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ABSTRACT

In real-world applications, users often require both transla-
tions and transcriptions of speech to enhance their compre-
hension, particularly in streaming scenarios where incremen-
tal generation is necessary. This paper introduces a stream-
ing Transformer-Transducer that jointly generates automatic
speech recognition (ASR) and speech translation (ST) outputs
using a single decoder. To produce ASR and ST content effec-
tively with minimal latency, we propose a joint token-level se-
rialized output training method that interleaves source and tar-
get words by leveraging an off-the-shelf textual aligner. Ex-
periments in monolingual (it-en) and multilingual ({de,es,it}-
en) settings demonstrate that our approach achieves the best
quality-latency balance. With an average ASR latency of 1s
and ST latency of 1.3s, our model shows no degradation or
even improves output quality compared to separate ASR and
ST models, yielding an average improvement of 1.1 WER and
0.4 BLEU in the multilingual case.

Index Terms— automatic speech recognition, speech
translation, streaming, serialized output training

1. INTRODUCTION

In many real-world applications such as lectures and dia-
logues, automatic speech recognition (ASR) and translation
(ST) are often both required to help the user understand-
ing the spoken content [1]. For instance, a person can have
partial knowledge of the uttered language and a good knowl-
edge of the translation language, therefore consulting the
translation only when the transcription is not fully compre-
hended [2]. Moreover, the consistency between transcriptions
and translations represents a desirable property for speech ap-
plications [3, 4], and having access to both source and target
texts is also particularly useful for explainable AI [5].

Despite these requests and the several research efforts
towards developing systems that are able to produce both
outputs [6, 7, 8], little research has focused on the stream-
ing scenario [9] where these outputs have to be generated

∗Work done during an internship at Microsoft.

Fig. 1. Illustration of the multilingual joint t-SOT with ASR
and ST outputs.

while incrementally receiving additional speech content. In
particular, only Weller et al., 2021 [10] proposed a unified-
decoder solution for real-time applications that, however,
leverages a fully attention-based encoder-decoder (AED) ar-
chitecture [11], which is theoretically not well suited for
the streaming scenario [12], and adopts the re-translation
approach [13], which is well-known to be affected by the
flickering problem [14].

Recently, Wang et al. 2023 [15] proposed a streaming
language-agnostic multilingual speech recognition and trans-
lation model using neural transducers (LAMASSU), which is
capable of generating both ASR and ST results. More specifi-
cally, LAMASSU with a unified prediction and joint network
(LAMASSU-UNI) uses language identification (LID) infor-
mation to replace the start-of-sentence token. However, in
order to perform ASR and ST simultaneously, LAMASSU
requires two decoder instances.

In this paper, we introduce the first streaming Transformer-
Transducer (T-T) [16, 17, 18] able to jointly generate both
transcriptions and translations using a single decoder (Fig-
ure 1). To effectively learn how to produce the interleaved
ASR and ST words, we propose a joint token-level serialized
output training (t-SOT) [19] method that leverages an off-the-
shelf neural textual aligner to build the training data without
any additional costs.

Monolingual (it-en) and multilingual ({de,es,it}-en) ex-
periments demonstrate the effectiveness of our proposed
alignment-based joint t-SOT model, achieving the best quality-
latency trade-off across languages. With an average latency
of 1s for ASR and 1.3s for ST, our model not only improves
the output quality compared to separate ASR and ST mod-
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els, resulting in an average improvement of 1.1 WER and
0.4 BLEU in the multilingual case, but also enables a more
interpretable ST, assisted by the corresponding generated
ASR outputs. Furthermore, the ability of our system to con-
solidate multiple tasks and languages into a single model
significantly reduces the number of required systems (from
6 to 1 in the multilingual case), thus moving towards a more
environmentally-friendly AI (Green AI) approach [20].

