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ABSTRACT

It is challenging to build a multi-singer high-fidelity singing voice
synthesis system with cross-lingual ability by only using mono-
lingual singers in the training stage. In this paper, we propose
CrossSinger, which is a cross-lingual singing voice synthesizer
based on Xiaoicesing2. Specifically, we utilize International Pho-
netic Alphabet to unify the representation for all languages of the
training data. Moreover, we leverage conditional layer normaliza-
tion to incorporate the language information into the model for better
pronunciation when singers meet unseen languages. Additionally,
gradient reversal layer (GRL) is utilized to remove singer biases
included in lyrics since all singers are monolingual, which indicates
singer’s identity is implicitly associated with the text. The experi-
ment is conducted on a combination of three singing voice datasets
containing Japanese Kiritan dataset, English NUS-48E dataset, and
one internal Chinese dataset. The result shows CrossSinger can
synthesize high-fidelity songs for various singers with cross-lingual
ability, including code-switch cases.

Index Terms— Singing voice synthesis, Cross-lingual, Genera-
tive adversarial network, Conditional layer normalization

1. INTRODUCTION

With the advancements in deep learning and the continuous evolu-
tion of computing resources, speech synthesis has experienced sig-
nificant progress, especially in acoustic models [1, 2, 3, 4, 5] and
vocoders [6, 7, 8]. These two key components play crucial roles in
modern speech synthesis systems. Given the similarity in workflow
between speech synthesis and singing voice synthesis (SVS), the re-
cent breakthroughs in the speech synthesis community [9, 10, 11]
have also greatly benefited the field of SVS. Consequently, SVS
has gained considerable attention from both academia and industry.
Notably, the architectural framework of Fastspeech2 [5] has been
adopted in singing voice synthesis models such as Xiaoicesing [11]
and its improved version, Xiaoicesing2 [12]. These models have
demonstrated the capability to generate high-fidelity singing voices.
Additionally, SingGAN [13] effectively employed the sine excitation
method originally proposed in [7] to synthesize high-quality singing
voices.

The cross-lingual scenario is a pivotal topic within the speech
synthesis community, given the prevalence of multilingual speakers
in today’s world [14]. Numerous studies [15, 16, 17] have focused on
addressing this aspect. However, when it comes to SVS, the cross-
lingual scenario remains relatively unexplored. In reality, most pro-
fessional singers are proficient in only one language, which restricts

*These authors contributed equally to this work.

many foreign fans from experiencing their unique timbres and ex-
pressive styles in different languages. Consequently, the develop-
ment of a high-fidelity singing voice system with cross-lingual capa-
bilities is essential to cater to their diverse needs, achieved through
training on monolingual singers.

To this end, in this paper, we extend the monolingual high-
fidelity SVS system Xiaoicesing2 [12] to a cross-lingual multi-
singer singing voice synthesizer, CrossSinger, by utilizing a unified
representation space and incorporating language information into
the model. Specifically, we first unify the phonetic representa-
tion for all languages by using the International Phonetic Alphabet
(IPA). In this way, all languages can share the same representation
space, even if they have different grapheme sets and pronunciations
[14]. Additionally, we incorporate the language information into
the model to enable it to learn the intrinsic rules and grammar for
each language during the training stage. To achieve this, we employ
conditional layer normalization (CLN) [18] to fuse the language
information when synthesizing the corresponding mel-spectrogram.
Furthermore, since all singers in our training dataset are monolin-
gual singers, their identities become implicitly associated with the
input lyrics. This association can introduce biases when the model
learns from this data without special consideration. To address
this issue, we introduce a singer bias eliminator, comprising a singer
classifier and a gradient reversal layer [19], to remove singer-specific
information from the lyrics.

In the experiment, we train CrossSinger using a combination of
three datasets: the Japanese Kiritan [20] dataset, the English NUS-
48E [21] dataset, and a single-singer Chinese dataset. The experi-
mental results demonstrate that our CrossSinger can generate singing
voices with high naturalness and intelligibility in the cross-lingual
scenario, including code-switch cases.

The remainder of this paper is organized as follows. In Section
2, we provide a brief review of Xiaoicesing2 [12], as our CrossSinger
model is built upon it. The detailed architecture and methodology of
CrossSinger are presented in Section 3. In Section 4, we showcase
the experimental results*. Finally, we conclude this paper in Sec-
tion 5, summarizing the key findings and discussing potential future
directions.

