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ABSTRACT
Prompting and adapter tuning have emerged as efficient alter-
natives to fine-tuning (FT) methods. However, existing stud-
ies on speech prompting focused on classification tasks and
failed on more complex sequence generation tasks. Besides,
adapter tuning is primarily applied with a focus on encoder-
only self-supervised models. Our experiments show that
prompting on Wav2Seq, a self-supervised encoder-decoder
model, surpasses previous works in sequence generation
tasks. It achieves a remarkable 53% relative improvement in
word error rate for ASR and a 27% in F1 score for slot fill-
ing. Additionally, prompting competes with the FT method
in the low-resource scenario. Moreover, we show the trans-
ferability of prompting and adapter tuning on Wav2Seq in
cross-lingual ASR. When limited trainable parameters are
involved, prompting and adapter tuning consistently outper-
form conventional FT across 7 languages. Notably, in the
low-resource scenario, prompting consistently outperforms
adapter tuning.

Index Terms— Prompting, adapter, parameter-efficient
tuning, sequence generation, automatic speech recognition

1. INTRODUCTION

Self-supervised learning (SSL) enables models to learn infor-
mative representations from unlabeled data and has achieved
impressive results in various domains and tasks. Notable
examples are CPC [1], Wav2vec2.0 [2], HuBERT [3] and
so on. These pre-trained SSL speech models often act as
feature encoders and a downstream model is built on top
of them to perform downstream tasks [4, 5]. On the other
hand, several works [6, 7, 8] proposed using offline cluster-
ing methods (e.g., K-means) on these speech representations
to obtain discrete speech tokens. Decoder-only models are
then trained on top of these speech tokens to perform gen-
erative tasks. Wav2Seq [9] further combines these methods,
in which the encoder and decoder are both pre-trained. In
the pre-training stage, Wav2Seq is trained to perform ASR
on a pseudo language, and this has been shown to benefit
downstream sequence generation tasks. However, despite the

architectural and pre-training variations, these models usu-
ally require fine-tuning to adapt to specific downstream tasks
effectively. Due to a large number of parameters, the conven-
tional fine-tuning (FT) approach on these models becomes
costly regarding computational resources.

To this end, prompting [10] and adapter tuning [11]
have gained popularity as effective approaches in address-
ing the aforementioned challenges. Prompting involves uti-
lizing prompts, which are templates or task-specific vectors,
to guide the pre-trained model. By fitting the input data into
these prompts, the model is steered towards better understand-
ing or generation, enabling it to perform various downstream
tasks effectively [10, 12]. Different from making modifica-
tions at the input side, adapter tuning inserts lightweight neu-
ral networks into a pre-trained model. These components,
referred to as adapters, are then trained while fixing the re-
maining parameters of the pre-trained model. Adapter tuning
has shown to be effective in mitigating the domain mismatch
problem in transfer learning [11]. Overall, both techniques
offer the advantage of significantly reducing the number of
task-dependent parameters compared to conventional FT ap-
proaches, thus alleviating computational resource limitations.

While prompting and adapter tuning techniques have
been explored in the field of speech processing, previous
research has only primarily focused on either decoder-only
or encoder-only pre-trained models. SpeechPrompt [12, 13]
applies prompting to a decoder-only GSLM [6] on various
speech classification tasks but fails in sequence generation
tasks. Other works [14, 15] have focused on adapter tuning
in encoder-only speech representation learning models, such
as HuBERT [3], wav2vec2.0 [2], and WavLM [16]. On the
other hand, recent studies [9, 17] have demonstrated that
encoder-decoder pre-trained models are more suitable for se-
quence generation tasks, such as ASR and speech translation.
However, it has not yet been explored whether these models
can efficiently transfer to other downstream tasks through
prompting and adapter tuning. This paper presents the first
application of prompting and adapter tuning techniques for
the encoder-decoder pre-trained model. As Fig. 1 shows,
we perform prompting and adapter-tuning on Wav2Seq, an
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Fig. 1: The proposed prompting and adapter tuning on encoder-decoder SSL speech models. Red components are trained
during downstream task adaptation. (a) Prompting: Trainable prompts are prepended at the input of Transformer layers in both
encoder and decoder parts. (b) Adapter tuning: Adapters are inserted in the Transformer layers.

