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ABSTRACT

The integration of Language Models (LMs) has proven to be
an effective way to address domain shifts in speech recog-
nition. However, these approaches usually require a signif-
icant amount of target domain text data for the training of
LMs. Different from these methods, in this work, with only
a domain-specific text prompt, we propose two zero-shot
ASR domain adaptation methods using LLaMA, a 7-billion-
parameter large language model (LLM). LLM is used in two
ways: 1) second-pass rescoring: reranking N-best hypotheses
of a given ASR system with LLaMA; 2) deep LLM-fusion:
incorporating LLM into the decoder of an encoder-decoder
based ASR system. Experiments show that, with only one do-
main prompt, both methods can effectively reduce word error
rates (WER) on out-of-domain TedLium-2 and SPGISpeech
datasets. Especially, the deep LLM-fusion has the advantage
of better recall of entity and out-of-vocabulary words.

Index Terms— domain adaptation, speech recognition,
large language model

1. INTRODUCTION

End-to-end (E2E) automatic speech recognition (ASR) sys-
tems [1, 2, 3, 4, 5] have demonstrated superior performance
over traditional pipeline approaches, with increases in model
size and the scale of the supervised dataset. However, E2E
ASR still suffers from domain mismatch and limited uti-
lization of text corpora. To address these issues, external
Language Models (LMs) are often incorporated. Among
them, two techniques without altering the ASR model archi-
tecture are second-pass rescoring [6] and shallow fusion[7].
Alternatively, LMs can be integrated into the ASR model
decoder as internal LMs, such as deep fusion[8] and cold
fusion [9], merging the hidden states of the LM with the ASR
model. Factorized neural transducer model [10, 11] is an-
other promising architecture that predicts the blank token and
vocabulary tokens separately so that the vocabulary predictor
fully functions as an LM.

Leveraging LMs can make ASR domain adaptation more
accessible since it is easier to collect target domain text than

∗Work done during an internship at Microsoft.

prompt 1 The following text is the transcription of com-
pany earnings calls.

prompt 2 toy tiles that talk to each other
prompt 3 dreams from endangered culture

reference uptick we’re seeing in the containerboard
market

no prompt optic we’re seeing in the container board mar-
ket

+ prompt 1 uptick we’re seeing in the containerboard
market

reference well opportunistic share repurchases are
clearly at the top of that list

no prompt well oppertunistic share re purchases are
clearly at the top of that list

+ prompt 1 well opportunistic share repurchases are
clearly at the top of that list

reference now this is an interactive cartoon application
no prompt now this is an iniractive a cartune application

+ prompt 2 now this is an interactive a cartoon application
reference the myths of the inuit elders still resonate with

meaning or that in the himalaya the
no prompt the myths of the innuit elders still resonate with

meaning or that in the himalaia the
+ prompt 3 the myths of the inuit elders still resonate with

meaning or that in the himalaya the

Table 1. Examples of deep LLM-fusion with/without prompt.

audio-text pairs. In this case, an LM used in ASR adaptation
can be developed through fine-tuning [12, 13, 14, 15, 16] or
prompt tuning [17]. Although these approaches have shown
promising results, it is worth noting that commonly used
LMs, such as GPT-2 [18] and Transformer-XL [19], have
relatively small scales and lack in-context learning capability.
In contrast, the latest Large Language Models (LLMs), such
as GPT-4 [20] and LLaMA [21], offer significantly larger
capacities. These LLMs can be adapted to downstream tasks
without training by adding a textual description of the task as
a prompt [22]. Therefore, LLMs offer advantages for domain
adaptation, including:

• Zero-shot adaptation: The traditional approach of ac-
quiring additional audio/text data for domain adapta-
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tion is not only time-consuming but costly, and some-
times, it can be impossible to obtain domain-specific
data. By prompting, we can adapt LLM to new do-
mains and use it in ASR without re-training.

• Flexible prompt design: The LLM possesses an ex-
ceptional capability to extract information from texts
of varying forms and lengths, making prompt design
effortless. Depending on the situation, various types
of prompts can be utilized effectively. For instance, a
concise summary of a talk can be provided to enhance
recognition accuracy, or alternatively, only a title or im-
portant entity words can be used as prompts.

• Leverage rapid-growth LLM community: In recent
years, the capabilities of LLMs have rapidly evolved,
with tremendous breakthroughs observed in both open-
source models and business APIs. We are confident
that the proposed framework for addressing ASR do-
main shift will continue to improve with the progress
of LLMs.

