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ABSTRACT
Endpoint (EP) detection is a key component of far-field
speech recognition systems that assist the user through voice
commands. The endpoint detector has to trade-off between
accuracy and latency, since waiting longer reduces the cases
of users being cut-off early. We propose a novel two-pass so-
lution for endpointing, where the utterance endpoint detected
from a first pass endpointer is verified by a 2nd-pass model
termed EP Arbitrator. Our method improves the trade-off
between early cut-offs and latency over a baseline endpointer,
as tested on datasets including voice-assistant transactional
queries, conversational speech, and the public SLURP cor-
pus. We demonstrate that our method shows improvements
regardless of the first-pass EP model used.
Index Terms: speech recognition, endpoint detection

1. INTRODUCTION

Speech as an input modality for human-machine interaction
has become popular in recent years. In early voice-interface
systems, users would indicate the start and end of speech by
pressing and releasing buttons. However, with the rise of far-
field speech recognition systems, there is a heightened em-
phasis on automated solutions for detecting the end of user
speech, known as automatic endpoint detection or endpoint-
ing (EP). Automatic endpoint detection must balance the need
to endpoint quickly, reducing the user’s perceived system re-
sponse time [1], and the need to accurately endpoint to avoid
cutting off the user’s speech prematurely. Endpointing is chal-
lenging due to factors such as background noise, overlapping
speech, and the necessity to support a diverse range of re-
quests, including brief queries, lengthy and complex ones, as
well as interactive conversations where the speaker may con-
clude their query and engage in concurrent conversations with
someone nearby [2, 3, 4]. Furthermore, the system needs to
avoid cutting the user off prematurely due to within-utterance
pauses, disfluencies, hesitations, false starts, and repetitions
that are commonly present in natural speech.

Traditional endpointing approaches have relied on voice-
activity detection (VAD) based solutions. The endpointer trig-
gers when a non-speech period of a certain duration is de-
tected. VAD models typically use deep neural networks to
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predict speech/non-speech activity for each feature-frame of
audio [5, 6, 7, 8]. Recently, standalone endpoint detection
models have been trained to explicitly detect the end of speech
(EOS) frame [9]. The standalone model can integrate the
tasks of VAD and EP in the same model by classifying each
of them per-frame in a multi-task framework [10].

These systems can be further improved by using fea-
tures from the speech recognition’s decoder in addition to
the acoustic signal. This has been shown to improve model
robustness in distinguishing within-utterance pauses from
end-of-utterance pauses [10, 11]. Lexical features have also
shown to provide improvements [12, 13]. In recent years, au-
tomatic speech recognition (ASR) systems have been moving
towards an end-to-end (E2E) architecture with a single model
that performs the functions of acoustic, lexical and language
models. Such E2E systems outperform conventional ASR
systems when trained on large-scale datasets [14]. There
have been works on integrating endpointing directly into the
E2E model, considering endpointing an extension of the ASR
task. These models compute likelihood of one additional
end of speech token to trigger endpointing directly [15, 16].
RNNT-based E2E models can delay speech tokens, but intro-
ducing a loss during training minimizes this delay, especially
crucial for timely EOS token emission for endpointing [17].
There is also work introducing accurate time alignment in-
formation to the training of end of speech token to increase
endpointing accuracy [18, 19]. State-of-the-art systems usu-
ally combine decoding cues with acoustic-only detectors to
achieve best endpointing performance [15]. The acoustic and
decoder cues are usually combined to allow each individual
signal to trigger endpointing alone [15].

In this paper, we propose a novel approach to improve
existing classes of endpointing systems, by adding a second-
pass verification model we term the EP arbitrator. The EP
arbitrator model gates the initial endpointing decision. An ut-
terance is endpointed only when a candidate endpoint from
the first-pass EP successfully passes through the EP arbitrator
model. Unlike the streaming EP detector in the first-pass, the
EP arbitrator utilizes segment-level encodings of the acous-
tics and recognition output available up to the candidate end-
point decision frame. Solutions for second-pass rescoring of
recognition output have been widely studied in the context
of real-time and low latency speech recognition systems [20].
However, running a second-pass for endpointing has not been
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considered before.
We show that this novel system comprising a second-pass EP
arbitrator model: (1) provides improvements in early cut-offs
where the user hesitates, or pauses longer after a semantically
incomplete query (2) provides an improved trade-off between
early EP rate and latency across various latency operating
points for the system (3) generalizes to provide improvements
in early EP rate on out-of-domain conversational data, with-
out explicit training on conversational speech (4) provides im-
provements in WER and early EP rate for different baseline
EP systems, either standalone or combined with an end-to-
end speech recognizer. Finally, we set up a baseline EP sys-
tem on the publicly available SLURP corpus [21], and show
improvements in EP performance with the proposed method.