SSL encoder-decoder model, and achieve superior perfor-
mance to SpeechPrompt in terms of both classification and
sequence generation tasks. This paper is also the first to
achieve non-trivial results in prompting speech models for
sequence generation tasks. More specifically, it achieves 53%
relative improvement in WER for ASR and 27% in F1 score
for slot filling. We also conducted extensive studies compar-
ing prompting, adapter tuning, and fine-tuning methods in
cross-lingual transfer learning across 7 different languages.
Both prompting and adapter tuning achieve superior parame-
ter efficiency compared to the fine-tuning method. Moreover,
the experiment reveals that in the low-resource scenario,
prompting consistently outperforms adapter tuning.

2. RELATED WORKS

2.1. Self-supervised speech models

SSL models have achieved state-of-the-art performances
across various tasks. These models can be mainly grouped
into three distinct types: encoder-only, decoder-only, and
encoder-decoder architectures. The overview of typical SSL
speech models is shown in Fig. 2. Encoder-only models
usually serve as representation learning models that can ex-
tract features to benefit downstream tasks. Examples include
Wav2vec2 [2], HuBERT [3], and WavLM [16]. While these
models encode speech into informative representations, they
cannot be directly used for downstream tasks. To adapt an
encoder-only model to downstream tasks, we need to addi-
tionally build a downstream model that utilizes the encoded
representations and fine-tunes the whole model [5]. On the
other hand, decoder-only models are often built for spoken
generative language modeling, such as GSLM [6], Audi-
oLM [18], and TWIST [8]. These models mostly consist
of an offline speech quantizer and a generative decoder-only
model. The speech quantizer quantizes the input speech
into a sequence of discrete tokens, and the decoder mod-

ule is then trained with these tokens to perform generative
language modeling. Last, in encoder-decoder models, both
encoder and decoder are jointly trained in the pre-training
stage [9, 17, 19], which is different from the previous two
types. Encoder-decoder models are superior across various
sequence generation tasks, such as ASR and speech trans-
lation [9, 17] and thus we focus on this specific type in this
paper. Wav2Seq [9] and Speech2C [17] share similar model
architecture. We adopt the former for its pre-training shows
benefits to various tasks, while the latter focuses on ASR.

2.2. Prompting in speech processing

The prompting method [10] fits the data into a task-specific
template that steers the pre-trained model to perform a
given task without modifying its architecture and parame-
ters. Prompts can take the form of either natural language
templates [20, 21] or trainable prompts [22, 23] positioned
at the input of the model. Trainable prompts can also be
placed at the input of each model’s layer, referred to as deep
prompt tuning [22] to offer more capability to the prompts.
In this paper, we focus on deep prompt tuning as it is efficient
and effective to prompt pre-trained speech models [12, 24].
Another similar approach is model reprogramming [25, 26],
where a transformation is applied to the input data so that
the pre-trained model can be used for a target task. Recently,
model reprogramming methods are also applied to several
speech and audio-related tasks, such as spoken command
classification [27], cross-lingual speech recognition [28], and
music genre classification [29].

2.3. Adapter tuning in speech processing

Adapter tuning [30, 11] is an alternative method of fine-
tuning. It utilizes bottleneck neural networks known as
adapters to transfer the hidden representation of a pre-trained
model to a specific downstream. For SSL speech mod-
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Fig. 2: Typical self-supervised speech model architectures. (a) Encoder-only models: They can extract informative represen-
tations for downstream speech processing tasks. (b) Decoder-only models: By performing quantization on speech represen-
tations, the speech is transformed into discrete speech tokens. A decoder-only model is then trained on top of these speech
tokens. Examples include GSLM and TWIST. (c) Encoder-decoder models: Combining the techniques in (a) and (b). The
encoder and the decoder are jointly trained. Examples include Wav2seq and Speech2C.

els, there have been explorations of adapters like Houlsby
adapter [11], LoRA [31], and AdapterBias [32] on encoder-
only SSL speech models, as reported in a recent study [15].
Moreover, adapter tuning is not confined to SSL models; it
is also applicable to conventional speech models for domain
adaptation, such as language adaptation in speech transla-
tion [33] and speaker adaptation in text-to-speech [34].