In this work, we utilized LLaMA-7B and handcrafted tex-
tual prompts to adapt ASR models trained on LibriSpeech [23]
to TedLium-2 [24] and SPGISpeech [25] datasets. The
prompts were derived from the video description of TED
talks and the dataset description of SPGISpeech. Initially,
we employed LLaMA to rerank the 16-best hypotheses of
the HuBERT-CTC model [26]. When prompts were incor-
porated, we observed relative word-error-rate (WER) reduc-
tions of 6.6% and 3.3% on the TedLium-2 and SPGISpeech
datasets, respectively. The effectiveness of the second-pass
reranking is constrained by the quality of N-best hypotheses.
Therefore, in further experiments, LLaMA was directly in-
corporated into an encoder-decoder framework, which was
modified from Flamingo [27] and referred to as deep LLM-
fusion in this paper. In this setup, acoustic features from
the HuBERT model were fed into the frozen LLaMA model
using the Gated cross-attention mechanism. By using do-
main prompts, we achieved 2.6% and 7.7% relative WER
reductions on the TedLium-2 and SPGISpeech datasets, re-
spectively. Notably, domain prompts enabled more accurate
recognition of semantically important entities, as demon-
strated in Table 1. For example, with a prompt indicating the
recording is company earning calls, the word ”uptick”, which
describes a slight upward trend, can be recognized accurately
instead of being mistakenly recognized as ”optic.”

2. RELATED WORK

2.1. Domain Adaptation through Internal LM

The E2E ASR model learns an internal LM from the training
data, but it is biased toward the source domain. To address this
bias when transferring to a new domain, density ratio [28],

hybrid autoregressive transducer [29], internal LM estima-
tion (ILME) [12, 13] methods predict the internal LM score
and subtracts it from the combined scores of the E2E model
and the external LM. However, these methods introduce ad-
ditional complexity to the decoding process, and the estima-
tion of the internal LM can be inaccurate. Therefore alter-
native approaches were proposed, which involve fine-tuning
the internal LM [10, 14] or replacing it with a target-domain
LM [16]. This allows the ASR model to be directly adapted
to a new domain without an external LM. In this work, the
deep LLM-fusion method can be considered as explicitly us-
ing LLaMA as an internal LM.

2.2. Domain Adaptation through Prompting

Prompting, which involves adding prefixes to the text input,
is a popular method for LM adaptation [30]. It can be catego-
rized into discrete and continuous prompts. In [31, 32], recur-
rent and Transformer-XL-based LMs with discrete prompts
were used to rescore the N-best hypotheses of the ASR model.
The prompt comprises historical transcriptions and dialogue
acts, obtained from the output of the natural language un-
derstanding model. This approach biases the LM towards
the domain indicated by the prompt context. To eliminate
the need for manual prompt design, prompt tuning [17] em-
ploys learnable weights as prompts. It requires training in the
target domain, but the number of updated parameters is sub-
stantially reduced compared to fine-tuning the entire LM. In
our study, we designed straightforward descriptive prompts
for the TedLium-2 and SPGISpeech datasets, and employed a
significantly larger LM, surpassing the scale of previous ap-
proaches.

2.3. From LLM to Multi-Modal LLM

The adaptation of LLM to multi-modal tasks has been a recent
research hotspot, with a particular focus on visual understand-
ing tasks. One approach was proposed in MiniGPT-4 [33],
which directly feeds visual features into the LLM after a
single projection layer for alignment. Another approach,
LLaMA-Adapter [34] utilizes fixed-length trainable vectors
as layer-wise prompts which can incorporate visual infor-
mation during the instructive fine-tuning. Both MiniGPT-4
and LLaMA-Adapter are decoder-only models. On the other
hand, Flamingo [27] employs an encoder-decoder framework
where visual representations are fused into the LLM through
cross-attention. In all of these methods, the LLM remains
frozen, and only a small number of parameters are intro-
duced. To stabilize training, visual features are gradually
incorporated using techniques such as zero-init attention in
LLaMA-Adapter and zero-init gating in Flamingo. In this
work, deep LLM-fusion can be viewed as adapting LLM to
speech modality. Considering the need to handle long and
variable-length input, our architecture is similar to Flamingo.



Fig. 1. (a) Deep fusion of LLaMA into an attention encoder-decoder-based ASR model with HuBERT as the encoder. (b)
Illustration of Gated-XATT-FFN module.

