
quickly.<25.04><25.42> And so, I thought this was an interesting

idea, and I incorporated it into a design workshop.<29.72>

<en><asr><0.00> Several years ago here at TED, Peter Skillman
introduced a design challenge called the Marshmellow Challenge, and
the idea is pretty simple.<7.32><7.50> Teams of four have to build
the tallest freestanding structure out of 26 of spaghetti, one yard of tape,
one yard of string and a marshmallow.<16.50><16.54> The marsh-
mallow has to be on top.<18.20><18.54> And though it seems really
simple, it’s actually pretty hard because it forces people to collaborate
very quickly.<25.04><25.44> And so I thought this was an interest-
ing idea, and I incorporated it into a design workshop.<30.00>

Table 6: BLEU % (7) of speech translation. OpenAl Whisper sup-
ports any-to-English translation. OWSM can support more direc-
tions. The sizes of training sets (in hours) are also provided.

Dataset Source  Target OpenAl Whisper OWSMv2  OWSM v3
hours small medium hours result hours result

German 14k 28.5 14k 279

Chinese 14k 20.5 14k  20.7

MuST-C English Japanese NA 1.0k 105 1.0k 94
Spanish 0.5k 234 0.5k 225

French 0.5k 28.5 0.5k 262

German 43k 262 348 02k 186 02k 18.0

Chinese 12k 63 13.6 00lk 3.0 001k 33

CoVoST Japanese English 8.9k 159 22.9 0.001k 0.1 0.001k 0.1
Spanish 6.7k 342 40.2 0.1k 249 0.1k 227

French 45k 27.8 348 03k 260 03k 237

Table 7: Accuracy % (1) of language identification. OWSM v3 sup-
ports 151 languages, whereas Whisper supports 99 languages.

Dataset OpenAl Whisper ~ OWSM (ours)
small medium v3
FLEURS 53.1 54.8 81.4

dow based on predicted timestamps. Table 4 presents the long-form
ASR results on the TEDLIUM test set, where each input audio is
an unsegmented long talk. OWSM v2 achieves 7.2% WER with
greedy decoding and 6.6% WER with beam search. Whisper models
achieve lower WERs in both cases, likely because: (1) their training
set is larger; (2) their data, collected from the Internet, is originally
in a long form, which can be more realistic than ours; (3) they apply
various heuristics to improve the timestamp prediction and also the
quality of text (see Section 4.5 in their official report [15]). In our fu-
ture work, we will explore more strategies to enhance the long-form
performance.

Table 5 shows two examples from TED talks, where timestamps
are generated along with text tokens. Although utterances can be

Table 8: WER/CER % ({) of OWSM v3 using different decoding
algorithms in ESPnet.

Dataset Metric CTC Attention Joint CTC/attention
Common Voice en 18.6 14.5 12.9
FLEURS en 17.3 10.9 9.7
LibriSpeech test-clean 4.5 2.7 2.6
LibriSpeech test-other WER 8.1 6.0 54
Switchboard eval2000 19.4 17.2 16.6
TEDLIUM test 6.7 4.8 4.7
VoxPopuli en 12.3 9.2 8.7
WSJ eval92 32.0 13.4 114
AISHELL-1 test CER 9.2 7.1 6.5
ReazonSpeech test 17.0 11.3 10.3

segmented in different ways, the boundaries predicted by OWSM
are usually very close to the reference.

3.4. Speech translation

Table 6 compares different models on two ST benchmarks: MuST-C
(English-to-X) and CoVoST (X-to-English). Whisper only supports
the latter, while OWSM supports both directions.

OWSM models achieve notable results on MuST-C thanks to
the sufficient amount of training data (more than 500 hours for each
language). The BLEU scores of Chinese and Japanese are lower than
those of European languages even with enough training data. This
indicates that the model has difficulty in translating between very
different languages.

On CoVoST, the performance of OWSM ranges across language
pairs as the amount of training data varies from 1 to 300 hours. On
Chinese and Japanese, OWSM outputs have low intelligibility while
on the European languages OWSM outputs are moderately intelligi-
ble. On the other hand, Whisper is trained on 4k to 12k hours and
thus achieves greater BLEU scores on X-to-English in general.

Similar to the findings in Section 3.1 and Section 3.2, OWSM v3
shows comparable or slightly worse performance than OWSM v2.
This is because OWSM v3 employs almost the same amount of ST



data but it has to recognize drastically more languages (see Table 1).
Some of its capacity needs to be assigned to these additional lan-
guages.