3. METHOD

3.1. Self-supervised encoder-decoder speech model

Fig. 1 shows a widely used self-supervised encoder-decoder
speech model built with Transformer [35] blocks. This pa-
per is also based on this model. The CNN encoder F , serv-
ing as a feature extractor, encodes input speech x into ini-
tial features g(1) = F (x) = [g

(1)
1 , g

(1)
2 , ..., g

(1)
T ], where T is

the sequence length. The Transformer encoder E consists of
multiple Transformer layers and takes g(1) to generate con-
textualized representations. Specifically, the i-th Transformer
layer receives g(i) = [g

(i)
1 , g

(i)
2 , ..., g

(i)
T ] and output g(i+1).

Similar to the encoder, each layer of the decoder re-
ceives h(i) = [h

(i)
1 , h

(i)
2 , ..., h

(i)
T ′ ] as input, where T ′ de-

notes the sequence length. In particular, the first decoder
representation, h(1), involves the utilization of the token
embedding table. Each token embedding is obtained by
transforming a corresponding discrete token using a lookup
embedding table e. Consequently, h(1) can be written as
h(1) = [e(u1), e(u2), ..., e(uT ′)]. Here, u1, u2, ..., uT ′ de-
note the tokens present in the decoder sequence.

3.2. Prompting

Deep prompt tuning prepends trainable prompt vectors p at
the input of each Transformer layer. For example, in the en-

coder, the input of the i-th layer is modified as follows:

g(i) ← Concat(p(i), g(i)) (1)

where p(i) = [p
(i)
1 , p

(i)
2 , ..., p

(i)
l ] is a sequence of prompt vec-

tors of length l. Moreover, in addition to input modification,
we also prepend prompt vectors to the key and value in the
attention mechanism:

K(i) = Concat(p
(i)
K , g(i))W

(i)
K (2)

V (i) = Concat(p
(i)
V , g(i))W

(i)
V . (3)

This enhances the model’s ability to attend to relevant in-
formation and tailor its attention patterns according to the
prompts. The decoder D undergoes similar modifications.
Notably, in prompt tuning, the pre-trained encoder and de-
coder’s architecture and parameters always remain fixed.

3.3. Adapter tuning

Adapter tuning involves the integration of lightweight neu-
ral networks into Transformer layers, providing a flexible
and efficient way to enhance model performance. Typ-
ically, an adapter consists of a down projection network
Wdown ∈ Rd×r, an up projection network Wup ∈ Rr×d,
an activation function f , and a residual connection. This
design forms a bottleneck structure, wherein the bottleneck
dimension r serves as a hyperparameter that can be adjusted
to create adapters of varying sizes. The embedding of Trans-
former layer h can therefore be adjusted by the adapter:

h← h+ f(hWdown)Wup (4)

By incorporating adapters into Transformer layers, the model
gains additional capacity for task-specific modifications with-
out significantly increasing the overall parameter count. The



Table 1: The summary of downstream tasks in our experi-
ment. SC: speech classification. SG: sequence generation.

Task Type Dataset

Keyword Spotting SC Speech Commands [36]
Intent Classification SC Fluent Commands [37]
ASR - 100 hours SG LibriSpeech-100 hr [38]
ASR - 10 hours SG LibriLight-10 hr [39]
Slot Filling SG Audio SNIPS [40]
Multilingual-ASR SG Multilingual LibriSpeech [41]

down projection network reduces the dimensionality of the in-
put, enabling efficient adaptation to the target task, while the
up projection network restores the dimensionality to match
the original input size. The residual connection facilitates the
flow of information, ensuring that the original information is
preserved while incorporating task-specific adjustments.

4. EXPERIMENTAL SETTINGS

We used Wav2Seq [9] as the backbone model and performed
prompting and adapter tuning experiments on it. Firstly, we
assessed the effectiveness of prompting on Wav2Seq by com-
paring its performance with SpeechPrompt [12] in speech
processing across several classification tasks and sequence
generation tasks. Furthermore, we applied prompting to
Wav2Seq in cross-lingual speech recognition tasks to in-
vestigate the transferability of this technique. Additionally,
we compared the effectiveness and parameter efficiency of
adapter tuning and prompting in both low-resource and full-
dataset scenarios. Table 1 presents an overview of the tasks
and datasets involved in the experiments.

