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ABSTRACT

In healthy-to-pathological voice conversion (H2P-VC), healthy
speech is converted into pathological while preserving the identity.
The paper improves on previous two-stage approach to H2P-VC
where (1) speech is created first with the appropriate severity, (2)
then the speaker identity of the voice is converted while preserving
the severity of the voice. Specifically, we propose improvements to
(2) by using phonetic posteriorgrams (PPG) and global style tokens
(GST). Furthermore, we present a new dataset that contains parallel
recordings of pathological and healthy speakers with the same iden-
tity which allows more precise evaluation. Listening tests by expert
listeners show that the framework preserves severity of the source
sample, while modelling target speaker’s voice. We also show that
(a) pathology impacts x-vectors but not all speaker information is
lost, (b) choosing source speakers based on severity labels alone is
insufficient.

Index Terms— voice conversion, pathological speech, oral can-
cer speech, autoencoder

1. INTRODUCTION

Healthy-to-pathological voice conversion (H2P-VC) is a new voice
conversion (VC) task, where healthy speech is converted so that
it resembles characteristics of a speech pathology, while preserv-
ing the identity of the original speaker. H2P-VC could play a cru-
cial role in several applications. For example, H2P-VC could be
used to help patients mentally prepare for the changes in their fu-
ture voice due to medical interventions [1, 2, 3]. By listening to
the post-treatment voice, patients can better understand and adapt
to the potential alterations, reducing anxiety and leading to a better
quality of life [4]. Additionally, H2P-VC could be also used as a
data augmentation technique for improving automatic speech recog-
nition (ASR) systems [5, 6]. Moreover, H2P-VC holds potential for
speaker anonymisation of clinically collected speech samples, mak-
ing it valuable for protecting speaker identity in sensitive contexts,
ensuring confidentiality while preserving severity that might be re-
quired for further analysis.

H2P-VC’s main challenge is the lack of appropriate, parallel
data, which leads to difficulties during evaluation, and means that
only non-parallel VC techniques are applicable. The lack of paral-
lel healthy and pathological data from the same speaker means that
we do not have the ground truth (GT) for the task, which makes the
evaluation of the speech complicated. Furthermore, most work on
H2P-VC has been done using the UASpeech corpus [7], making it
challenging to adequately model and evaluate severity features that
might be apparent at the prosodic level.

Therefore, current approaches to H2P-VC resort to non-parallel
VC techniques. These techniques either take an existing pathological

Fig. 1. Outline of our proposed approach for severity-preserving
voice conversion.

speech sample [2] or create a synthetic pathological speech sample
[1], which is then converted to a new speaker’s identity. Recently,
[1] proposed a two-stage model for the H2P-VC task. The first stage
focused on capturing time-variant aspects of the pathological speech
using the Voice Transformer Network (VTN) [8]. This led to the pro-
duction of speech mimicking the severity of the pathological speech
but, unfortunately, resulted in the loss of source speaker identity.
During the second stage, [1] attempted to reconstruct the original
identity of the healthy speaker using a VQVAE-based model [9]
from the crank toolkit [10]. Although the framework successfully
altered the source speaker’s characteristics, the result did not accu-
rately resemble the target speaker’s characteristics. The work hy-
pothesised that these shortcomings were partially due to evaluation
limitations, as [1] lacked access to parallel GT. An additional issue
was that the second stage of the VC adversely affected the severity
features of the speech.

To address these limitations, our study’s primary focus is en-
hancing the second stage of the method presented in [1]. We pro-
pose a new VC model leveraging phonetic posteriorgram (PPG) and
global style tokens (GST) shown in Figure 1. Many PPG-based VC
systems were among the best in the VCC2020 challenge [11], how-
ever, they have a tendency to remove the severity features of the
speech [12, 13], which is undesired in H2P-VC. Our approach aims
to improve the preservation of the severity while effectively convert-
ing to the target speaker’s voice. GSTs have been shown to be able to
control prosody in text-to-speech (TTS) [14], and in VC [15]. Using
both GST and PPG, allows us to model the time-invariant (sever-
ity) and time-variant (intelligibility) aspects of the speech pathology
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separately, preserving the features on both levels.
In addition, we perform a more rigorous evaluation of severity,

and speaker identity, using NKI-OC-VC, a newly collected oral can-
cer speech dataset, which contains parallel pathological and healthy
recordings from the same speaker. Compared to the UASpeech cor-
pus [7], the dataset contains utterance-level stimulus that is more
appropriate to evaluate aspects of severity that might be only present
in longer stretches of speech. Using this dataset, we aim to revisit an
assumption of H2P-VC – whether pathology impacts x-vectors. This
assumption holds key importance. If a pathology indeed changes
x-vectors notably, it directly impacts the effectiveness of our VC
model.