3.5. Language identification

As described in Section 2.1 and Figure 1, OWSM predicts a lan-
guage token at the beginning of decoding, which effectively per-
forms the LID task. Table 7 compares Whisper and OWSM on the
FLERUS test set prepared in ESPnet. OWSM v3 achieves a top-1 ac-
curacy of 81.4%, which outperforms Whisper small and medium by
a large margin. This is because OWSM v3 utilizes the training data
from Common Voice and FLEURS, containing 151 languages in to-
tal, whereas Whisper supports 99 languages that only cover a subset
of the languages in FLEURS. Nevertheless, this result demonstrates
that OWSM has a strong capability in speech classification although
it is designed as a sequence-to-sequence model.

3.6. Comparison of decoding algorithms

OWSM is compatible with various decoding algorithms in ESP-
net. Table 8 compares three commonly used algorithms: CTC
only (greedy), attention only (greedy), and joint CTC/attention
(with beam size 10 and CTC weight 0.3). Beam search with joint
CTCl/attention achieves the best results in all test sets. Attention-
only decoding outperforms CTC-only, indicating that the decoder
has strong capacity.

4. DISCUSSIONS AND FUTURE DIRECTIONS

This work serves as an exploratory endeavor in reproducing Whisper-
style training using open-source resources. Moving forward, we will
delve into the following directions.

Firstly, the current OWSM still falls behind Whisper in many
benchmarks, likely because: (1) OWSM supports more languages
and more translation directions, which increases the difficulty of
multitask learning; (2) our training set is significantly smaller than
that of Whisper in nearly all languages and tasks; (3) we directly
leverage public ASR and ST corpora which may be less diverse than
Whisper’s data collected from the Internet. These issues can prob-
ably be addressed by utilizing more advanced encoder [52-54, 57]
or decoder [58] architectures, collecting more diverse ASR and ST
data from public sources, and incorporating self-supervised speech
representations [8,9] as in Google USM [18].

Secondly, we plan to incorporate additional speech processing
tasks into the multitask framework, including spoken language un-
derstanding and speech generation based on discrete representations,
thereby working towards the development of “universal speech mod-
els”.

Thirdly, these large pre-trained models are unsuitable for de-
ployment in real-world applications. Various compression tech-
niques [59-64] can be applied to reduce the model size and compu-
tation.

Fourthly, OWSM provides a valuable testbed for investigating
and exploring various machine learning problems such as data im-
balance, continual learning [65], adversarial robustness [66], and
machine unlearning [67].

5. CONCLUSION

This work presents OWSM, which reproduces Whisper-style train-
ing using an open-source toolkit and publicly available data. OWSM

follows the multitask framework of OpenAl Whisper, but extends it
to support more translation directions. Several strategies are devel-
oped to improve efficiency. We will open-source all scripts for data
preparation, training, inference, and scoring as well as pre-trained
models and training logs. We believe this can promote transparency
and facilitate advancements in the large-scale pre-training of speech
models.

6. ACKNOWLEDGEMENTS

We use PSC Bridges2 and NCSA Delta via ACCESS allocation
CIS210014, supported by National Science Foundation grants
#2138259, #2138286, #2138307, #2137603, and #2138296.

7. REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Proc. NeurIPS,
2017.

[2] Tom Brown et al., “Language models are few-shot learners,”
2020.

[3] Jack W Rae et al., “Scaling language models: Methods, analy-
sis & insights from training gopher,” arXiv:2112.11446,2021.

[4] Aakanksha Chowdhery et al., “Palm: Scaling language mod-
eling with pathways,” arXiv:2204.02311, 2022.

[5] Susan Zhang et al., “Opt: Open pre-trained transformer lan-
guage models,” arXiv:2205.01068, 2022.

[6] Hugo Touvron et al., “Llama: Open and efficient foundation
language models,” arXiv:2302.13971, 2023.

[7]1 OpenAl, “GPT-4 Technical Report,” arXiv:2303.08774, 2023.

[8] Alexei Baevski, Yuhao Zhou, et al., “wav2vec 2.0: A frame-
work for self-supervised learning of speech representations,”
in Proc. NeurIPS, 2020.

[9] Wei-Ning Hsu et al., “HuBERT: Self-Supervised Speech Rep-
resentation Learning by Masked Prediction of Hidden Units,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 29, pp.
3451-3460, 2021.

[10] Arun Babu, Changhan Wang, Andros Tjandra, et al., “XLS-R:
Self-supervised Cross-lingual Speech Representation Learning
at Scale,” in Proc. Interspeech, 2022.

