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ABSTRACT

Deep biasing for the Transducer can improve the recognition
performance of rare words or contextual entities, which is es-
sential in practical applications, especially for streaming Au-
tomatic Speech Recognition (ASR). However, deep biasing
with large-scale rare words remains challenging, as the per-
formance drops significantly when more distractors exist and
there are words with similar grapheme sequences in the bias
list. In this paper, we combine the phoneme and textual in-
formation of rare words in Transducers to distinguish words
with similar pronunciation or spelling. Moreover, the intro-
duction of training with text-only data containing more rare
words benefits large-scale deep biasing. The experiments on
the Librispeech corpus demonstrate that the proposed method
achieves state-of-the-art performance on rare word error rate
for different scales and levels of bias lists.

Index Terms— automatic speech recognition, conformer
transducer, deep biasing, rare word, text-only

1. INTRODUCTION

Recently, E2E models have been widely explored in the ASR
community and have achieved significant improvements [1}
2|]. Compared to hybrid models, E2E ASR directly maps
speech features into word sequences by optimizing a single
neural network with E2E criteria. The most popular methods,
such as CTC [3} 4], Transducer [[1},5,|6], and Attention-based
Encoder-Decoder (AED) [7, 8l 9], have become mainstream.

Since the vocabulary comprises sub-word units, it is dif-
ficult for E2E models to recognize rare words, as they are
frequently decomposed into infrequent sub-word sequences
[10]. However, in practical applications, the accurate recog-
nition of rare words is crucial for providing a better user ex-
perience, such as in the case of songs, contacts, installed ap-
plications. Moreover, rare words and text corpus containing
such words are often available in advance. Therefore, find-
ing ways to leverage this information and benefit E2E ASR
models has become increasingly important.

* Equal contribution.

One of the most common methods to improve the recog-
nition performance of rare words is language model (LM) fu-
sion. It can be achieved by constructing an FST based on
rare words or contextual words [[L1, [12] and incorporating it
during beam search. Besides, an external task-specific LM
trained on extra text-only data can be used during inference
[L3L [14]. Also, the external LM can be incorporated in the
E2E model during training [[15}|16], like MWER training [17]].

An alternative solution is to bias the E2E model with an
all-neural framework. CLAS [L1] was proposed to incorpo-
rate contextual information dynamically into the E2E model.
In [18], a deep personalized LM was introduced to influence
the model’s predictions earlier, and the performance was fur-
ther improved by combining shallow fusion (SF), deep bias-
ing, and LM contextualization [19]. CATT [20, 21] was pro-
posed by jointly training a context-biasing network with the
original Transducer. In [22], a contextual adapter is added
to the pre-trained ASR model, which is conditioned with the
outputs of the encoder’s different layers [23]]. Besides, some
works use an auxiliary loss or decoder to predict the rare
words directly [24} 25]. Additionally, the phoneme informa-
tion of rare words was also considered for deep biasing [26],
and different embedding extractors were explored in [27].

In addition, there are some works that explore the usage
of extra text corpus through text injection, rather than relying
on LM. This is achieved by joint training of speech and text
data, like JOIST [28| [29], MAESTRO [30], JEIT [31]. Fur-
thermore, text-only domain adaptation has gained popularity
recently, as seen in approaches like TOG [32] and USTR [33]].

In this study, we first explores deep biasing modules us-
ing different hidden states as condition (query in attention).
These modules are trained with a pre-trained Transducer, and
the proposed learning rate policy can achieve better accuracy
on biased words, and maintain the performance on unbiased
words. Specifically, encoder-predictor query is chosen for its
better performance and lower computational cost. To enhance
the performance of deep biasing with large-scale bias lists, the
phoneme information of rare words is also combined with the
textual information. To our best knowledge, this is the first
time that phoneme information is adopted for biasing Trans-
ducer. Additionally, we introduced the previous USTR ap-
proach to further improve the training of biasing module, and
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Fig. 1. The model structures of proposed method. (a) is the overall architecture. (b) is the case where the query of biasing layer
is from Predictor. (¢)is Encoder Query. (d)isthe Enc-Pre Query. (e)is Jointer Query.

two types of text-only corpora are explored to demonstrate
the feasibility of our methodology. Compared to previous
methods, our experiments on Librispeech corpus showed that
the proposed framework achieves competitive or even supe-
rior performance regarding the recognition accuracy of rare
words.