Furthermore, we also seek to reevaluate the current method of
choosing source speakers for VC, which is based on matching sever-
ity ratings between the source and target speakers. We hypothesise
that the same severity rating does not always mean the same type of
voice changes.

The primary contributions of our paper are the following:

(1) We propose a new model for the second stage of voice conver-
sion (VC) in [1], which improves the preservation of speech
severity while being able to convert identity.

(2) Using a unique, parallel oral cancer speech dataset, NKI-OC-
VC, we present a comprehensive and precise evaluation of
our VC system by speech-language pathologists (SLPs).

(3) We reevaluate the assumption of voice pathology’s impact on
speaker’s embedding and its implications on the accuracy of
our VC model.

(4) We ask speech-language pathologists (SLPs) to examine
our current practice of matching severity ratings for source
speaker selection and its potential impact on the VC model’s
accuracy.

2. DATASET

We have collected the NKI-OC-VC dataset for the VC task, com-
prising Dutch pathological speech from 16 oral cancer (OC) speak-
ers (10 male) who had undergone surgery for tongue tumours and 5
healthy control speakers (2 male).

We collected data from the subjects at a maximum of three time
points (stages): before the surgery (T1), after the surgery (T2), and
six months after the surgery (T3). The recordings themselves took
place in the patient room during scheduled speech therapy sessions.

The subjects were asked to read the standard Dutch text “Jorinde
en Joringel” [16] during the recording session. The total duration
of all speech recordings is approximately 2.5 hours. One recording
session (speaker/stage) is 5 minutes on average. Each speaker re-
cites 92 sentences in total per stage. In some cases, patients felt the
experiment was difficult, in that case, we prematurely stopped the
experiment.

The speech was recorded with the Roland R-09HR field recorder
at 44.1 kHz sampling frequency and 24-bit depth. This was later
downsampled to 16 kHz and quantised to 16-bit depth. For the ex-
periments, we have partitioned the 92 sentences into training (78
utterances), development (7 utterances), and test sets (7 utterances).

In order to obtain ratings for the overall severity of the speech,
the speech of each speaker was rated by five Dutch SLPs on a 5-point
Likert scale, where 5 meant healthy, and 1 meant severe. The ratings
had a very high interrater correlation (r = 0.88). The obtained rat-
ings were averaged per speaker which we treat as the severity of the
speaker for the rest of the paper. The available stages and the severity
of each speaker are indicated in Table 1.

Table 1. Speaker breakdown of the NKI-OC-VC dataset. The sever-
ity of the speaker according to 5 SLPs is noted in the parentheses.
The patients marked with an asterisk (*) had to end the experiment
prematurely, therefore we do not have all the 92 utterances from
them.

ID Control T1 T2 T3 Gender

PEAM ✓ (4.6) ✓* (4.4) ✓ (4.4) M
PGAF ✓ (4.6) ✓ (4.6) ✓ (4.6) F
PHNF ✓ (4.6) ✓ (4.2) ✓ (4.6) F
PIIM ✓ (3.8) ✓ (3.8) M
PRVM ✓ (5) ✓ (4.4) ✓ (4.8) M
PJSM ✓ (5) ✓ (3) ✓ (3) M

RGCM ✓ (1.2) M
RBEM ✓ (2.2) M
RCIM ✓ (1) M
RIFF ✓ (1) F
RKKM ✓* (1.4) M
RMKM ✓ (1) M
RMRM ✓ (1.8) M
ROEF ✓ (1.4) F
RQNF ✓* (1) F
RQOF ✓ (1.6) F

VAHM ✓ M
VDSF ✓ F
VMSM ✓ M
VODF ✓ F
VQBF ✓ F

3. PROPOSED FRAMEWORK

Given a speech sample from a source OC speaker (T2 or T3), and a
speech sample from a target speaker before the surgery (T1), the VC
aims to change the speaker identity of the speaker so that it resem-
bles the T1 speaker and preserves the severity of the source T2 or
T3 speech. In the following sections, we describe the Baseline and
Proposed systems for the H2P-VC task.