4.1. Wav2Seq

Wav2Seq [9] consists of Transformer encoders and decoders,
which are jointly trained with the pseudo speech recognition
task. It first quantizes SSL speech representations into dis-
crete tokens using an offline K-means clustering algorithm.
Repetitive tokens are then merged through a process called
deduplication. Subsequently, a subword tokenization algo-
rithm, namely byte-pair encoding (BPE) is applied to generate
the desired pseudo subwords. These pseudo subwords serve
as targets for pseudo speech recognition in the self-supervised
pre-training stage, where the encoder and decoder are jointly
optimized. When utilizing Wav2Seq for a downstream task,
the embedding table for the model’s vocabulary is substituted
and fine-tuned specifically for that task.

4.2. Prompting paradigm

We compared our prompting method to SpeechPrompt [12]
in both speech classification tasks and sequence generation
tasks. We set the prompt length to 5 for the classification

tasks and 120 for the sequence generation tasks, respectively.
The trainable parameters used align with those in Speech-
Prompt. For classification tasks, we conducted Keyword
Spotting (KS) and Intent Classification (IC). In keyword
spotting, models aim to detect the keyword in an utterance
by classifying the utterance into a pre-defined keyword set.
In intent classification, models aim to extract and summa-
rize the “action”, “object”, and “location” from an utterance,
which collectively represent the user’s intent. For sequence
generation tasks, we conducted ASR and Slot Filling (SF).
While we used LibriSpeech-100 for ASR, we also consid-
ered a low-resource scenario where only 10 hours of data
were used. The models are then tested on the LibriSpeech
test-clean set. In slot filling tasks, models are not only ex-
pected to recognize the spoken content but also to decode the
slot type associated with that content. Specifically, the slot
type is decoded together with the transcription in a sequence
generation manner [4, 40].

In recent research [42], prompting is also viewed as a
parameter-efficient transfer learning method. To evaluate the
transferability and effectiveness of Wav2Seq with prompt-
ing, we conducted cross-lingual ASR experiments on 7 dif-
ferent languages: Dutch, French, German, Italian, Polish,
Portuguese, and Spanish. For these experiments, we uti-
lized the multilingual-LibriSpeech (MLS) dataset [41]. The
Wav2Seq model was initially pre-trained on the English-only
LibriSpeech-960 dataset [38]. By incorporating prompting,
we aim to make the Wav2Seq transfer the knowledge to the
target language and effectively perform cross-lingual ASR.
We explored different prompt lengths, specifically 60 and
120, and compared them to the fine-tuning method, where we
fine-tuned the top 1 and 2 layers of the decoder.

4.3. Adapter tuning

We further compared adapter tuning with prompting methods
in the aforementioned cross-lingual speech recognition exper-
iment. The experiment was conducted in both the full-dataset
scenario and the low-resource scenario. In the low-resource
scenario, only 10 hours of training data were provided for
each language. To ensure a fair comparison between prompt-
ing and adapter tuning, we aligned the trainable parameters of
both methods. In the low-resource scenario, we set the prompt
length to 120, and the adapter bottleneck dimension to 64. In
the full-dataset setting, we increased the prompt length to 180
tokens, while the adapter bottleneck dimension was set to 96.

5. RESULTS

5.1. Prompting for various speech processing tasks

Table 2 provides the results of prompting Wav2Seq, denoted
as Wav2Seq-Prompt, and prompting GSLM in Speech-
Prompt for both classification tasks and sequence generation



Table 2: Prompting method on classification tasks and sequence generation tasks. FT: fine-tuning the pre-trained Wav2Seq.
#: The number of trainable parameters.