2. RELATED WORKS

The SOT [21] method was initially introduced for non-
streaming overlapped ASR and later extended to its token-
level version for the streaming multi-talker scenario [19] and
distant conversational ASR [22]. Recently, Omachi et al.,
2023 [23] proposed a similar approach for explainable and
streaming ST by incorporating interleaved post-editing anno-
tations into the target text but exhibiting a very high latency
(more than 5 seconds).1

In the streaming scenario, only Weller et al., 2021 [10]
proposed a unified decoder for generating both ASR and
ST outputs based on an AED architecture and adopting re-
translation. Their framework is completely different from
what we propose in this paper, since our model is Transducer-
based, thus having a different architecture that naturally
implements the streaming capabilities.

The original encoder of the Transducer model [25]
was composed of LSTM layers, which were later replaced
by Transformer layers due to their improved performance
[26, 27]. Extensive research has been conducted on the T-T
model for ASR [28, 29, 30, 31], with a particular focus on the
streaming scenario [32, 33, 34, 35].

Although the adoption of the T-T model has been pre-
viously proposed for the streaming ST task [36], including
extensions to multilingual settings [37, 15] and architectural
modifications [38, 39], our paper is the first introducing a
streaming single encoder-single decoder T-T model that can
jointly produce ASR and ST outputs with minimal latency.
Furthermore, we explore the application of the t-SOT method
to jointly generate ASR and ST outputs, which has not been
previously investigated in prior work.

3. JOINT T-SOT BASED ON TEXTUAL
ALIGNMENTS

3.1. Joint t-SOT

In this section, we provide a detailed explanation of the
joint version of the t-SOT method. To emit both transcrip-
tions and translations given the input speech, we serialize
the ASR and ST references into a single token sequence.
Specifically, we introduce two special tokens ⟨asr⟩ and ⟨st⟩

1The maximum acceptable latency limit is set between 2 and 3 seconds
from most works on simultaneous interpretation [24].

to represent the task change (the transition between ASR
and ST output) and concatenate the reference transcription
tokens and translation tokens by inserting ⟨asr⟩ and ⟨st⟩
between utterances (either at the sentence level or within
specific words). For instance, given the transcription ref-
erence rasr = [rasr1 , rasr2 , ..., rasrm ] and the translation
reference rst = [rst1 , rst2 , ..., rstn ], where m ≤ len(rasr)
and n ≤ len(rst), the corresponding joint t-SOT reference is:

rt-SOT = [⟨asr⟩, rasr1 , rasr2 , ..., rasrm , ⟨st⟩, rst1 , rst2 , ..., rstn ]

If the transcription and translation utterances are divided into
chunks (composed of a single or even multiple words), the
concatenation process is repeated until m = len(rasr) and
n = len(rst) to obtain the final rt-SOT.

Note that ⟨asr⟩ and ⟨st⟩ are not considered as special to-
kens during training: they are added directly to the vocabulary
and considered as all the other tokens in the loss computation.

3.2. Textual alignment-based joint t-SOT

In proposing the AED architecture for the ASR and ST joint
decoding, Weller et al., 2021 [10] introduced a method for in-
terleaving transcript and translation words, controlled by the
parameter γ. In particular, the next interleaved word is a tran-
scription word if:

(1.0− γ) ∗ (1 + countasr) > γ ∗ (1 + countst)

where countasr and countst represent the count of ASR and
ST words generated in the target text up to that point. The
authors explored different scenarios, including corner cases
such as γ = 0.0, where all the transcription words are gen-
erated first, followed by all the translation words (hereinafter,
INTER 0.0), and γ = 1.0, where all the translation words are
followed by all the transcription words (hereinafter INTER
1.0). However, these corner cases are not actually streaming
for one of the two tasks, as INTER 0.0 is not streaming for
ST and INTER 1.0 is not streaming for ASR. For this rea-
son, the authors proposed to alternate one ASR word and one
ST word (hereinafter, INTER 0.5), thus realizing a streaming
model for both tasks.2 The switch between the two tasks is
controlled by a language token, determined from learned em-
beddings that are summed with the word embeddings during
training and predicted at test time.