2. RELATED WORK

2.1. Deep biasing

Attention-based deep biasing methods are most relevant to
our work, such as CLAS [11]] and C-RNNT [34]], where an at-
tention mechanism is used to direct the model’s focus towards
specific contextual entities. Meanwhile, in C-RNNT [20, 22]],
deep biasing is employed on both the encoder and predictor
in Conformer Transducers (CT). Also, CLAS is further im-
proved with phoneme representations [26} 27]], and leverag-
ing phoneme information achieves better discrimination for
similar grapheme sequences [10}, 27].

However, these works may increase the decoding com-
plexity without biasing module due to the combiner module.
Furthermore, phoneme information hasn’t been explored for
biasing Transducers before, and we show that phoneme infor-
mation brings a gain for large scale deep biasing.

Additionally, it is found that optimizing the adapter by
fixing the pre-trained model gets even worse performance on
general test set [22]]. We propose to use a group-based learn-
ing rate policy, and achieved better performance on both bi-
ased and unbiased words.

2.2. Text-only ASR

Due to the sparsity of audio training data, additional text data
is explored to improve the accuracy of rare words. Several
studies focus on leveraging external knowledge to enrich the

representations of rare words, such as selecting text data for
LM training [14], augmenting the rare word embedding to
enhance LM’s performance [33, 36]. Nevertheless, all these
methods require an external LM during inference, which in-
curs computational cost.

Other methods try to increase the accuracy of rare words
through joint training with text-only data [30, 31]]. How-
ever, these works focus on enhancing the general performance
of rare words, instead of particular biasing words. In contrast,
we propose to employ USTR, which is adopted for text-only
domain adaptation [33], to further enhance the capability of
deep biasing with more unpaired text data.

3. PROPOSED METHODS

3.1. Model architecture

The overall architecture is illustrated in Figure [I(a), which
consists of Transducer, USTR’s TextEncoder and
BiasingModule. The BiasingModule includes two
parts, named WordEncoder and BiasingLayer.

For the paired speech and text data, let X*P**h ¢ RB1xTx D1
be the audio features like Fbank, and the output of encoder is
computed by

HePeeeh — Encoder(XSpeeCh)7 (D)
where H'Ph € RB1XT"*H and Encoder(-) is the same as
SharedEncoder(AudioEncoder(+)).

For unspoken text data, let X'**' € RB2XNXDz e the text
features, and the output of encoder is computed by

H*"' = sharedEncoder(TextEncoder(X"™™)), (2)

where H'™ ¢ RB2xN'xH
Then the encoder output of paired speech-text data H*Pech
and unspoken text data H*" are concatenated on the batch



dimension by filling to the same size on length dimension, as
well as the output label sequence,

H®" = BatchConcat (HSpemh7 H), 3)

Y = BatchConcat (Y*Peh yiext), “4)

where H*® € REXEXH B — B1 4 B2, L = max(T', N'),
Y € REXU,

For simplicity, lety € RY and h*™ € RL>*# be an utter-
ance in the batch of H*™ and Y, and the predicted probability
on vocabulary of CT at frame ¢ and step u is computed by

hzred — Predictor(yo;u—1)7 )
hjt‘jiit _ Jointer(hgnc7hzred)7 (6)
V1. = Softmax(FC(hl)). @

Then with forward-backward algorithm [|6], Transducer loss
is computed as the training objective function.

For BiasingModule, it takes the bias words Wq.x €
RE*S as input and converts Wy.x to E;.x € REXM by a
WordEncoder, where K is the number of biasing words
(including one empty word for no biasing), .S is the max
length of rare words, M is the dimension of word embedding,
W; is a word or word sequence, and E, is the corresponding
embedding. More details are provided in Section[3.3]

BiasingLayer contains multi-head attention (MHA),
which takes the input from Transducer/USTR as query and
E..x as key/value. The output of MHA is reshaped to the
same size as the query by a projection layer, then is added
to the original query as a biasing vector. More details about
BiasingLayer can be found in Section[3.2]

3.2. Biasing with different queries

Predictor-Query (Figure [T{b)). The query is the concate-
nated value of predictor’s embedding output h®™* and final
output hP™%« at each step u, and the biasing process is

Query = Concat (hS™, hP™?), (8)
b, = MHA(Query, E1.xc, E1.x), ©)
ﬁired — b, + h;;red7 (10)

where flerd will replace h?™? for Transducer/USTR training
and inference.