2. REVIEW OF XIAOICESING2

Xiaoicesing2 [12] is a state-of-the-art monolingual high-fidelity
singing voice synthesizer that leverages generative adversarial net-
works (GAN) [22]. The model consists of a generator, adapted
from Fastspeech2 [5], and a multi-band discriminator similar to

*Demo page: https://wavelandspeech.github.io/CrossSinger
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HiFiSinger [23]. Notably, the authors enhance the architecture of
the feed-forward Transformer (FFT) block [24] in the generator
by integrating multiple residual 1-d convolutional blocks in paral-
lel with the multi-head attention module to fuse global and local
features effectively [12]. The training process involves combining
acoustic loss [5] and feature match loss [25] with the adversarial
loss proposed in LS-GAN [26] to train the generator effectively.

Regarding the discriminator, due to the demanding nature of
high-fidelity SVS at a high sampling rate (e.g., 48kHz), which re-
quires generating high-resolution mel-spectrograms with frequency
ranges exceeding 20kHz, the authors employ a multi-discriminator
approach. They divide the entire mel-spectrogram into multiple sub-
band areas and apply a dedicated discriminator for each sub-band
mel-spectrogram. Specifically, a group of segment discriminators
[23] and detail discriminators [27, 28, 29] are combined to accu-
rately differentiate between real audio and generated sub-band mel-
spectrograms.

Experimental evaluation conducted on an internal single-singer
Chinese dataset showcases the remarkable capability of Xiaoic-
esing2 in generating high-quality singing voices that rival human
performance. Additionally, the ablation study presented in [12]
highlights the significant improvement in MOS score achieved
through adversarial training when compared to the counterpart with-
out discriminators.

3. CROSSSINGER

While Xiaoicesing2 has demonstrated its ability to synthesize high-
fidelity singing voices, it falls short in handling the cross-lingual
scenario, where the model needs to generate singing voices based
on foreign lyrics for a monolingual singer [14]. To overcome this
limitation, we propose an innovative approach that incorporates lan-
guage information and singers’ identities into Xiaoicesing2, giving
rise to a novel cross-lingual multi-singer singing voice synthesizer
named CrossSinger. The architecture of CrossSinger is depicted in
Figure 1, with our contributions represented by the highlighted yel-
low blocks. For conciseness, we showcase only the updated gener-
ator of CrossSinger in this figure, as the discriminator remains un-
changed. Subsequently, in the forthcoming sections, we delve into
the comprehensive explanation of CrossSinger, illuminating how it
effectively learns cross-lingual capabilities through training solely
on monolingual singers.

3.1. Phonetic representation

One of the primary challenges in constructing a cross-lingual speech
or singing voice synthesizer is achieving a unified representation for
all languages, a topic that has been explored in speech synthesis
studies [30, 31, 32]. In this work, we adopt the approach presented
in [31], utilizing the International Phonetic Alphabet (IPA) to rep-
resent all phonemes across languages. As illustrated in Figure 1,
the musical score is parsed into three sequences: the phoneme se-
quence, note duration sequence, and note pitch sequence. Similar
to the transformations in Xiaoicesing2, where these sequences are
mapped to individual embedding spaces, we perform similar opera-
tions in CrossSinger. However, the phoneme set used in CrossSinger
is larger compared to Xiaoicesing2, given the inclusion of multiple
languages. Furthermore, the employment of a unified phonetic rep-
resentation space allows for similar pronunciations across different
languages to be denoted by a single phoneme, which proves to be
advantageous when enabling monolingual singers to sing in foreign
languages.
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Fig. 1. The architecture of the CrossSinger generator. Yellow blocks
denote the improvement parts compared with Xiaoicesing2.

3.2. Language conditional layer normalization

In addition to adopting a unified phonetic representation, explicitly
incorporating language information proves to be beneficial in learn-
ing the individual grammar and rules of each language. To achieve
this, we first transform the language information into a language em-
bedding space. Subsequently, the language embedding is fused with
the output of the feed-forward network (FFN) within the first Con-
vFFT block, as depicted in Figure 2. This fusion is achieved through
Conditional Layer Normalization (CLN) [18], involving two affine
layers that transform the language embedding into the scale (α) and
bias (β) parameters, respectively. These scale and bias parameters
are then applied to the output of the FFN. Mathematically, this can
be formulated as follows:

α = W⊤
α · el, (1)

β = W⊤
β · el, (2)

CLN(X) = α⊙ X − µ

σ
+ β, (3)

where el represents the language embedding†, while W α and W β

denote the parameters of the affine layers for scale α and bias β,
respectively. Additionally, µ and σ represent the mean and standard
deviation of the input X . Notably, CLN acts on each element of X ,
making it more efficient and flexible compared to simply concate-
nating the language embedding with X‡. It is important to mention
that we only utilize CLN in the first ConvFFT block of the encoder
since adding more CLN blocks does not contribute significantly to
the quality of the synthesized singing voices in our experiments.

†In this paper, all vectors are assumed to be column vectors.
‡⊙ denotes element-wise multiplication.
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Fig. 2. The architecture of ConvFFT block with conditional layer
normalization. CLN is used to replace the last layer normalization
of ConvFFT to introduce the language information.