In our approach, we first integrate the interleaving method
into the t-SOT training by removing the need for learned
embeddings. We replace them with specific ASR and ST
tokens, as explained in Section 3.1, setting ⟨asr⟩ =“#ASR#”
and ⟨st⟩ =“#ST#”. An example of t-SOT INTER 0.0, 1.0,
and 0.5 is shown in Table 1. Second, we introduce a new

2The authors also provided results for γ = 0.3, showing consistently
inferior performance compared to the other strategies. We also tried to inter-
leave more than one word at a time when adopting INTER 0.5 but it led to
significantly worse results.



Transcription: Ich brauche das wirklich.
Translation: I really need it.
INTER 0.0: #ASR# Ich brauche das wirklich. #ST# I really need it.
INTER 1.0: #ST# I really need it. #ASR# Ich brauche das wirklich.
INTER 0.5: #ASR# Ich #ST# I #ASR# brauche #ST# really #ASR# das #ST# need #ASR# wirklich. #ST# it.
INTER ALIGN: #ASR# Ich #ST# I #ASR# brauche das wirklich. #ST# really need it.

Table 1. Example of a German transcription and an English translation with its corresponding interleaving INTER 0.0, 1.0,
0.5, and ALIGN.

method for interleaving ASR and ST words based on a
semantically-motivated approach. We leverage an off-the-
shelf neural textual aligner awesome-align [40] to pre-
dict the alignment between transcription and translation texts,
which are exploited to build the training data. Then, let again
rasr = {rasr1 , ..., rasrm} the transcription reference and
rst = {rst1 , ..., rstn} the translation reference, we build the
alignment-based interleaving (hereinafter, INTER ALIGN)
by applying the following rules:

1. If a transcription word rasri and a translation word rstj
are uniquely aligned (as the words “Ich” and “I” in Fig-
ure 2), they are interleaved following INTER 0.5:

⇒ rt-SOT += #ASR#, rasri , #ST#, rstj

2. If k consecutive transcription words rasri , rasri+1
,...,

rasri+k−1
are aligned with the same translation word

rstj , we interleave them together as a single word (valid
also in the opposite case):

⇒ rt-SOT += #ASR#, rasri , rasri+1 , ..., rasri+k−1
,

#ST#, rstj

3. If a transcription word rasri is aligned with a transla-
tion word rsta that appears consecutively after the cur-
rent translation word rstj , but rasri is not also aligned
with rstj (as in Figure 2, where rasri =“brauche” is
aligned with rsta =“need”, but not with rstj =“re-
ally”), we consider all the words rstj , ..., rsta for the
interleaving (the condition must also be satisfied in the
reverse direction):

⇒ rt-SOT += #ASR#, rasri , #ST#, rstj , ..., rsta

4. If a transcription word rasrmiss appears consecutively af-
ter rasri and is not aligned with any translation words
rstj , ..., rstn , the word is included in the subsequent in-
terleaving sequence (valid also in the opposite case):

⇒ rt-SOT += #ASR#, rasri , #ST#, rstj ,..., #ASR#,
rasrmiss , ...

5. If no rasr or rst words are left, we concatenate together
all the remaining words of, respectively, rst or rasr:

⇒ rt-SOT += #ST#, rstj , ..., rstn or
rt-SOT += #ASR#, rasri , ..., rasrm

Fig. 2. Example alignment between a German transcription
and an English translation obtained by awesome-align.

With the transcription and translation example in Table 1,
we obtain the alignment shown in Figure 2. Its corresponding
INTER ALIGN output is shown in the last row of Table 1.
In particular, since “Ich” (ASR) and “I” (ST) are uniquely
aligned, they are interleaved in the INTER 0.5 fashion. But,
since “brauche” (ASR) is aligned with “need” (ST), and “re-
ally” (ST) is aligned with “wirklich” (ASR), the entire ASR
block composed of “brauche das wirklich” is inserted before
the corresponding ST words “really need it”.