Encoder-Query (Figure[I|c)). The query is the encoder
output hi"™ at each time step ¢, and the biasing process is

b; = MHA(Query = h", E1.x,E1.x) (11)

Enc-Pre Query. This is the combination of Encoder-
Query and Predictor-Query. As noted in Figure[T[d), there are
two BiasingLayer modules with separated parameters.

Jointer-Query (Figure[T[e)). In this case, the query is the
hidden states h’,," in jointer, and the biasing process is

b, = MHA(Query = b)) E1.x, E1.x)  (12)
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Fig. 2. The model structures of different word encoders (WE).
Only one word abut is considered here for better under-
standing, where "ab@ @ ut” is the sub-word sequence and
”AHO B AH1 T” is the phoneme sequence.

3.3. Combining textual and phoneme features

Textual-WE, as shown in[2fa). A word is first converted to a
sub-word sequence and an embedding layer is used to extract
token embedding. Then the sequence of token embedding is
fed into an unidirectional long short-term memory (LSTM)
layer, and the final state is adopted as the word embedding.

Tex-Pho-WE, as illustrated in [2(b). Different from
Textual-WE, there is another branch, which converts the
word to a phoneme sequence, and the sequence of phoneme
embedding is fed to the LSTM layer to get the final state
as a phoneme representation of the word. The textual and
phoneme representations are concatenated and reshaped to
the same size by a fully connected (FC) layer.

Learnable-WE, as illustrated in [2Jc). Different from
Textual-WE, there are two additional transformer decoders,
which take the word embedding as input and predict textual
and phoneme sequences respectively. The Learnable-WE is
similar to that in [27]]. It should be noticed that the decoders
can be removed during inference.

4. EXPERIMENTAL SETUP

4.1. Data sets

The experiments are conducted on LibriSpeech [37] corpus,
where the 960-hour audio data is adopted as paired speech-
text corpus, and the normalized text data with size of I.SCﬂis
used as unspoken text for training USTR. Also, in this work,
we proposed to use the 209.2k rare words (defined as words

'https://www.openslr.org/11/
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Table 1. The WER(U-WER/B-WER)(%) results of deep bi-
asing with different queries. The size of bias list is 100 here.

model | test-clean | test-other |
. 3.28 7.88
CT Baseline (2.15/12.43) | (5.71/26.97)
+ deep biasing 2.93 7.11
(Predictor-Query) | (2.16/9.22) | (5.61/20.36)
+ deep biasing 2.78 6.63
(Encoder-Query) | (2.11/8.18) | (5.38/17.66)
+ deep biasing 2.67 6.54
(Enc-Pre Query) (2.06/7.64) | (5.48/15.81)
. 2.92 7.01
*Freezing €T 1 5 14927) | (5.61/19.31)
+ deep biasing 2.67 6.67
(Jointer-Query) (2.07/7.50) | (5.51/16.88)

not in the 5,000 most common words in the paired audio train-
ing set, i.e., RareSk) as unspoken text to improve the biasing
performance when training with USTR.

For the paired audio data, 3-fold speed perturbation [38]]
with factors of 0.95, 1.0, and 1.05 is used for data augmen-
tation. Besides, the 80-dim filter-bank (Fbank) is extracted
and Spec-Augment [39] is applied on Fbank features before
feeding into AudioEncoder.

When training USTR with unspoken text data, the phonemes

are adopted as text features, which is similar to that in [33]],
and the text features are masked with a probability of 0.15
before repeating and feeding into TextEncoder.

4.2. Model

The model’s structure is described as that in Section [3.1}
where AudioEncoder consists of 2-layer 2D convolution
with channel=128, kernel=3, stride=2 and ReLU activation
[40L/41]], resulting in downsampling of 40ms. TextEncoder
contains an embedding layer and a Transformer layer. And
SharedEncoder consists of 12 streaming Conformer [42]
layers, where the attentions of first 7 layers have a look ahead
of 1 frame (i.e., 40ms) and there is no look ahead for all con-
volutions and attentions of last 5 layers. The total look ahead
of the Encoder is 310ms (280ms for Conformer layers and
30ms for AudioEncoder). Predictor has an embed-
ding layer and 2 LSTM layers and Jointer has a linear
layer. The output of RNN-T is 4,048 subword units [43]. All
models are implemented and trained with PyTorch [44]].