3. METHOD

3.1. Second-pass Reranking

Figure 2 illustrates the flowchart of the second-pass reranking
method for domain adaptation. An ASR model first generates
N-best hypotheses. Then, the LLaMA model with domain
prompt, computes the LM score (Equation 1) as the sum of
log probabilities for each hypothesis. In essence, a domain-
specific textual prompt is added to the beginning of each hy-
pothesis before rescoring. Finally, the hypothesis with the
highest LM score is chosen. Note that we did not combine
LM score with E2E ASR score due to limited benefits. Fur-
thermore, shallow fusion was not considered as the vocabu-
lary mismatch between the ASR model and LLM complicates
the decoding process.

Fig. 2. Flowchart for the second-pass reranking.

LM score =

N∑
i=1

logP (wi|w<i,wp) (1)

where the probability of current wordpiece wi is conditioned
on previous wordpieces w<i and wordpieces in the prompt
wp.

3.2. Deep LLM-Fusion

3.2.1. Model Architecture

Figure 1 (a) illustrates the integration of LLaMA into a
sequence-to-sequence model using gated cross attention and
feed-forward network (Gated-XATT-FFN) modules [27]. Ini-
tially, the raw waveform input is processed by the HuBERT-
Large model, which is followed by a convolutional subsam-
pling module that reduces the acoustic feature from 20ms per
frame to 80ms per frame. These features serve as keys and
values in the Gated-XATT-FFN module, while the hidden
states from LLaMA act as queries. Finally, transcriptions are
generated using the causal LLaMA decoder. During training,
the LLaMA layers remain fixed whereas all other modules are
updated. This architecture was adapted from Flamingo [27]
and the key differences are:

• The speech encoder replaces the visual encoder and it
was finetuned instead of frozen. We also tried to un-
freeze the last layer of LLaMA, contributing to further
performance improvements.

• To enable the LLaMA decoder to distinguish the
prompt and the transcription, a special start-of-sentence
token was added between them. Additionally, the
hidden states corresponding to the prompt skip the



Gated-XATT-FFN module so that the first hidden state
corresponding to the special token directly queries the
beginning of acoustic features.

• The computational requirement was reduced by de-
creasing the temporal dimension of acoustic features
and the hidden dimension of Gated-XATT-FFN mod-
ules. In addition, Gated-XATT-FFN modules were
only included in the top layers of LLaMA, eliminating
the need to store gradients for shallow layers.

3.2.2. Low-Dimensional Gated Cross Attention

The Gated-XATT-FFN module in Figure 1 (b) is a key com-
ponent for integrating the speech modality into LLaMA. It
employs a Tanh gating mechanism (Equation 2 3), which de-
termines the extent of influence that speech features have on
the final transcriptions. The module consists of two trainable
gating parameters, w1 and w2, responsible for controlling
the cross-attention and FFN, respectively. To ensure a stable
training process, these parameters are initialized as zero, so
speech features are gradually incorporated.

Y = tanh(w1)⊙MHA(K,V,Q) +Q (2)

Ŷ = tanh(w2)⊙ FFN(Y) +Y (3)

Traditional cross-attention modules usually maintain a
consistent dimension during the computation. Since LLaMA-
7B has a large hidden dimension of 4096, a single linear pro-
jection matrix will have 16 million parameters. To decrease
the scale of the Gated-XATT-FFN module, we implemented a
bottleneck structure by reducing the hidden dimension inside
the multi-head attention and FFN to 256.

3.2.3. Long-form Training

During inference, the LLaMA decoder utilizes a prompt to
guide the autoregressive generation of transcriptions in the
target domain. To enable this, it is crucial to have contex-
tual prefixes before each transcription during training. These
prefixes need to be diverse to enhance generalizability. How-
ever, manually constructing prompts for individual utterances
is not feasible, and using the same prompt for multiple utter-
ances is not ideal. Therefore, we adopted long-form training
by using a single ground-truth transcription of the previous ut-
terance as the prompt. By doing so, we encouraged the model
to effectively incorporate the historical text, which encom-
passes local context or topic-related information.

4. EXPERIMENTAL SETUP

4.1. Model Configurations

In our experiments, we utilized the LLaMA model, which has
7 billion parameters, 32 layers, and a hidden dimension of

4096. For the second-pass reranking, we employed the open-
source HuBERT-Large model1 that was pre-trained on the
LibriLight [35] dataset and finetuned on the LibriSpeech [23]
dataset using a character-level vocabulary and CTC loss. Dur-
ing the decoding process, we used a beam size of 16 for all test
sets. After rescoring with LLaMA, we selected the hypoth-
esis with the highest LM score. For deep LLM-fusion, we
utilized the HuBERT-Large model2, pre-trained on the Libri-
Light dataset, as a speech encoder. It takes 16kHz raw wave-
form as input and generates hidden states at a frame rate of
50Hz. To downsample the hidden states, we applied two 1D
convolutional layers with a kernel size of three and a stride of
two, resulting in a frame rate of 12.5Hz. These downsampled
states were employed as keys and values in 16 Gated-XATT-
FFN modules, which were inserted in the top 16 layers of
LLaMA. In each Gated-XATT-FFN module, the multi-head
cross attention has a dimension of 256 and four heads.