4. EXPERIMENTAL SETTINGS

We adopt a streaming T-T architecture [18] with 24 Trans-
former layers for the encoder, 6 LSTM layers for the predictor
and 2 feed-forward layers for the joiner. The Transformer en-
coder has 8 attention heads, the embedding dimension is 512
and the feed-forward units are 4096. We use a chunk size of
1 second with 18 left chunks. The LSTM predictor has 1024
hidden units as well as the feed-forward layers of the joiner.
Dropout is set to 0.1. We use 80-dimensional log-mel filter-
banks as features, which are sampled every 10 milliseconds.
Before feeding them to the Transformer encoders, we process
the features with 2 layers of CNN with stride 2 and kernel size
of (3, 3), with an overall input compression of 4.

Our experiments are performed using 1k hours of propri-
etary data for each language (German, Italian, Spanish to En-
glish) and the models are tested on the CoVoST2 dataset [41].
AdamW [42] is used as optimizer with the RNN-T loss [25].
The training steps are 6.4M for the joint t-SOT models and
3.2M for the separate ASR and ST models.3 Checkpoints are
saved every 320k steps. The learning rate is set to 3e-4 with
Noam scheduler, 800k warm-up steps and linear decay. The
vocabulary is based on SentencePiece [43] and has dimension

3We noticed that a longer training of 6.4M steps does not improve or even
degrades the performance.



Model # param. it-en es-en de-en
WER LAAL BLEU LAAL WER LAAL BLEU LAAL WER LAAL BLEU LAAL

CoVoST 2 baseline [41]† - 27.40 - 0.20* - 16.00 - 12.0 - 21.40 - 8.4 -
+ English ASR pre-train† 11.30 - 23.00 - 17.4 -

separate ASR & ST
3·(185.1M

25.83 1191 16.41 1844 22.69 1149 19.24 1682 23.11 1071 19.11 1613+
185.1M)

multilingual ASR & ST
188.5M

23.48 1181 21.06 1663 22.84 1147 22.76 1622 21.82 1133 21.51 1642+
185.1M

joint t-SOT INTER 0.0 188.5M 21.81 1228 20.42 3894 20.76 1196 23.26 3752 20.82 1168 21.53 3647
joint t-SOT INTER 1.0 188.5M 26.05 3389 22.17 1743 23.45 3172 23.99 1683 26.88 3234 21.85 1964
joint t-SOT INTER 0.5 188.5M 22.35 1110 20.22 1515 21.19 1126 22.25 1468 21.35 1051 20.19 1547
joint t-SOT INTER ALIGN 188.5M 21.74 1092 21.80 1355 21.04 1094 23.42 1341 22.07 1043 21.36 1335

Table 3. WER↓ and BLEU↑ results for the multilingual setting ({it, es, de}-en) with their latency LAAL↓. *Results obtained
using CoVoST 2 data only for training. †Non-streaming model. Bold represents overall best result, underline represents best
result balancing both quality and latency.

4k for all the monolingual models, all the separate ASR and
ST models, and the multilingual source ST model (since the
target is always English). For the multilingual (source) joint
t-SOT and ASR models, the vocabulary size is set to 8k. Cov-
erage is always set to 1.0.

We use 16 NVIDIA V100 GPUs with 32GB of RAM for
all the training and a batch size of 350k. We select the last
checkpoint for inference, which is then converted to open neu-
ral network exchange (ONNX) format and compressed. The
beam size of the beam search is set to 7.

We report WER for the ASR output quality and BLEU4

for the ST output quality. Latency is measured in mil-
liseconds (ms) with the length-adaptive average lagging
(LAAL) [45], which is derived from the speech adapta-
tion [46] of the average lagging (AL) metric [47], incorpo-
rating the capability to handle predictions longer than the
reference.

5. RESULTS

5.1. Monolingual Results

Table 2 presents the results of the Italian monolingual ASR,
ST and joint t-SOT models.