4.3. Training

During training, the bias list of current batch is extracted from
all the batch references, including the rare words in Rare2k
(defined as words that fall outside the 2k most common words
in the paired audio training set).

The textual feature of a bias word is the subword units.
Besides, the phoneme features are generated by a Grapheme-
to-Phoneme system, i.e., gZpEﬂ

When training USTR with unspoken text data, single-step
is adopted, as the training process is simpler and more effi-
cient, and better performance can be obtained [33]. Besides,
the USTR is trained from scratch with BiasingModule.
Also, during the training of USTR, paired speech-text data
is fed into the TextEncoder by using text features in-
stead of audio features with a probability 0.15 to force the
TextEncoder and AudioEncoder to learning an unified
representation for audio and text features.

However, when training BiasingModule with pared
speech-text data, a pre-trained Conformer Transducer (CT)
is used for initialization. In this case, to maintain the model’s
performance when there is no biasing, group-based learning
rate (Ir) policy is proposed, where BiasingModule and CT
are trained with Ir=1e-5 and Ir=1e-7 jointly.

In addition to the Transducer loss, CTC and an extra AED
decoder are adopted for multi-task learning. Also, internal
LM estimation (ILMT) loss is chosen as an auxiliary loss.
The overall training loss is

L= ETransducer + ECTC + EAED + AEILMT; (13)

where A is set to 0.2 in all experiments. When Learnable-
WE is used, there still exists two AED losses with scale of
0.1. Besides, subword regularization, i.e., BPE dropout [45]],
is applied with a probability of 0.1 during training.

4.4. Inference

During inference, for each utterance, the biasing list is con-
structed by extracting the rare words (in RareSk) in the refer-
ence and adding a certain number of distractors. The biased
words with different size (100/500/1000/2000) are explored
to check the performance of proposed method with different
scale of bias list size, which is the same as that in [[19].

WER is evaluated on Librispeech test-clean and
test-other sets. To indicate the performance of (biased)
rare words, B-WER (biased WER) is measured on words in
the biasing list as that in [19} 24], while U-WER (unbiased
WER) is also measured to prevent degrading the performance
of words not in the biasing list.

Moreover, similar to that in [46], rare WER (R-WER) is
used to evaluate the performance of proposed methods for
utterance-level, chapter-level and book-level biasing.

5. EXPERIMENTAL RESULTS

5.1. Biasing with different queries

Deep biasing with different queries in CT has been initially
explored, and the results are illustrated in Table[I} Compared

Zhttps://github.com/Kyubyong/g2p
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Table 2. The WER(U-WER/B-WER)(%) results of deep bi-
asing when using difference embedding modules. The size of
bias list is 100, and Enc-Pre Query is used for all experiments.

Table 3. The WER(U-WER/B-WER)(%) results when com-
bining deep biasing with USTR. The size of bias list is 100
here. USTR-CT(C/L) denotes the USTR model trained using
Librispeech LM Corpus and rare word List respectively.

model | test-clean | test-other |
. 3.28 7.88
CT Baseline (2.15/12.43) | (5.71/26.97)
deep biasing 2.67 6.54
(Textual-WE) | (2.06/7.64) | (5.48/15.81)
deep biasing 2.56 6.33
(Tex-Pho-WE) (2.03/6.84) | (5.38/14.69)
deep biasing 2.68 6.44
(Learnable-WE) | (2.09/7.50) | (5.40/15.55)

to the CT baseline, all models with deep biasing achieve sig-
nificant reductions on B-WER, and the U-WER performances
remain almost the same or even better. It indicates that the
proposed method enhances the performance of rare words
without sacrificing the performance of common words.

Joint Query achieves the best B-WER on test-clean, while
Enc-Pre Query obtains better WERS on test-other. When ap-
plying deep biasing with Enc-Pre Query, we observe relative
improvements of 38.5% and 41.4% on the B-WER. However,
when we tried to freeze the parameters of CT rather than us-
ing different learning rates, the performance becomes much
worse on both biased and unbiased words.