2. PROBLEM DEFINITION

We focus on the problem of endpoint detection for far-field
voice assistants. Endpoint detection is the task of determin-
ing the speech frame at which the user query ends. More for-
mally, let the query be represented by an input speech feature
frame sequence x = (x1, ..., xT ), where xt ∈ R|X|×1. The
true frame xEOS where the user query ends is termed end-
of-speech (EOS). In practice, the ground truth EOS frame is
determined by force aligning the input speech with the tran-
scription. Endpointing latency is defined as the time (in mil-
liseconds) between the ground truth EOS frame and the end-
point determined by an endpointer model.

3. METHODS

We consider a real-time and low-latency speech recognition
system for voice-based applications which require automatic
endpointing to detect when the user has finished speaking,
and to process the query and respond back. First, we describe
methods to model an endpointing system as a standalone de-
tector or jointly with the speech recognizer in Sections 3.1 and
3.2, following prior work. In Section 3.3, we introduce our
proposed method, EP Arbitrator, as a second-pass EP module
that can augment any existing EP detector.

3.1. Standalone EP detectors
One approach to build a standalone EP model involves using
an acoustic-based binary classifier. This classifier is trained to
classify each speech frame as either an end-of-speech (EOS)
frame or otherwise, based on the current and prior speech
frames. For each feature frame, it predicts a binary class prob-
ability denoted as P (EOS|x1:t). A frame level cross-entropy
loss is used to train the model. The frame-level labels are
derived through forced-alignment of the speech with the tran-
scription, which aids in identifying the EOS frame. Frames
before the EOS frame are labeled as non-endpoints (negative
label), and frames including and after the EOS are considered
endpoints (positive label). At decoding time, the model out-
put is gated on a decision threshold P (EOS|x1:t) > TEP to

Fig. 1: A candidate endpointing decision triggered at frame t
from the first-pass EP detector that is verified by the EP Ar-
bitrator that consumes segment-level features of the acoustics
and the recognition output

detect an endpoint. Typically, this is modeled with a stream-
ing recurrent neural network architecture that consumes au-
dio features x. A variant of this approach that still relies on
acoustic-based signals, is to employ a multi-task model ar-
chitecture that simultaneously models VAD and endpoint de-
tection. The VAD predictions from this architecture can be
leveraged to enhance EP detection performance by imposing
guardrails, such as setting a minimum or maximum pause du-
ration [10] for detecting endpoints.

3.2. End-to-end EP detectors
The EP decisions can be integrated directly into an E2E
speech recognition system such as a recurrent neural network
transducer (RNNT). The EP decision is detected at the frame
where the EOS symbol is emitted by the speech recognizer
[15]. This method does not require forced alignment informa-
tion during training, and can be trained directly using RNNT
loss and speech transcriptions. This natively integrates both
acoustic and decoder information to make the EP decision.

3.3. EP Arbitrator: second-pass detector

The EP Arbitrator can be integrated on top of any type of EP
detector as a 2nd-pass verification model. It verifies the first-
pass candidate endpointing decision to emit the final system
endpoint. Figure 1 shows the schematic of a system with EP
Arbitrator integrated with an existing EP detection system.
The existing EP detection system, termed the first-pass end-
pointing system, includes either standalone EP detectors, E2E
detectors, or a combination of both. Any safety guardrails that
are typically based on a pause-duration upper-bound, are ex-
empt from gating by the EP arbitrator, to ensure the guardrail
behavior is retained.