First, we observe how effective is the joint t-SOT com-
pared to training separate ASR and ST models. With the
only exception of the ASR task for INTER 1.0 and the ST
task for INTER 0.0, the joint t-SOT models always outper-
form the separate ASR and ST architectures with improve-
ments ranging from 0.63 to 1.18 WER while maintaining the
same latency for ASR, and from 0.64 to 2.79 BLEU with also
an average latency reduction of 312ms for ST. Therefore, the
obtained results indicate the joint t-SOT as a very promising
approach. Moreover, the high latency shown by INTER 1.0
for ASR (over 3.5s) and INTER 0.0 for ST (approximately
3s) was expected since, for these two approaches, only one

4sacreBLEU [44] version 2.3.1

Model # param. WER LAAL BLEU LAAL
CoVoST 2 baseline [41]† - 27.40 - 0.20* -

+ English ASR pre-train† 11.30 -

separate ASR & ST
185.1M

25.83 1191 16.41 1844+
185.1M

joint t-SOT INTER 0.0 185.1M 24.81 1232 17.05 2972
joint t-SOT INTER 1.0 185.1M 29.69 3683 19.20 1734
joint t-SOT INTER 0.5 185.1M 24.65 1126 17.58 1508
joint t-SOT INTER ALIGN 185.1M 25.20 1128 18.65 1355

Table 2. WER↓ and BLEU↑ results for the monolingual set-
ting (it-en) with their latency LAAL↓. *Results obtained us-
ing CoVoST 2 data only for training. †Non-streaming model.
Bold represents overall best result, underline represents best
result balancing both quality and latency.

of the two modalities is actually streaming (as also already
discussed in Section 3.2).

Second, in contrast to Weller et al., 2021 [10], we no-
tice that INTER 0.5 achieves the best WER result instead of
INTER 1.0 while, in accordance with them, the best BLEU
is obtained by INTER 0.0. The lowest latency is achieved
by INTER 0.5 and INTER ALIGN for ASR, and by INTER
ALIGN for ST with a very large margin (between 150 and
1600ms of latency reduction). Considering both output qual-
ity and latency, the overall best result (underlined in Table 2)
is obtained by INTER 0.5 for ASR, closely followed by IN-
TER ALIGN, and INTER ALIGN for ST. Therefore, in the
monolingual setting, INTER ALIGN emerges as the optimal
model for jointly performing the ASR and ST tasks.

5.2. Multilingual Results

We extend our analysis to the multilingual setting by in-
corporating two additional source languages: Spanish, an
Italic/Romance language with subject-verb-object (SVO) or-
dering similar to Italian, and German, a Germanic language
with subject-object-verb (SOV) ordering [48]. In Table 3, we



#1
Reference: IT Per questo venne martirizzato.

EN For that reason he was martyred.

Hypothesis: IT Per questo venne utilizzato.
EN That’s why he was used.

#2
Reference: IT In gara unica, da disputare tra le vincenti delle semifinali.

EN A single match played by those who won the semifinals.

Hypothesis: IT In gara unica da disputare tra i vincenti delle finali.
EN In a single match to be played among the winners of the finals.

#3
Reference: IT Più veloce persino della media degli Space Marine.

EN Even faster than the average Space Marine.

Hypothesis: IT Più veloce persino della media degli Space Marianne.
EN Even faster than the average Space Marianne.

#4
Reference: IT Viene misurata in Joule nel sistema internazionale.

EN Its measuring unit is Joule in the international system.

Hypothesis: IT Viene misurata in già nel sistema internazionale.
EN It is measured in down in the international system.

#5
Reference: IT In casa Porru, nella camera dei forestieri, c’era una donna che piangeva.

EN In the house of the Porru family, in the guest room, there was a woman crying.

Hypothesis: IT In casa porru nella stanza dei forestieri c’era una donna che piangeva.
EN In the house porru in the chamber of the strangers there was a woman crying.

Table 4. Mistranslations examples with their corresponding generated transcriptions of the joint t-SOT INTER ALIGN model
extracted from the Italian-English CoVoST 2 test set.

compare the joint t-SOT methods with both monolingual and
multilingual ASR and ST models.

Looking at the results of the separate ASR and ST models,
we observe a significant improvement going from monolin-
gual to multilingual, particularly for Italian and German ASR
(with an improvement of, respectively, 1.29 and 2.35 WER)
and for all languages in ST (with an average BLEU improve-
ment of 3.52). Consistent with the findings from the mono-
lingual experiments, our joint t-SOT methods outperform the
monolingual and multilingual separate ASR and ST models
considering both the output quality and the latency.