3.1. Baseline: PPG

For the baseline, we follow the phonetic posteriorgram-based (PPG)
recognition-synthesis approach implemented in S3PRL-VC1. A pho-
netic posteriorgram (PPG) is a feature map derived from an auto-
matic speech recogniser that represents the posterior probabilites of
phonetic units over time frames of the speech. We make adaptations
so that the system is able to deal with Dutch speech [17].

In order to extract appropriate PPG features, we first train a
Dutch Conformer E2E model ASR on the standard training set of the
Corpus Gesproken Nederlands (CGN) dataset [18]. CGN contains
Dutch recordings spoken by 1185 female and 1678 male speakers
(age range 18-65 years old) from all over the Netherlands and Flan-
ders. The Conformer models parameters were taken from [19, 20]:
12 encoder layers and 6 decoder layers, all with 2048 dimensions;
the attention dimension is 512 and the number of attention heads is 8;
the convolution subsampling layer in the encoder has 2-layer CNNs
with 256 channels, stride with 2, and a kernel size of 3. A default
conv kernel size of 31 was used. Subword units with a vocabulary
size of 5000 were used as basic units. After training, phonetic poste-
riorgram (PPG) features are extracted using the Conformer encoder.

As for incorporating speaker-specific information, we use the
pre-trained ECAPA-TDNN x-vector checkpoint from the Speech-

1https://github.com/unilight/s3prl-vc

https://github.com/unilight/s3prl-vc


Brain toolbox with default parameters2 [21]. The Taco2-AR archi-
tecture used is described in [17]. Due to the scarcity of training data,
the NKI-OC-VC dataset (around 2 hours), we train the model with
a curated (RDH-VL) subset of the Mozilla Common Voice dataset3

[22] alongside the NKI-OC-VC dataset. The RDH-VL dataset con-
tains 12.3 hours of speech from a Flemish Dutch speaker.

3.2. Proposed: PPG + GST

While PPGs are highly effective speaker-independent features, us-
ing PPGs and x-vectors only has several shortcomings with patho-
logical speech. First, PPGs primarily capture time-variant features
of pathological speech, and are unable to model time-invariant as-
pects. Second, if the ASR used to extract the PPGs can recognise
pathological speech very well, the approach of PPG can lead to en-
hanced speech [12, 13]. X-vectors can indeed model time-invariant
aspects but x-vectors are trained only with healthy data, therefore
their performance is likely insufficient.

In order to address this, we propose a global style-token (GST)
based reference encoder to the architecture which we use as a sever-
ity encoder. GST has been proposed in [14] as a way to control var-
ious aspects of prosody, such as speed, style of speaking, and style
of singing [23, 24]. It has been successfully used as a style transfer
technique also in VC [15]. We think that a mixture of using PPG
to model linguistic information, x-vector to model severity informa-
tion, and GST to model severity information is an efficient way to
learn severity-related features from our dataset.

For the implementation of the GST reference encoder used as
the severity encoder, we follow the default parameters of [14] with
the following exceptions: instead of adding the style embedding,
we concatenate the style embedding, the x-vector and the encoder’s
hidden states, and add a linear projection layer. Furthermore, as the
reference encoder leaks noise from the samples, we enhanced the
speech with ConvTASNet using a public implementation4 [25].

HifiGAN was used as a neural vocoder for both systems [26].
We followed an open-source implementation5. The training data of
the HifiGAN was the RDH-VL dataset.