Scenarios
Intent Classification Keyword Spotting ASR (100 hr) ASR (10 hr) Slot Filling

Acc (↑) # Acc (↑) # WER (↓) WER (↓) CER (↓) F1 (↑) #

Wav2Seq-Prompt 98.79 0.2M 98.40 0.2M 9.28 14.13 9.69 84.97 4.3M
SpeechPrompt [12] 98.40 0.15M 95.16 0.08M 34.17 - 59.47 66.90 4.5M

Wav2Seq-FT 99.50 155M 98.20 155M 5.57 10.20 4.65 93.21 155M

Table 3: Transfer learning results on cross-lingual ASR using prompting (Wav2Seq-Prompt) and conventional fine-tuning
(Wav2Seq-FT) across 7 languages. The fine-tuning of the top n layers of the decoder and different prompt length (L) of
prompting are presented. We report word error rate (WER) and the number of trainable parameters for each scenario.

Scenario Dutch French German Italian Polish Portuguese Spanish #

Wav2Seq-FT (n = 1) 49.08 41.81 32.54 38.17 36.64 43.87 32.41 10.2M
Wav2Seq-FT (n = 2) 43.07 33.76 23.49 31.72 30.25 36.38 25.52 19.7M

Wav2Seq-Prompt (L = 60) 48.77 43.23 34.96 39.79 42.17 44.02 36.24 2.5M
Wav2Seq-Prompt (L = 120) 41.3 32.48 23.25 29.28 30.39 33.24 23.25 4.3M

Table 4: WER on German ASR when prompts are placed at
some of the layers. E: encoder, D: decoder, f3: first 3 layers,
ℓ3: last 3 layers and so on. #: trainable parameters.

Placement Encoder Decoder

f3 ℓ3 f6 ℓ6 f3 ℓ3 # WER ↓
E (f3) ✓ 1.5M 29.43
E (ℓ3) ✓ 1.5M 26.52
D (f3) ✓ 1.5M 28.32
D (ℓ3) ✓ 1.5M 27.88
E (f6) ✓ 2.1M 28.08
E (ℓ6) ✓ 2.1M 24.65
D (all) 2.1M 27.41

E (f3) + D (f3) ✓ ✓ 2.1M 28.24
E (f3) + D (ℓ3) ✓ ✓ 2.1M 28.98
E (ℓ3) + D (f3) ✓ ✓ 2.1M 26.32
E (ℓ3) + D (ℓ3) ✓ ✓ 2.1M 26.27
E (all) + D(all) ✓ ✓ ✓ ✓ 4.3M 23.25

tasks. Our findings demonstrate that, within the prompt-
ing paradigm, Wav2Seq-Prompt consistently outperforms
SpeechPrompt across all tasks. It’s worth noting that in
sequence generation tasks, Wav2Seq-Prompt exhibits signifi-
cant improvements over SpeechPrompt. For ASR, it achieves
a remarkable 73% reduction in WER, and for the slot filling
(SF) task, it achieves an impressive 84% reduction in CER
and 27% improvement in F1 score. This study showcases the
successful application of the speech prompting paradigm for
achieving impressive results in sequence generation tasks.

To assess the benefits of prompting in the low-resource
scenario, we tested Wav2Seq on low-resource ASR. While
SpeechPrompt failed to produce meaningful results, Wav2Seq
demonstrated competitive performance. Despite the limita-
tions of low-resource data, Wav2Seq achieved impressive re-
sults, with the WER being only 4.85 higher compared to the

high-resource scenario. We believe that the outstanding per-
formance of Wav2Seq-Prompt in sequence generation tasks
is attributed to its pseudo speech recognition pre-training task
and its encoder-decoder architecture. On the other hand, the
GSLM in SpeechPrompt is pre-trained with speech continua-
tion task, which differs from the sequence-to-sequence nature
of ASR and slot filling.

We also present the performance results of fine-tuning
the entire Wav2Seq model (referred to as Wav2Seq-FT)
as a performance upper bound for comparison. Encourag-
ingly, our results indicate that prompting on Wav2Seq does
not suffer from significant performance degradation com-
pared to Wav2Seq-FT. In fact, Wav2Seq-Prompt outperforms
Wav2Seq-FT in the KS task. These remarkable achievements
are accomplished by utilizing within 3% of the trainable
parameters out of the entire model.