The EP Arbitrator triggers on candidate frame t generated
by the first-pass EP. It makes a segment-level endpointing
decision by integrating cues from the 1st-pass endpointer,
the speech recognizer, and the audio signal. In Figure 1,
a scenario is illustrated with a candidate endpoint at time
t, that is emitted from either an RNNT EP or a standalone
acoustic-based EP. The EP Arbitrator can access the input
audio features and the intermediate hidden representations
from either detector. Specifically, at frame t, the RNNT
model has encoder representations he

1:t = (he
1, ...h

e
t ) where

he
t ∈ R|E|×1, a partial one-best hypothesis token sequence

of length n, wt = (w1...wn) where wi ∈ W , W is the set
of sentence-piece tokens used to train the RNNT model, and
corresponding hidden representations from the prediction
network hp

1:n = (hp
1, ...h

p
n) where hp

i ∈ R|P |×1. The acoustic
endpointer has hidden representations z1:t = (z1, ...zt) where
zt ∈ R|Z|×1 from an intermediate layer that is useful for mak-
ing an EP decision. The EP Arbitrator uses a mix of these
features to compute a segment-level EP decision posterior
Parb(EOS|x1:t) at the candidate frame t as follows:

Parb(EOS|x1:t) = ArbitratorModel(he
1:t, z1:t,hp

1:n,wt)
(1)

This ArbitratorModel() leverages segment-level information
of the acoustics from either the RNNT encoder (he

1:t) or the
standalone acoustic-endpointer (z1:t), or both. Further, it can
leverage decoder information in the form of the 1-best recog-
nition hypothesis (wt), or the prediction network embeddings
from the RNNT (hp

1:n), or a combination of both. The Arbi-
tratorModel() is modeled as a neural network.

The neural network architecture for EP arbitrator must be
designed for low latency, to ensure that it does not delay the
EP decision. Although the EP Arbitrator does not need to run
on every frame, it may run on successive back-to-back frames
if they satisfy the first-pass EP detection criteria. To min-
imize the latency impact, we decouple the ArbitratorModel
into an AcousticEncoder that summarizes the acoustic infor-
mation into an embedding, and a TextEncoder to summarize
the information from the one-best recognition into another
embedding. This decoupling allows for caching the 1-best
text embedding for the EP Arbitrator posterior computation at
all time frames where the recognition output wt is unchanged.

vt = AcousticEncoder(he
1:t) (2)

et = TextEncoder(wt) (3)
Parb(EOS|x1:t) = softmax(DNN(concat(vt, et))) (4)

The AcousticEncoder can accept input acoustic embed-
dings either from the RNNT, the acoustic EP, or both. As
an example, Eqn 2 uses the RNNT encoder embeddings he

1:t

only. By using these RNNT embeddings as input, it can lever-
age the ever-increasing scale of RNNT models to continue to
improve accuracy. The AcousticEncoder summarizes the em-
beddings over the segment to vt with architectures such as
choosing the input embedding of the current frame t, pool-
ing the embeddings of the past frames and further processing

with a deep neural network (DNN), or using a transformer-
based encoder with pooling on the past frames. The TextEn-
coder summarizes the 1-best recognition output into a sin-
gle embedding et. It first converts the token sequence wt

into an embedding sequence using either a separate embed-
ding, or reuses the embeddings sequence that correspond to
wt from the RNNT prediction network at time t. This se-
quence is then consolidated into a single vector et with ar-
chitectures such as a DNN followed by pooling, a recurrent
network, or a transformer-based model. Use-cases with short
utterances can leverage bidirectional encodings to encode the
segment-level recognition information without significant im-
pact on latency. The acoustic and text embeddings are con-
catenated and followed with softmax classification to com-
pute Parb(EOS|x1:t) as in Eqn 4. The final EP decision is
computed with a detection threshold Tarb. It should be noted
that we do not use z1:t and hp

1:n in any of our experiments and
leave their inclusion to future work. The exact model archi-
tecture used in our experiments is described in section 4.3.2.

4. EXPERIMENTAL SETUP

4.1. Datasets
We report experimental results both on the publicly available
SLURP corpus, and on in-house voice-assistant datasets.

4.1.1. SLURP dataset

There are no standardized publicly available datasets for the
endpointing task. Prior works on endpointing have presented
results on non-public datasets making the techniques difficult
to reproduce [10, 16, 18]. In this work, we present endpoint-
ing results on the SLURP dataset [21], a publicly available
speech corpus, commonly used to report speech recognition
and natural language understanding metrics. It consists of
40.2 hours of training, 6.9 hours of development and 10.3
hours of evaluation data.