4. EXPERIMENTAL SETUP

In the next sections, we present the methodology to evaluate three as-
pects of the systems: severity preservation, naturalness, and speaker
identity. Due to a large number of possible conversion pairs, we
only evaluate a limited set of converted speech. The selection of
these sets is explained in their respective section. The audio samples
can be found online6,

4.1. Objective evaluation metrics

4.1.1. Severity: P-(E)STOI

We use P-(E)STOI as an objective severity measure as it has been
demonstrated to work well for the objective evaluation of dysarthric
speech, and used previously to evaluate the severity of synthetic
speech samples [27]. We calculate the P-(E)STOI scores for each
pathological ground truth (GT) utterance, using the corresponding

2https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

3https://github.com/r-dh/dutch-vl-tts
4https://github.com/asteroid-team/asteroid
5https://github.com/kan-bayashi/ParallelWaveGAN
6https://h2pvc.github.io/

utterance of the control speakers as a healthy reference. These scores
are then averaged to provide a speaker-level score. We repeat this
with a limited set of the VC utterance: we convert one post-operative
(T2 if available) stage of each speaker to the target speaker in the
RDH-VL dataset. We compare the obtained P-(E)STOI scores for
each VC system to the ground truth samples by calculating the Pear-
son’s correlation (rGT ).

Before doing our evaluation, we performed a preliminary analy-
sis to ensure that P-ESTOI is indeed appropriate for severity evalu-
ation, by calculating the P-(E)STOI scores on the GT samples first,
and calculating the correlation between the scores and the severity
labels. We found that both methods have a high correlation with the
severity labels but the P-ESTOI had higher (r = 0.82) than the P-
STOI (r = 0.69), therefore we will only consider P-ESTOI for the
rest of our work.

4.1.2. Severity: Phoneme error rate (PER)

We use the phoneme error rate (PER) as another measure for evaluat-
ing the severity objectively. We use a publicly available implementa-
tion7 phoneme recogniser which was trained on the Common Voice
dataset [22]. We used phonemizer to acquire phonetic transcriptions
[28]. For the PER evaluation experiment, we convert the T2 (or T3
if T2 is not available) stage of each speaker to the target speaker in
the RDH-VL dataset, and we calculate the PER per speaker and per
system.

4.2. Subjective evaluation experiments

4.2.1. Severity and speaker identity

In evaluating speaker similarity, we adapt the protocol outlined in [2]
and incorporate an additional question about the similarity of speech
severity. During the listening test, listeners are presented with two
samples (either converted or ground truth), and are asked to judge (a)
whether the two samples are from the same speaker, (b) whether the
two samples have the same severity of speech. Listeners are asked to
rate the similarity between the two voices on a 4-point Likert scale,
where 1 means ’not similar at all’ and 4 means ’very similar’. For
analysis, we converted these Likert scale ratings into percentages,
i.e., a rating of ’1’ was considered as 0%, and ’4’ as 100%. Due to
the time constraints of the test, we limit our analysis to 5 speaker
pairs here. The test was done by 3 Dutch SLPs. For the listening ex-
periment, we have prioritised pairs of source and target speakers who
have similar severity. Choosing speakers with similar severity allows
us to investigate whether the current practice of matching speakers
based on their severity ratings is an appropriate approach for this VC
task. Furthermore, compared to the protocol in [1], this setup has the
advantage that the speaker identity can also be evaluated with expert
listeners.

4.2.2. Naturalness

In order to evaluate the naturalness of the VC samples, we carried
out a mean opinion score (MOS) test. We followed the setup in
[1], which is a variant of the standard MOS test but with incre-
ments of 0.5. This change is made in order to avoid lower precision
of our naturalness test with high severity speech. For this test, we
chose 7 source speakers from our dataset, each with differing levels

7https://huggingface.co/Clementapa/
wav2vec2-base-960h-phoneme-reco-dutch

https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
https://github.com/r-dh/dutch-vl-tts
https://github.com/asteroid-team/asteroid
https://github.com/kan-bayashi/ParallelWaveGAN
https://h2pvc.github.io/
https://huggingface.co/Clementapa/wav2vec2-base-960h-phoneme-reco-dutch
https://huggingface.co/Clementapa/wav2vec2-base-960h-phoneme-reco-dutch


Table 2. Results of P-ESTOI-based severity evaluation. Rows include the source speaker. Target speaker is always RDH-VL. Boldface
indicates higher correlation, and better severity preservation.