The deep LLM-fusion model was trained on the Lib-
riSpeech dataset with Specaug [36] that masks HuBERT
states and a three-phase training schedule. In the first phase,
only the CONV-Subsampler and Gated-XATT-FFN modules
were trained from scratch for 200,000 steps with AdamW [37]
optimizer, a batch size of 64, and cross-entropy loss. An in-
verse square root schedule was used with a peak learning rate
(LR) of 1e-4. In this phase, the number of trainable parame-
ters was 82 million. In the second phase, the HuBERT model
was unfrozen and finetuned for another 100,000 steps with an
LR of 3e-5. The number of learnable parameters increased
to 475 million. It’s worth noting that in the first two phases,
the model was trained on the utterance-wise ASR task. In
the third phase, history transcriptions were incorporated as
prompts with a probability of 80%, and the model was fine-
tuned for an additional 100,000 steps with an LR of 1e-5. In
this phase, it is optional to unfreeze the last LLaMA layer
to enhance performance, which introduces another 460 mil-
lion parameters. The training process utilized eight NVIDIA
Tesla V100 32GB GPUs, with an actual batch size of 1 on
each GPU. A simulated batch size of 64 was achieved by
accumulating gradients over eight steps. During decoding,
beam search was employed with a beam size of 16.

4.2. Evaluation

4.2.1. Datasets

ASR models trained on the LibriSpeech dataset [23] were
evaluated on the TedLium-2 [24] and SPGISpeech datasets [25].
The LibriSpeech training set contains 960 hours of speech
data. For the SPGISpeech eval set, we selected a subset of 15
hours of speech. Each sample in this subset has at least two
out-of-vocabulary (OOV) words compared to the LibriSpeech
vocabulary. The prompt used for the SPGISpeech eval set is:

1https://huggingface.co/facebook/hubert-large-ls960-ft
2https://huggingface.co/facebook/hubert-large-ll60k



”The following text is the transcription of company earn-
ing calls.” For the TedLium-2 dataset, we combined the dev
and eval sets, resulting in recordings of 20 TED Talk videos
which have 4 hours of speech. We collected the titles and
the descriptions of each video as domain-specific prompts
(Table 2). All prompts are normalized by removing punc-
tuations and changing words to lowercase, so the format is
the same as history transcription used in long-form training.
Additionally, long-form ASR performance using one history
transcription will be provided for LibriSpeech and TedLium-
2 datasets since their utterances were derived from long-from
recordings.

Prompt
TedLium-2
(title)

Dreams from endangered
cultures

TedLium-2
(description)

With stunning photos and
stories, National Geographic
Explorer Wade Davis cele-
brates the extraordinary di-
versity of the world’s indige-
nous cultures, which are dis-
appearing from the planet at
an alarming rate.

SPGISpeech
(description)

The following text is the
transcription of company
earnings calls.

Table 2. Examples of prompts.

4.2.2. Metrics

For LibriSpeech test sets, standard word-error-rate (WER)
was used. For domain adaptation, we also considered the
recall of entity words and out-of-vocabulary (OOV) words,
which carry more semantic meaning. To achieve this, we
employed a name entity recognition model to extract entity
words 3 from both the ground-truth labels and the hypotheses.
The recall was then calculated as the ratio of the recovered
entity words to the total number of entity words. Similarly,
OOV recall was determined by extracting OOV words using
the LibriSpeech vocabulary.

5. RESULTS

5.1. Results for Second-pass Reranking

Second-pass reranking generally benefits ASR adaptation, as
demonstrated in Table 3. On the SPGISpeech dataset, rerank-
ing contributes to a 1.98% absolute reduction in WER. Fur-
thermore, by prepending the dataset description to each hy-
pothesis before reranking, we achieved an additional 0.39%

3https://huggingface.co/dslim/bert-large-NER

absolute improvement in WER. We also observed significant
enhancements in entity and OOV recall, with 6% and 10% ab-
solute increases compared to the CTC baseline respectively.
On the TedLium-2 dataset, reranking without a prompt did
not noticeably improve the WER. When using a short title
prompt, we observed a modest 0.23% absolute improvement
in WER. Longer prompts and incorporating local history con-
text resulted in more substantial performance enhancements,
with up to a 0.58% absolute reduction in WER. While entity
recalls only saw slight improvements, OOV recall was im-
proved more substantially with an absolute increase of 7%.
In summary, the benefits of second-pass reranking depend on
how well LLaMA aligns with the target domain, which can be
enhanced through prompting. Additionally, the upper-bound
performance is determined by the quality of the N-best hy-
pothesis, which explains the limited improvements of the en-
tity recall on the TedLium-2 dataset which has an upper bound
of 0.56.