5.2. Prompting for cross-lingual transfer learning

Table 3 shows the results for cross-lingual ASR across 7 lan-
guages. The pre-trained Wav2Seq model, initially trained on
an English-only dataset, is tested to assess the transferability
of the prompting method. The results show that as the number
of trainable parameters grows, both FT and prompting exhibit
improved performance (reduced WER). However, prompting
achieves better parameter efficiency. When the prompt length
is 120, Wav2Seq-Prompt outperforms Wav2Seq-FT (n = 2)
on 6 out of 7 languages, while using only about 20% (4.3M
out of 19.7M) of the trainable parameters.

Prompts can be integrated at different input positions
within the Transformer layers. We further explore the place-
ment of prompts in the pre-trained encoder-decoder model.



Fig. 3: Comparison of prompting method, adapter tuning, and conventional fine-tuning methods. The red line represents the
results with different adapter sizes (32, 64, 96). The green line represents the results of different prompt lengths (60, 120, 180).
The blue line represents the results of training the top n decoder layers, where n ranges from 1 to 6.

Table 5: Comparing the performance of prompting and adapter tuning on multilingual ASR in both the full-dataset scenario
and the low-resource scenario.

Scenarios Dutch French German Italian Polish Portuguese Spanish #

10h Wav2Seq-Prompt 50.92 48.96 36.39 43.99 44.05 49.58 36.04 4.3M
Wav2Seq-Adapter 52.90 66.84 38.13 58.78 57.47 68.14 46.04 4.4M

full Wav2Seq-Prompt 41.11 31.80 23.34 28.81 31.52 32.78 22.99 6.1M
Wav2Seq-Adapter 35.23 26.56 19.41 24.46 24.32 27.72 17.62 6.2M

As a case study, we employ cross-lingual ASR on German
and explore various prompt positions within both the encoder
and decoder layers. Table. 4 presents a comprehensive analy-
sis. We find that incorporating the prompts at the last layers
of the encoder yields the best effectiveness. For example,
adding prompts at the last 3 encoder layers (E(ℓ3)) or the last
6 encoder layers (E(ℓ6)) achieves the lowest WER compared
to other methods with the same number of trainable parame-
ters. Further investigation into the underlying reasons behind
these observations is left for future work.

5.3. Prompting and adapter tuning as parameter-efficient
transfer learning methods

Recent study [42] has also considered the prompt tuning
method as an adapter, recognizing it as a parameter-efficient
transfer learning technique. To comprehensively understand
the transferability of prompting, adapter tuning, and fine-
tuning methods, we present the cross-lingual ASR results
in Fig. 3. We found that prompting and adapter tuning can
achieve better parameter efficiency compared to fine-tuning.
When the performance levels are similar, both prompting and
adapter tuning require fewer trainable parameters. We also
found that when the number of trainable parameters increases,
the prompting method does not always increase performance.
In the German and Polish ASR tasks, we observed that using a
prompt length of 180 resulted in underperformance compared
to using a prompt length of 120. We believe adapter tuning
offers more model capacity when the trainable parameters are
large while prompting has its limit.

To further investigate prompting and adapter tuning, we
align the trainable parameters of them and evaluate their per-
formance in cross-lingual ASR tasks in low-resource and full-
dataset scenarios. Table 5 shows the results. Surprisingly, we
observe different trends in prompting and adapter tuning. In
the low-resource scenario, the prompting method consistently
outperforms the adapter-based method across all languages.
However, in the full-dataset scenario, the adapter method sur-
passes the performance of the prompting method.

Combining the results from Table 5 and Fig. 3, we con-
clude that both prompting and adapter tuning outperform fine-
tuning method. Prompting outperforms adapter tuning in the
low-resource scenario. This is probably because prompting
does not modify the model architecture, resulting in less dis-
ruption to existing knowledge of the model. However, when
the training data and trainable parameter budget are enough,
adapter tuning becomes more effective for transfer learning.

6. CONCLUSIONS

The increase in model sizes results in a growing demand for
computational resource-friendly approaches to task adapta-
tion. This paper presents the first application of prompting
and adapter tuning techniques to the SSL encoder-decoder
speech model. Encouragingly, the experimental results show
the proposed method delivers substantial improvements in se-
quence generation tasks compared to SpeechPrompt. Also,
these approaches show remarkable parameter efficiency when
compared to fine-tuning methods in the cross-lingual transfer



learning scenario. We also discovered that in the low-resource
scenario, prompting outperforms adapter tuning.
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