PGAFT2 PHNFT2 PIIMT2 PJSMT2 PRVMT2 RBEMT3 RCIMT3 RGCMT3 RMKMT3 RMRMT3 ROEFT3 RQOFT3 rGT

P-ESTOIPPG 1.00 0.23 0.14 0.21 0.37 0.29 0.08 0.25 0.13 0.22 0.16 0.29 0.49
P-ESTOIPPG−GST 0.33 0.30 0.15 0.27 0.40 0.23 0.13 0.22 0.14 0.31 0.20 0.30 0.90
P-ESTOIGT 0.27 0.32 0.08 0.18 0.29 0.23 0.12 0.17 0.07 0.27 0.19 0.25 -

Table 3. Comparison of phoneme error rate (PER%) of the two sys-
tems. Boldface indicates when the PER is closer to GT. Italics indi-
cate when the system overenhances the speech over the GT.

PPG PPG-GST GT

PGAFT2 47.86 56.42 52.92
PHNFT2 40.86 45.53 38.13
PIIMT2 84.44 83.66 80.54
PJSMT2 54.47 44.36 48.64
PRVMT2 41.25 45.91 41.25
RBEMT3 67.70 69.65 74.32
RCIMT3 92.61 114.79 105.45
RGCMT3 80.16 84.44 82.88
RMKMT3 84.44 85.21 85.60
RMRMT3 61.48 59.53 58.37
ROEFT3 77.04 88.33 90.27
RQOFT3 68.87 68.48 77.04

Average 66.76 70.53 69.62

of speech severity to capture a wide range. We created 7 conver-
sion pairs in total using each source speaker, and targeting the same
speaker from the RDH-VL dataset. This approach was taken due
to evidence that severity and naturalness are often conflated in lis-
tener perceptions [2, 1, 29]. The test included 153 utterances in total,
with 7 VC utterances per conversion pair and per system, alongside
their corresponding 7 source ground truth utterances and 6 utterances
from the target RDH-VL speaker. These utterances were rated by 7
native Dutch listeners.

4.3. Analysis of the impact of speech pathology on the x-vectors

To assess the impact of speech pathology on x-vectors, we create
three separate distributions of similarity scores by calculating the co-
sine similarity of x-vectors. First, we do same-speaker pre-operative
comparisons of the utterances (T1). Second, we do same-speaker
different-severity comparisons (T1+T2). Finally, we do different-
speaker comparisons (non-target). By separating these distributions,
it is possible to quantify the impact of severity on the x-vectors.
To quantify this, we calculate the Equal Error Rate (EER) for each
group, a common performance measure in speaker verification stud-
ies. In the context of our H2P-VC task, the EER quantifies the ro-
bustness of the x-vector extraction in the presence of speech pathol-
ogy. Specifically, a high EER might indicate that the x-vectors are
significantly influenced by the severity of the pathology.

5. RESULTS AND DISCUSSION

5.1. Objective evaluations

5.1.1. Severity: P-ESTOI

Table 2 shows the results of the P-ESTOI experiment. We find that
the correlation with the ground truth P-ESTOI scores rGT are higher
for the PPG-GST-based system, which indicates that the PPG-GST-
based system has a better ability to capture the severity of the speech.

5.1.2. Severity: PER

The PER results in Table 3 show that the proposed PPG-GST sys-
tem has a mean PER that is closer to the GT than the PPG. We can
observe that the PER is only closer in the case of speaker PHNFT2

and PRVMT2, and RQOFT3. PHNFT2 and PRVMT2 are both
speakers with relatively healthy ratings (4+), where we would expect
severity-related modelling of the PPG-GST to be less beneficial. The
difference in the case of RQOFT3 is negligible. Furthermore, we
observe that the PPG on average has a tendency to make the speech
more intelligible than the ground truth, the average PER being nearly
3% better than in the GT case. We conclude that the PPG-GST has a
better severity preservation ability than the PPG based on the results
of the PER experiment.