The original SLURP utterances are pre-segmented with a
very short duration of non-speech audio following the end of
user’s speech. To evaluate endpointing latency on this dataset,
we would need to consider cases where the endpointer trig-
gers after end of the original audio segments. To consider
all such cases for evaluation, we simulate the audio following
the end of user speech by padding all utterances in the SLURP
dataset with 2 seconds of digital silence. Although this sim-
ulation isn’t ideal and doesn’t consider background noise fol-
lowing the user’s query, it enables an apples-to-apples com-
parison of endpointing metrics across both the baseline and
the proposed method. We report experimental results on this
dataset to show the efficacy of the method on a publicly avail-
able speech corpus, and help the method be reproducible for
follow-up work in the speech community.

4.1.2. Voice-assistant dataset

The voice assistant dataset comprises de-identified US En-
glish far-field speech data directed to voice assistants. This



dataset is representative of real-world conditions that include
utterances with background noise.
Training data: The training set includes 1000-hrs of human
transcribed speech consisting of transactional queries that
were directed to voice-assistants. This dataset was used to
train both the baseline standalone EP system, and the EP
Arbitrator, for all experiments. The ASR system used in
all experiments is trained on a 100K-hrs training corpus of
voice-assistant queries.
Evaluation data: We evaluate on three in-house test sets:

1. Transactional queries dataset: This includes 50-hrs of
development and test data consisting of queries directed
to voice-assistants. The data was collected to ensure
that the user’s full query was captured with no cut-offs.

2. Transactional queries partial test set: The partial
dataset includes 91-hrs of test data, collected with the
endpointer described in section 4.3.1. These utter-
ances were filtered to only include the instances where
the user was cut-off before completing their sentence.
The partial utterances were identified with a system
that leverages models capable of determining semantic
incompleteness and hesitation, from the recognition
output and user feedback [22].

3. Conversational test set: This includes de-identified
conversations of users speaking with a voice-assistant
socialbot [23]. We leverage this test set to demonstrate
generalization of our approach to more free-form, less
transactional interactions with a smart assistant. To en-
sure higher semantic variability, this dataset is filtered
to only include utterances with more than 10 words.

4.2. ASR system details

Acoustic features used for the RNNT ASR model are 64-
dim log-mel filterbank energies computed over a 25ms win-
dow with 10ms shifts, and are stacked and downsampled to
a 30ms frame rate. The acoustic features used by the stan-
dalone endpointing detector in the first-pass are the same.
The ASR model has 148M parameters; it has an LSTM-based
8x1280 encoder, a 2x1280 prediction network, and a single-
layer joint network [24]. The acoustic encoder of the EP ar-
bitrator model consumes the embeddings from the audio en-
coder of this ASR model. This model was trained on a large
training corpus of over 100K-hrs. For the voice-assistant ex-
periments, the trained ASR model is not updated further.
For the SLURP experiments, we fine-tune the ASR model de-
scribed above on the train partition of the SLURP data for
10,000 steps, with a batch size of 32 and a learning rate of
3e-5 with the Adam optimizer. The fine-tuning of pre-trained
models to improve ASR performance on SLURP data is in
line with prior work [25].
This ASR model, which is also used as E2E EP, is trained
with fast-emit [17] to minimize label emission delay and the
fast-emit parameter λ is tuned on a held-out development set

to improve latency without degrading WER. Additionally, the
model uses beam-search decoding which allows for the 1-best
hypothesis to change after an initial EOS is emitted, as the
model keeps decoding till the final endpoint is triggered.