3.3. Singer bias eliminator

In our training data, all singers are monolingual, and as a result,
the identity of the singer becomes implicitly associated with the lan-
guage of the input lyrics. This association may inadvertently cause
the model to learn unexpected biases between singers and languages
if left unaddressed. For instance, there could be phonemes that are
common in Chinese but rare in Japanese, leading Japanese singers to
unnaturally pronounce these Chinese phonemes in a Japanese style
due to the unintended leakage of the singer’s identity caused by this
association.

To overcome such biases, we implement a singer bias elimina-
tor applied to the output of the encoder, as depicted in Figure 1. The
detailed architecture of the singer bias eliminator is illustrated in Fig-
ure 3. It comprises a gradient reversal layer (GRL) [19] and a singer
classifier. The singer classifier consists of three 1-d convolutional
layers for feature extraction, followed by an average pooling layer
for aggregation, and a linear layer with a softmax function for singer
classification.

The transformation process of the singer bias eliminator can be
formulated as follows:

es = fθ(X
e) (4)

P (es, i) =
exp(w⊤

i · es)∑S
j=1 exp(w⊤

j · es)
, (5)

where Xe represents the output of the encoder. fθ denotes the trans-
formation with learnable parameters θ of GRL, convolutional lay-
ers, and the average pooling layer, whose output is denoted as the
speaker embedding es. P (es, i) represents the probability that the
speaker embedding es belongs to the i-th speaker, corresponding to
the linear layer with learnable parameters W = [w1,w2, ...,wS ]
and softmax function shown in Fig. 3. Here, S denotes the number
of singers in the training dataset. Due to GRL, the gradient from the
classifier is reversed, effectively removing the singer’s information

Singer ID

Conv1d + BN + ReLU

Conv1d + BN + ReLU

Conv1d + BN + ReLU

Average Pooling

Linear + Softmax

GRL

Fig. 3. The architecture of singer bias eliminator. It is utilized to
remove singer biases implicitly associated with lyrics.

implicitly associated with the lyrics. This process proves beneficial
in improving the naturalness when pronouncing foreign languages
for the singer.

3.4. Loss function

In addition to the adversarial loss Ladv , acoustic loss La, and feature
match loss Lf described in [12], we incorporate an additional singer
classification loss, represented by Eq. 6, to train the generator.

Ls = − 1

N

N∑
n

S∑
i=1

I(yni = 1) logP (es
n, i), (6)

where N represents the number of samples in the training dataset.
The function I(·) acts as an indicator function, returning 1 when the
condition is true, and 0 otherwise. Moreover, yni denotes the ground
truth of the singer’s identity.

4. EXPERIMENTS

4.1. Dataset

To comprehensively evaluate the effectiveness of our proposed
model, we conducted a series of experiments using a combination
of three datasets: a Japanese dataset called Kiritan [20], an En-
glish dataset NUS-48E [21], and an internal Chinese dataset. The
Japanese and Chinese datasets are both single-singer datasets, with
the former comprising 2.11 hours of singing voices and the latter
containing 8.95 hours of singing data. On the other hand, the En-
glish dataset is a multi-singer dataset with a total of 12 singers and
approximately 4.74 hours of singing voices.

For our experiments, we divided all datasets into training, devel-
opment, and test subsets, with an allocation ratio of 80%, 10%, and
10%, respectively, for training and evaluating CrossSinger. While
the training dataset includes all singers from all three languages, the
development and test datasets were limited to only five singers, en-
compassing the Japanese singer, the Chinese singer, and three En-
glish singers.



Table 1. MOS test result with 95% confidence interval for 48kHz singing voice synthesis. We evaluate the performance in three aspects,
including sound quality, pronunciation accuracy, and naturalness.

Systems Sound Quality(↑) Pronunciation Accuracy(↑) Naturalness(↑)

Ground truth 4.54± 0.034 4.78± 0.033 4.77± 0.033
XiaoiceSing2 + HiFi-WaveGAN 3.28± 0.075 3.32± 0.072 3.16± 0.077
CrossSinger + HiFi-WaveGAN 4.15 ± 0.052 4.42 ± 0.047 3.98 ± 0.058

Table 2. MOS test result with 95% confidence interval for the ablation study.

Systems Sound Quality(↑) Pronunciation Accuracy(↑) Naturalness(↑)

Ground truth 4.54± 0.034 4.78± 0.033 4.77± 0.033
CrossSinger + HiFi-WaveGAN 4.15± 0.052 4.42± 0.047 3.98± 0.058
- CLN 3.94± 0.058 3.77± 0.069 3.62± 0.061
- singer bias eliminator 4.02± 0.055 4.10± 0.044 3.42± 0.065

In the evaluation stage, we synthesized singing voices in all three
languages for each of the selected singers, allowing us to conduct
comprehensive listening tests and assess the cross-lingual perfor-
mance of CrossSinger.