5.2. Subjective evaluations

5.2.1. Severity and speaker identity

The left side of Table 4 shows the results of the severity experiment.
The raters found that the severity of the GT source and target speaker
sounded fairly different (S-T column), even though they were noted
to have similar severity of speech. We conclude that using severity
labels alone is insufficient for the source speaker selection based on
this result. Therefore, for evaluating the severity preservation prop-
erty, we should look at the S2S column rather than the S2T column.
We find that for nearly all speakers the proposed model had a higher
similarity to the source speakers’ speech severity, with the exception
of PRVMT2 → PHNFT2 where performance was on par. We
conclude the PPG-GST outperforms the baseline model in severity
preservation.

The right side of Table 4 shows the results of the speaker iden-
tity conversion experiment. We find that with the exception of the
conversion pair PGAFT2 → PHNFT2, (S-T column) the raters
rated the two speakers as different. Furthermore, the proposed sys-
tem does not seem to achieve the same level of speaker identity con-
version as the PPG system but outperforms the PPG in the case of the
PGAFT2 → PHNFT2, and is on par in case of the PRVMT2 →
PHNFT2 conversion pair.

The challenges in evaluating speaker identity, as outlined in [1],
warrant further discussion. Even though we have acquired a parallel
dataset of healthy and pathological speech from the same speaker,
the precise severity of the speech pathology could not exactly be
matched, despite our best efforts. As a result, it is still possible



Table 4. Results of the subjective severity and identity evaluation experiments by 3 SLPs. S2S means similarity to source, S2T means
similarity to target, and S-T means comparison of source to target. Boldface indicates better severity preservation.

Severity Identity

PPG PPG-GST PPG PPG-GST
Conversion pair (Severity) S2S S2T S2S S2T S-T S2S S2T S2S S2T S-T

PIIMT2 (3.8) → PJSMT2 (3) 57±19% 32±16% 84±12% 11±11% 14±19% 3±6 43±18% 81±14% 5±5% 0±0%
PRVMT2 (4.4) → PHNFT2 (4.2) 43±18% 70±15% 43±18% 59±13% 28±19% 0±0% 48±16% 24±17% 48±15% 0±0%
PHNFT2 (4.2) → PRVMT2 (4.4) 49±18% 63±13% 59±19% 49±17% 28±19% 0±0% 52±18% 38±19% 25±16% 0±0%
PHNFT2 (4.2) → PJSMT2 (3) 41±19% 57±15% 59±15% 38±16% 44±27% 0±0% 63±16% 52±18% 10±8% 0±0%
PGAFT2 (4.6) → PHNFT2 (4.2) 41±17% 60±12% 78±12% 68±13% 31±25% 37±17% 65±17% 84±14% 92±8% 75±21%

Ideal 100% S-T 100% S-T 100% 0% 100% 0% 100% 0%

Table 5. Mean opinion scores (MOS) from the naturalness experi-
ment from 7 native listeners.

PPG PPG-GST GT Severity

PGAFT1 3.66 3.31 4.65 4.6
PHNFT2 3.58 2.72 4.47 4.6
PIIMT1 2.89 2.63 3.79 3.8
RBEMT3 2.55 2.42 3.19 2.2
RMRMT3 2.37 2.16 3.90 1.8
RQOFT3 2.51 2.18 3.13 1.6
RCIMT3 2.09 1.86 2.99 1
RDH-VL 4.54

Average 2.81 2.47 3.73

that differences in severity could influence the evaluation of speaker
identity.

5.2.2. Naturalness

The results of the naturalness test are shown in Table 5. Consistent
with [2, 1, 29] , the high correlation between the severity labels and
the GT naturalness ratings (r = 0.88) shows that the listeners can-
not differentiate well between these aspects. Overall, the PPG-GST
is rated as less natural than the PPG. However, this is not unexpected
due to the following reasons: (1) The better preservation of severity
is perceived as lower naturalness. (2) The reference encoder in the
PPG-GST directly interacts with the noisy filterbank during recon-
struction, leading to noisier sounding examples.

5.3. Analysis of the impact of speech pathology on x-vectors

Figure 3 shows the impact of speech pathology on the similarity of
x-vectors. As expected, when looking only at the T1 speakers (T1),
there is a high similarity as we are comparing the same speakers with
the same identity. Introducing the T2 speakers into the comparison,
the similarity decreases (T1+T2) but it is still much higher than the
non-target scores. This shows that pathology impacts embeddings.