[11] Shu wen Yang et al., “SUPERB: Speech Processing Universal
PERformance Benchmark,” in Proc. Interspeech, 2021.

[12] Abdelrahman Mohamed et al., “Self-supervised speech rep-
resentation learning: A review,” [EEE J. Sel. Topics Signal
Process., vol. 16, no. 6, pp. 1179-1210, 2022.

[13] Xuankai Chang, Takashi Maekaku, et al., “An exploration
of self-supervised pretrained representations for end-to-end
speech recognition,” in Proc. ASRU, 2021.

[14] Yifan Peng et al., “A Study on the Integration of Pre-trained
SSL, ASR, LM and SLU Models for Spoken Language Under-
standing,” in Proc. SLT, 2022.

[15] Alec Radford et al., “Robust speech recognition via large-scale
weak supervision,” arXiv:2212.04356, 2022.

[16] William Chan et al., “Speechstew: Simply mix all available
speech recognition data to train one large neural network,”
arXiv:2104.02133,2021.



[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

Bo Li et al., “Scaling end-to-end models for large-scale multi-
lingual asr,” in Proc. ASRU, 2021.

Yu Zhang et al., “Google USM: Scaling automatic speech
recognition beyond 100 languages,” arXiv:2303.01037, 2023.

Paul Pu Liang et al., “Towards understanding and mitigating
social biases in language models,” in Proc. ICML, 2021.

Jindong Wang et al., “On the robustness of chatgpt: An adver-
sarial and out-of-distribution perspective,” arXiv:2302.12095,
2023.

Sébastien Bubeck et al.,
ligence: Early experiments with gpt-4,”
2023.

Shinji Watanabe et al., “ESPnet: End-to-End Speech Process-
ing Toolkit,” in Proc. Interspeech, 2018.

Hui Bu et al., “AISHELL-1: An open-source Mandarin
speech corpus and a speech recognition baseline,” in Proc.
O-COCOSDA, 2017.

Changhan Wang et al., “CoVoST 2 and Massively Multilingual
Speech Translation,” in Interspeech, 2021.

“Sparks of artificial general intel-
arXiv:2303.12712,

Guoguo Chen et al., “GigaSpeech: An Evolving, Multi-
Domain ASR Corpus with 10,000 Hours of Transcribed Au-
dio,” in Proc. Interspeech, 2021.

Vassil Panayotov et al., “Librispeech: An ASR corpus based
on public domain audio books,” in ICASSP, 2015.

Roldano Cattoni et al., “Must-c: A multilingual corpus for
end-to-end speech translation,” Computer speech & language,
vol. 66, pp. 101155, 2021.

Patrick K O’Neill et al., “Spgispeech: 5,000 hours of tran-
scribed financial audio for fully formatted end-to-end speech
recognition,” arXiv:2104.02014, 2021.

Frangois Hernandez et al., “Ted-lium 3: Twice as much data
and corpus repartition for experiments on speaker adaptation,”
in Speech & Computer, 2018, pp. 198-208.

Rong Ye et al., “Gigast: A 10,000-hour pseudo speech transla-
tion corpus,” arXiv:2204.03939, 2022.

Vineel Pratap et al., “Mls: A large-scale multilingual dataset
for speech research,” arXiv:2012.03411, 2020.

Binbin Zhang et al., “Wenetspeech: A 10000+ hours multi-
domain mandarin corpus for speech recognition,” in Proc.
ICASSP, 2022.

“aidatatang_200zh, a free Chinese Mandarin speech corpus by
Beijing DataTang Technology Co., Ltd,” .

Jean Carletta, “Unleashing the killer corpus: experiences in
creating the multi-everything AMI Meeting Corpus,” Lang.
Res. Eval., vol. 41, pp. 181-190, 2007.

“The babel program: https://www.iarpa.gov/index.php/research-
programs/babel,” .

Rosana Ardila et al.,  “Common voice: A massively-
multilingual speech corpus,” arXiv:1912.06670, 2019.

J.J. Godfrey et al., “SWITCHBOARD: telephone speech cor-
pus for research and development,” in Proc. ICASSP, 1992.

Matt Post et al., “Improved speech-to-text translation with the
fisher and callhome Spanish-English speech translation cor-
pus,” 2013.

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Alexis Conneau et al., “FLEURS: Few-Shot Learning Evalu-
ation of Universal Representations of Speech,” in Proc. SLT,
2022.

Jeong-Uk Bang et al., “Ksponspeech: Korean spontaneous
speech corpus for automatic speech recognition,” Applied Sci-
ences, vol. 10, no. 19, pp. 6936, 2020.