Besides, for an utterance in which lengths of encoder’s
output and predictor’s output are L and U, the computational
complexity of Enc-Pre Query is O(L + U), in contrast the
computational complexity of Jointer Query is O(L x U),
which is larger when U > 2, L > U. Therefore, Enc-Pre
Query has a lower computational complexity in most cases
and is chosen as the default in the following experiments.

5.2. Combining textual and phoneme features

We evaluate the effectiveness of combining textual and
phoneme information with different word encoders. As
shown in Figure [2| compared with Textual-WE, Tex-Pho-
WE obtained the best results, with relative reductions of
10.47% (7.64% — 6.84%) and 7.08% (15.81% — 14.69%)
on the B-WERs of two test sets, respectively. Learnable-WE,
explored in [27]], performs worse than Tex-Pho-WE, as Tex-
Pho-WE uses the phoneme information without errors. The
improvement indicates the benefits of phoneme information
for deep biasing in CT, and Tex-Pho-WE is chosen as the
default configuration in following experiments.

5.3. Combined with USTR

Then, we investigate the impact of introducing unpaired text
data containing rare words by combining deep biasing and
USTR. As illustrated in TableE], compared to CT baseline, not
only the USTR with LM corpus obtains better performance

| model | test-clean | test-other |
. 328 7.88
CT Baseline (2.15/12.43) | (5.71/26.97)
+ deep biasin 2:56 6.33
P € 1 (2.03/6.84) | (5.38/14.69)
3.05 7.49
USTR-CT© | 5 00/10.83) | (5.55/24.58)
+ deep biasin 2.39 6.30
p & | (227/338) | (6.23/6.99)
3.13 7.58
USTR-CTM) | 5 06/11.84) | (5.57/25.31)
+ deep biasin 2.19 >-61
p € | (1.99/3.82) | (5.38/7.57)
2.98 745
USTR-CT(CHL) | 9711 14y | (5.54/24.24)
+ doon biasin 2.15 5.56
POISINE |5 00/3.33) | (5.46/6.45)

on all WERs, but also the USTR with rare word list obtains
slight improvements. When trained using both LM corpus
and rare word list, the B-WERs on test-clean and test-other
are reduced from 12.43%/26.97% to 11.14%/24.24%.

When combining USTR with deep biasing, significant im-
provements are observed. When trained with unpaired text
data C/L, the B-WER of deep biasing model on test-other is
improved from 14.69% to 6.99%/7.57%, much better than CT
or USTR baselines. The improvements are mainly attributed
to utilization of more rare words for training and the capacity
of biasing module capacity is enhanced.

It should be noted that the rare words list contains only
209.2k rare words, which is significantly smaller than the LM
corpus and demonstrates the feasibility of our method. Con-
sequently, we combined the LM corpus and rare word list,
and achieved the best WER/B-WER on both test sets. Com-
pared with the deep biasing baseline, USTR(C+L) with deep
biasing provides relative improvements of 51.32%/56.09% on
B-WER (6.84%/14.69% — 3.33%/6.45%).

5.4. Different bias list size

We further evaluate the robustness of the proposed method
on large-scale bias lists, in which most words are irrele-
vant to the audio. As illustrated in Table [4] as the size of
bias list increases, B-WER increases gradually when us-
ing Enc-Pre Query. The absolute gaps of B-WER on the
two test sets between N = 100/2000 are 3.2%/7.7% re-
spectively. Tex-Pho-WE alleviates these gaps to 2.7%/5.9%
because it provides additional information to discriminate



Table 4. The WER(U-WER/B-WER)(%) results on LibriSpeech test sets with different bias list size (100/500/1000/2000).