Recall
Reranking Prompt WER Entity OOV

SPGISpeech Dataset
× × 13.66 0.50 0.48
✓ × 11.68 0.55 0.56
✓ description 11.29 0.56 0.58

TedLium-2 Dataset
× × 9.22 0.50 0.38
✓ × 9.25 0.49 0.44
✓ title 8.99 0.50 0.45
✓ description 8.64 0.51 0.45
✓ history-gt 8.64 0.51 0.45
✓ history-hyp 8.65 0.51 0.45

Table 3. Domain adaptation performance of HuBert-CTC
with/without LLaMA reranking.

5.2. Results for Deep LLM-Fusion

We evaluated deep LLM-fusion method with the LLaMA
model frozen or the last LLaMA fine-tuned. The fine-tuning
was motivated by the finding that deeper layers play a more
crucial role in ASR, as indicated by the increase in abso-
lute gate values with layer depth (Figure 3). Because of the
adaptation of the last LLaMA’s layer to ASR task and more
trainable parameters, WERs were consistently improved un-
der all circumstances in Table 4.

Deep LLM-fusion outperforms the HuBERT CTC base-
lines without prompts, as shown in Table 4. Prompting has
a similar positive effect on deep LLM-fusion as second-pass
reranking. On SPGISpeech datasets, prompting resulted in
absolute WER reductions of 0.85% and 0.91% when the last
LLaMA layer was frozen or fine-tuned, respectively. The im-
provements on the TedLium-2 dataset were less significant



Fig. 3. The absolute gate values of Gated-XATT-FFN module
at different layers.

Recall
Prompt WER Entity OOV

SPGISpeech Dataset
× 12.00 / 11.79 0.53 / 0.55 0.55 / 0.56

description 11.15 / 10.88 0.55 / 0.59 0.58 / 0.59
TedLium-2 Dataset

× 9.16 / 8.99 0.55 / 0.57 0.50 / 0.50
title 8.95 / 8.80 0.57 / 0.59 0.54 / 0.53

description 9.07 / 8.76 0.61 / 0.65 0.55 / 0.56
history-gt 8.74 / 8.54 0.62 / 0.61 0.55 / 0.56

history-hyp 8.71 / 8.60 0.60 / 0.60 0.54 / 0.55

Table 4. Domain adaptation performance of deep LLM-
fusion. Results were provided for the model with the last
LLaMA layer frozen / fine-tuned, respectively.

in terms of WER. When the last LLaMA layer was not fine-
tuned, using a short prompt of the video title slightly outper-
formed a longer prompt of the video description. However,
after fine-tuning the last LLaMA layer, the performance with
a longer prompt improved more significantly. Additionally,
by using history transcription, we achieved lower WERs com-
pared with using global descriptive prompts. This is because
previous transcriptions are more closely related to the current
utterance and align with the prompt type used in long-form
training. More importantly, deep LLM-fusion contributed to
significantly better entity and OOV recalls. On TedLium-2,
the highest entity and OOV recalls of deep LLM-fusion are
0.65 and 0.56 respectively, however, for second-pass rerank-
ing, the best recalls are only 0.51 and 0.45. This indicates
that deep LLM-fusion is better at recognizing important topic-
related words.

6. CONCLUSION

In our paper, we explored zero-shot domain adaptation of
ASR models using two frameworks: second-pass reranking
and deep LLM-fusion. By leveraging large-scale LLaMA, we

achieved effective adaptation through prompt-based methods,
eliminating the need for target domain data for fine-tuning.
The power of LLM makes the design of prompts simple and
flexible, allowing for the use of topic words or longer de-
scriptions as prompts. The second-pass reranking method
has the advantage of adapting existing ASR models without
re-training. Deep LLM-fusion requires joint training of the
speech encoder and LLM in the source domain. Though it
requires more computational resources, it is able to recover
more entity and OOV words in a new domain. In future
works, we plan to perform efficient fine-tuning of the whole
LLaMA model and use larger versions of LLaMA.
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