Table 6 quantifies the impact with EERs, and also shows the
impact of speech pathology on the speaker-level. We observe that
adding the T2 utterances always makes the EER higher. Including
all speakers in the analysis, an EER of 8.87% can be maintained with
even the T2 distribution. When looking at the results on the speaker
level, the worst EER (16.57%) is achieved for PIIM, and the best
EER is achieved for PHNF (3.70%). Interestingly, there does not
seem to be a clear pattern in the increase in severity, and the increase
in EER. The lack of this relation seems to be consistent with the

Table 6. Equal error rates (%) of T1 and T1-T2 distributions.
PEAM PGAF PHNF PRVM PIIM PJSM All

T1 3.06% 1.17% 1.15% 1.89% 2.96% 3.92% 2.59%
T1-T2 10.05% 7.46% 3.70% 10.25% 16.57% 7.76% 8.87%

finding of [30], which reports that the effect of speech pathology
lies in the range of other factors in speaker verification, such as the
quality of the microphone.

We can conclude that the x-vectors are impacted by the speech
pathology, however, the speaker still remains identifiable. Therefore,
the pre-operative (T1) x-vector should contain sufficient information
about the identity. We acknowledge that the current analysis has
some limitations. First, we only have parallel data from low-to-mid
severity speakers, therefore it might be that the extracted embed-
dings are affected for high severity speakers. Furthermore, as we
use utterances from the same recording to calculate the T1 EER, the
estimation of T1 identification performance is likely somewhat opti-
mistic.

5.4. Summary of Results and Comparative Analysis of PPG and
PPG+GST

In the previous sections, we have provided extensive evaluation of
the PPG and PPG+GST systems. The baseline PPG system demon-
strates better performance in terms of speaker identity conversion,
as noted in the subjective identity evaluation. However, this assess-
ment could be influenced by the severity of speech pathology. Fur-
thermore, the PPG system falls short of preserving the severity of
the speech, especially when compared to the PPG+GST system. Fi-
nally, as we have seen by the PER results, it tends to overenhance
the speech, potentially leading to a less realistic output.

On the other hand, the proposed PPG+GST system preserves the
severity of speech well during conversion as shown by the objective
P-ESTOI, PER and subjective evaluations. In terms of speaker iden-
tity conversion, however, the PPG+GST system performs slightly
less well than the PPG system. In addition, the PPG+GST system
may be prone to introducing noise in the output, which can detract
from its naturalness. In summary, we find that while PPG+GST still
needs further work, however, its superior ability to preserve speech
severity makes PPG-GST a more appropriate choice for mid-to-high
severity voices.
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Fig. 2. Spectrogram comparison (left to right) ground truth, baseline, proposed and healthy speaker identity (target). Best viewed in colour.

Fig. 3. Impact of pathology on the extracted x-vectors. Best viewed
in colour.

6. CONCLUSION

In this paper, we presented a new voice conversion system which
utilises phonetic posteriorgram features and global style tokens to
preserve the speech pathology while converting the speaker identity.

Our system is able to preserve the voice severity better than
the baseline while still resembling the target speaker according
to our subjective and objective evaluations. The naturalness of
our system is lower than the baseline, however, this is most likely be-
cause more severe speech is perceived as less natural. Nevertheless,
there is still a large gap between the naturalness of ground truth and
converted pathological speech. We think that techniques to better
disentangle speech severity and noise should be one focus of future
research.

Speaker identity is impacted by severity but usually not all
speaker information is lost. This means that it is feasible to use the
pre-operative x-vector to convert to post-operative speaker’s charac-
teristics. In future work, we are interested if pathology-robust ex-
traction of x-vectors could result in better conversion quality. One
possible approach for this would be to train an ECAPA-TDNN with
parallel pathological and healthy speech samples.

Our findings also show that choosing source speakers based
on severity labels alone is insufficient. The variability of patho-
logical speech makes it challenging to use a broad severity label for
accurate speaker selection. This observation emphasises the need
for more nuanced metadata (e.g. age, gender, other therapeutic vari-
ables) collection from speakers.
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