While INTER 1.0 achieves the highest BLEU scores
across all languages, it also exhibits the highest, hence worst,
WER. In contrast, no clear trend emerges for the best WER
results. Regarding latency, the INTER ALIGN method con-
sistently achieves the lowest, hence best, LAAL, with an
average of 1s for ASR and 1.3s for ST. Balancing both qual-
ity and latency, the overall best results are obtained by the
INTER ALIGN method, with the only exception of German
ASR where the WER of the INTER 0.5 is slightly better.

In conclusion, the joint t-SOT method, and in particular
the INTER ALIGN approach, proves to be the most effec-
tive solution for jointly generating ASR and ST outputs, de-
livering high-quality results with minimal latency. The re-
sults show that the joint t-SOT INTER ALIGN achieves sig-
nificant improvements compared to the separate multilingual
ASR and ST models, with an average reduction of 1.1 WER
and 0.4 BLEU across all languages, while maintaining com-
parable or even slightly lower latency (approximately 200ms
average reduction). These findings highlight the efficiency of
our proposed approach, which consolidates both ASR and ST

functionalities into a single model.

5.3. Interpretable ASR and ST Results

To examine the relationship between the ASR and ST outputs
obtained by our joint t-SOT models, we conducted a manual
analysis of the generated texts. We focused on the Italian to
English language pair and selected the joint t-SOT INTER
ALIGN model as it resulted in the best one for the streaming
scenario. Representative examples extracted from the CoV-
oST 2 test set are shown in Table 4.

The first example shows how a wrong transcription of the
verb “martirizzare” (en: “martyr”) to the verb “utilizzato”
(en: “use/utilized”) leads to a wrong translation having the
same meaning of the wrong transcription. Additionally, ex-
ample 2 proves how an omission in the transcription also leads
to the same omission in the translation (it: “finali”/en: “finals”
instead of it: “semifinali”/en: “semifinals”).

Examples 3 and 4 present another interesting phenomenon
related to the wrong recognition of named entities and ter-
minology. It has been previously demonstrated that failures
in named entities recognition often produce the insertion of
a completely different name or a common noun instead of
the correct named entity [49]. In fact, Example 3 shows how
the name “Marine” is incorrectly recognized as “Marianne”
and this affects both the transcription and the translation. In
Example 4, instead, the “Joule” term is misrecognized but
as the common word “già”, presumably because these two
words have assonance in Italian. As a consequence, the ST
output is affected by the prediction of a wrong ASR word
but, differently from Example 1, the translation does not re-



flect the meaning of the wrong word “già” but is completely
random.

Lastly, in Example 5, we observe that “stanza dei forestieri”
(en: “guest room”) is literally translated by using out-of-
context terms, where “chamber” is generated instead of
“room” due to both concepts being expressed by the same
Italian word “stanza”.

Therefore, by analyzing the transcriptions and translations
produced by our joint t-SOT model, we can better identify
and understand the root causes of mistranslations, leading to
a more interpretable output. This highlights the potential of
our method to leverage the generated transcription to enable
explainable ST.

6. CONCLUSIONS

This paper introduced the first streaming Transformer Trans-
ducer that is able to jointly generate both automatic speech
recognition and translation outputs using a single decoder. To
effectively produce transcription and translation tokens with-
out increased latency, we proposed a joint token-level seri-
alized output training that leverages an off-the-shelf neural
text aligner to generate the data without any additional costs.
Monolingual (it-en) and multilingual ({de,es,it}-en) experi-
ments proved that our proposed approach not only better bal-
ances the quality and the latency constraints of the streaming
scenario, with an average latency of 1s for ASR and 1.3s for
ST but also outperforms separate ASR and ST models by an
average of 1.1 WER and 0.4 BLEU in the multilingual case.
Moreover, it promotes a more explainable ST by exploiting
the ASR outputs to better understand the root cause of the
mistranslations and Green AI by significantly reducing the
number of required systems.
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