Zehui Yang et al., “Open source magicdata-ramc: A rich
annotated mandarin conversational (ramc) speech dataset,”
arXiv:2203.16844, 2022.

Yue Yin, Daijiro Mori, et al., “ReazonSpeech: A Free and
Massive Corpus for Japanese ASR,” 2023.

Anna Slizhikova et al.,
(STT/ASR) Dataset,” 2020.

Junichi Yamagishi et al., “CSTR VCTK Corpus: English
Multi-speaker Corpus for CSTR Voice Cloning Toolkit,” 2019.

“Russian Open Speech To Text

“VoxForge: http://www.voxforge.org/,” .

Changhan Wang et al., “VoxPopuli: A Large-Scale Mul-
tilingual Speech Corpus for Representation Learning, Semi-
Supervised Learning and Interpretation,” in Proc. ACL, 2021.

“The design for the Wall
in Proc. Workshop on

Douglas B Paul and Janet Baker,
Street Journal-based CSR corpus,”
Speech and Natural Language, 1992.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe, “Joint ctc-
attention based end-to-end speech recognition using multi-task
learning,” in Proc. ICASSP, 2017.

Daniel S. Park, William Chan, et al., “SpecAugment: A Sim-
ple Data Augmentation Method for Automatic Speech Recog-
nition,” in Proc. Interspeech, 2019.

Takaaki Hori, Shinji Watanabe, and John R Hershey, “Joint
CTCl/attention decoding for end-to-end speech recognition,” in
Proc. ACL, 2017.

A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” in NeurlPS, 2019.

Anmol Gulati et al., “Conformer: Convolution-augmented
Transformer for Speech Recognition,” in Proc. Interspeech,
2020.

Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watan-
abe, “Branchformer: Parallel MLP-attention architectures to
capture local and global context for speech recognition and un-
derstanding,” in Proc. ICML, 2022.

Kwangyoun Kim et al., “E-Branchformer: Branchformer with
Enhanced Merging for Speech Recognition,” in Proc. SLT,
2022.

Sehoon Kim et al., “Squeezeformer: An efficient transformer
for automatic speech recognition,” in Proc. NeurIPS, 2022.

Taku Kudo and John Richardson, “SentencePiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing,” 2018.

Yifan Peng et al., “A Comparative Study on E-Branchformer
vs Conformer in Speech Recognition, Translation, and Under-
standing Tasks,” in Proc. Interspeech, 2023.

Koichi Miyazaki, Masato Murata, and Tomoki Koriyama,
“Structured State Space Decoder for Speech Recognition and
Synthesis,” in Proc. ICASSP, 2023.



[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Heng-Jui Chang et al., “DistilHuBERT: Speech representation
learning by layer-wise distillation of hidden-unit BERT,” in
Proc. ICASSP, 2022.

Cheng-I Jeff Lai et al., “PARP: Prune, Adjust and Re-Prune
for Self-Supervised Speech Recognition,” in Proc. NeurlPS,
2021.

Yifan Peng et al., “Structured Pruning of Self-Supervised Pre-
trained Models for Speech Recognition and Understanding,” in
Proc. ICASSP, 2023.

Yifan Peng, Yui Sudo, et al., “DPHuBERT: Joint Distillation
and Pruning of Self-Supervised Speech Models,” in Proc. In-
terspeech, 2023.

Yizeng Han, Gao Huang, et al., “Dynamic neural networks: A
survey,” vol. 44, no. 11, pp. 7436-7456, 2021.

Yifan Peng, Jaesong Lee, et al., “I3D: Transformer architec-
tures with input-dependent dynamic depth for speech recogni-
tion,” in Proc. ICASSP, 2023.

German [ Parisi, Ronald Kemker, et al., “Continual lifelong
learning with neural networks: A review,” Neural networks,
vol. 113, pp. 54-71, 2019.

Raphael Olivier and Bhiksha Raj, “There is more than one
kind of robustness: Fooling whisper with adversarial exam-
ples,” arXiv:2210.17316, 2022.

Thanh Tam Nguyen et al., “A survey of machine unlearning,”
arXiv:2209.02299, 2022.



	 Introduction
	 Whisper-style training
	 Multitask data format
	 Data preparation
	 Model architectures
	 Training details
	 Challenges and training tips

	 Experiments
	 English speech recognition
	 Multilingual speech recognition
	 Long-form speech recognition
	 Speech translation
	 Language identification
	 Comparison of decoding algorithms

	 Discussions and future directions
	 Conclusion
	 Acknowledgements
	 References