4.2. Experimental settings

To demonstrate the cross-lingual ability of our proposed model,
CrossSinger, we employ Xiaoicesing2 as the baseline system. Both
Xiaoicesing2 and CrossSinger are trained using the same optimiza-
tion strategy outlined in [12]. Specifically, we set the batch size
to 32 and train these models on 4 NVIDIA V100 GPUs for 300
epochs. For the optimization process, we use Adam [33] with an
initial learning rate of 0.01, β1 of 0.9, β2 of 0.98, and ϵ of 10−9 for
both generators and discriminators.

Given the challenges associated with training the Transformer
[34] and GAN model, we implement a warmup strategy to adapt the
learning rate during the training stage. Initially, the learning rate
is set to 0.0001 and gradually increased to 0.01 over the first 5000
training steps. Subsequently, the learning rate is decayed by 0.99
after each epoch to stabilize the training process.

Furthermore, to achieve high-quality results, both Xiaoic-
esing2 and CrossSinger are combined with a vocoder called HiFi-
WaveGAN [35], which is trained using the strategy described in
[35].

4.3. Subjective evaluation

We conducted a comprehensive series of experiments to evaluate the
performance of our proposed model, using the average Mean Opin-
ion Score (MOS) as the evaluation metric. The evaluation was con-
ducted from three key aspects: sound quality, pronunciation accu-
racy, and naturalness. Each sub-experiment involved 20 segments
for each language per singer. We recruited a total of 60 listeners,
with 20 assigned to each language.

The experimental results are presented in Table 1, clearly indi-
cating that CrossSinger significantly outperforms Xiaoicesing2 in
terms of cross-lingual ability. Specifically, in the aspect of sound
quality, CrossSinger surpassed Xiaoicesing2 by a margin of 0.87,
demonstrating its superior robustness in cross-lingual Singing Voice
Synthesis (SVS) scenarios. Moreover, a noticeable difference can

be observed in the pronunciation accuracy MOS scores, where
CrossSinger achieved a score of 4.42, while Xiaoicesing2 received
a lower score of 3.32. This improvement can be attributed to the
successful incorporation of language information into the model,
enabling it to produce more intelligible and accurate pronunciations.

Lastly, our proposed singer bias eliminator contributed signifi-
cantly to the enhanced naturalness of the synthesized singing voices.
This is evident from CrossSinger’s higher MOS score for naturalness
compared to Xiaoicesing2.

Overall, the experimental results highlight the effectiveness of
CrossSinger in achieving high-quality cross-lingual singing voice
synthesis, making it a promising advancement over Xiaoicesing2.

4.4. Ablation study

In addition to the main experiment explained in the previous section,
we also conducted an ablation study to determine the contribution of
the proposed components to the overall improvement. For the abla-
tion study, we individually removed the language conditional layer
normalization (CLN) and the singer bias eliminator, as indicated in
Table 2.

From the table, we observe that both the CLN and singer
bias eliminator significantly contribute to the effectiveness of
CrossSinger. When the CLN component is removed, the MOS
scores for sound quality and naturalness exhibit a slight decrease
compared to CrossSinger. However, the MOS score for pronun-
ciation accuracy experiences a significant decline. This outcome
suggests that while the CLN component has a relatively minor im-
pact on sound quality and naturalness, it plays a crucial role in
enhancing intelligibility, especially in the cross-lingual scenario.

On the other hand, removing the singer bias eliminator demon-
strates a similar trend in the sound quality term as observed with the
CLN component. Conversely, it has a modest effect on intelligibility
while considerably impacting naturalness, resulting in a reduction of
the MOS score from 3.98 to 3.42.

5. CONCLUSION

In this paper, we present an enhanced version of the Xiaoicesing2
model, called CrossSinger, which is designed for cross-lingual



multi-singer singing voice synthesis. To effectively incorporate lan-
guage information into the original Xiaoicesing2 model, we first
standardize the speech representation using IPA annotation. Subse-
quently, we explicitly integrate the language information by fusing
it with the feature map in the Fastspeech2 encoder through condi-
tional layer normalization. Additionally, to overcome the limitations
of available data, we introduce a singer bias eliminator that im-
plicitly removes the singer-specific information associated with the
lyrics, resulting in a more natural and expressive generated singing
voice. The experimental results demonstrate that CrossSinger out-
performs Xiaoicesing2 by synthesizing high-quality singing voices
with improved pronunciation accuracy and enhanced naturalness.
Moreover, the ablation study illustrates the individual contributions
of each proposed component.
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