N =100 N =500 N = 1000 N = 2000
Method
test-clean  test-other | test-clean test-other | test-clean test-other | test-clean test-other
CT Baseline 3.28 7.88 3.28 7.88 3.28 7.88 3.28 7.88
(2.2/12.4) (5.7/27.0) | (2.2/12.4) (5.7/27.0) | (2.2/12.4) (5.7/27.0) | (2.2/12.4) (5.7/27.0)
Enc-Pre Quer 2.67 6.54 2.87 7.01 2.97 7.30 3.09 7.44
y (2.1/7.6) (5.5/15.8) | (2.1/9.1) (5.5/20.3) | (2.1/10.0) (5.6/22.3) | (2.2/10.8) (5.6/23.5)
+ Tex-Pho-WE 2.56 6.33 2.74 6.70 2.81 6.93 291 7.09
(2.0/6.8) (5.4/147) | (2.1/8.1) (5.5/17.5) | (2.1/87) (5.5/19.1) | (2.1/9.5) (5.6/20.6)
2.15 5.56 2.23 5.83 2.28 6.01 2.30 6.14
+ USTR(C+L) (2.0/3.3) (5.5/6.5) (2.1/3.7) (5.6/8.2) (2.1/3.8) (5.7/9.1) 2.1/4.4) (5.6/11.0)
+FST 2.06 5.38 2.09 5.62 2.16 5.75 2.17 5.84
(2.1/2.0) (5.5/4.4) (2.1/2.2) (5.6/5.6) (2.1/2.5) (5.7/6.3) (2.1/3.0) (5.6/7.6)
DB-RNN-T + FST 1.98 5.86 2.09 6.09 2.14 6.35 2.27 6.58
+DB-NNLM[19] | (1.5/5.7) (4.9/14.1) | (1.6/6.2) (5.1/15.1) | (1.6/6.7) (5.1/17.2) | (1.6/7.3) (5.2/18.9)
CT + deep 3.66 7.63 3.78 7.99 3.88 8.28 N/A N/A
biasing[24]] (2.8/11.2) (6.0/22.1) | (2.9/11.5) (6.2/23.4) | (2.9/11.9) (6.4/24.5)

* N/A means that the results are not available.

Table 5. The WER/R-WER(%) results of various systems on LibriSpeech test sets when using deep bias with utterance-level,
chapter-level and book-level rare words. The bias list size is 1000 for all methods.

Model test-clean test-other
Utterance-level ~Chapter-level Book-level | Utterance-level Chapter-level Book-level

RNN-T + TCPGen[46] 4.9(13.9) 5.1(13.6) 5.4(28.2) 14.0(35.0) 14.1(32.4) 14.8(52.1)

+ deep biasing + SF 3.8(11.3) 4.0(11.0) 4.2(24.0) 11.5(29.0) 12.0(29.3) 12.2(50.8)
DB-RNN-T[19]" 3.3(11.9) N/A N/A 9.1(31.4) N/A N/A

+ FST + DB-NNLM" 2.1(6.8) N/A N/A 6.4(21.3) N/A N/A
Proposed deep biasing 2.8(9.8) 3.0(10.9) 3.2(12.9) 6.9(22.9) 7.2(25.4) 7.6(29.3)

+ USTR + FST 2.2(5.0) 2.5(7.1) 2.8(9.8) 5.8(11.7) 6.4(18.0) 7.1(24.2)

* The results of R-WER is generated by using the hypothesis files in https://github.com/facebookresearch/fbai-speech/tree/

main/is21_deep_bias with a bias list size of 1000.

similar grapheme sequences. By combining USTR(C+L), the
gap shrinks to 1.1%/4.5%. Compared to CT baseline, our
best system, which combines deep biasing, USTR, and FST,
achieves relative B-WER reductions of 75.81% and 71.85%
on the two test sets respectively when N = 2000.

5.5. Comparison with other methods

Results of some prior works are also listed in the bottom rows
in Table ] Compared to the best system in [19], the proposed
method achieves the best B-WER on all test sets and all sizes
of bias list, while no external LM is used. With an external
LM, we believe further improvements can be achieved.

R-WERs of our system and other approaches are listed
in Table E] with utterance-level, chapter-level, and book-level
rare words as those in [46]. The proposed strategy achieves
the best R-WERs on two test sets with all levels of the bias
list, indicating the proposed method’s superiority.

6. CONCLUSIONS

In this paper, we proposed several significant improvements
in large-scale deep biasing for Transducer based streaming
ASR. Our approach extends CT by incorporating textual and
phoneme information of rare words, resulting in notable rel-
ative improvements of 45.16% and 45.56% on B-WER over
the baseline. Furthermore, by incorporating the previously
established USTR method for text injection during training
and incorporating FST during inference, the proposed ap-
proach yields remarkable improvements, leading to relative
reductions of 83% ~ 84% on B-WER. Moreover, our method
demonstrates robustness in large-scale deep biasing scenar-
ios, effectively closing the gap between bias list sizes from
100 to 2000. Notably, compared to other publicly available
results, our approach attains state-of-the-art performance on
the accuracy of rare words.
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