4.3. Endpointing system details

4.3.1. Baseline EP system

The baseline endpointing system uses a 1st-pass EP detec-
tor, that comprises two endpoint detectors. The first, is a
standalone acoustic-based EP detector as described in sec-
tion 3.1 that provides P (EOS|x1:t) for each feature frame
t. This model is a 4-layer LSTM network with 128 units,
with an output dense layer that performs binary classification
for EP decisions at each frame. The second EP detector is
an E2E EP detector based on RNNT EOS predictions, with
the method described in section 3.2, and the RNNT system
described in section 4.2. An endpoint decision for the base-
line system is generated at frame t, if either detectors fire, i.e.,
P (EOS|x1:t) > TEP , or if the EOS symbol is emitted by the
RNNT ASR model at frame t. The threshold TEP is tuned on
the held-out development partition of the transactional queries
dataset. The VAD model shares the 4-layer LSTM parameters
with the standalone EP, predicts speech/non-speech decision
per-frame, and is multi-task trained along with EP. The VAD
is used to set an upper-bound latency guardrail of 1740ms
based on pause-duration, which is constant for all experi-
ments. The same baseline EP setup is used for experiments
with SLURP data, except the end-to-end EP model is derived
from the ASR model fine-tuned on SLURP training data.

4.3.2. Experimental EP system: EP Arbitrator

The experimental EP system is a 2nd-pass EP Arbitrator
model operating on endpointing candidates generated by the
baseline EP system described in Section 4.3.1. The system
architecture is as in Fig 1 and described in Section 3.3. The
baseline’s 1st-pass EP setup is not modified in our experi-
ments; the 2nd-pass detector is added on top of it.
Model Architecture: The EP Arbitrator model has 4M pa-
rameters, and consists of an AcousticEncoder as in Eqn 2,
that consumes RNNT encodings he

1:t, and uses maxpooling
followed by a DNN model to obtain a segment-level acoustic
embedding. The TextEncoder consumes the 1-best wt from
RNNT at frame t, converts it to an embedding sequence,
which is passed to a DNN followed by maxpooling to obtain
a text embedding. The acoustic and text embeddings are
combined with a DNN and softmax as in Eqn 4. The detector
threshold for the arbitrator Tarb is tuned on the held-out de-
velopment partition of the transactional queries dataset.

Training: The EP arbitrator model uses partial recognition
from the RNNT model at each frame t, to compute model
predictions. This is matched with the per-frame EOS labels
from forced-alignment to compute cross-entropy loss.
The EP arbitrator training data is the same for experiments on
all 3 datasets (transactional, conversational and SLURP), and



Table 1: Endpointing results showing relative % word error rate reductions (WERR), relative % early endpointing rate reduc-
tions (EEPRR), and endpointing latency in msec evaluated on the transactional queries test set. Relative % early endpoint rate
reductions are reported on the partial test set. Negative % relative values indicate improvements in EEPRR and WER metrics

Transactional Query test set Conversational test set

Model Accuracy Latency Accuracy Latency
WERR EEPRR EEPRR

(partial)
P50 P90 P99 WERR EEPRR P50 P90 P99

Baseline - - - 300 570 1110 - - 570 660 1140
+ Arbitrator -3.12% -16.34% -32.45% 300 600 1320 -0.76% -1.48% 570 660 1200

Table 2: Endpointing results on SLURP data

Model Accuracy Latency
WER EEPR P50 P90 P99

Baseline 13.64% 2.39% 270 600 1320
+ Arbitrator 13.56% 2.19% 270 600 1380

consists only of transactional queries from the voice assistant
to validate if the model can work on out-of-domain datasets.

4.4. Metrics
Word error rate (WER): A standard ASR metric defined
as the normalized minimum word edit distance between the
transcript and predicted recognition. On the SLURP data, we
report the absolute WER.
Word error rate reduction (WERR): Relative reductions in
word error rate (WER) compared to the baseline system are
reported for voice-assistant experiments. Negative values in-
dicate improvements compared to the baseline.
Early endpointing rate (EEPR): Early EP rate is the frac-
tion of utterances in a test set where the system endpointed
early. For all evaluation sets except the partial test set, an ut-
terance is considered to have an early endpoint when the EP
system triggers prior to the ground truth EOS frame. For the
transactional queries partial test set, any utterance that has an
EP trigger before the end of the audio segment is marked as
an early EP, as the partial test set consists of incomplete ut-
terances where the audio after the system cut-off the user is
not available for evaluation. On the SLURP data, we report
absolute values of EEPR.
Early endpointing rate reduction (EEPRR): Relative re-
ductions in early endpointing rate compared to the baseline
system, where negative values indicate improvements vs
baseline. EEPRR is reported for all experiments on the voice-
assistant dataset.
Endpointing latency: Percentiles of endpointing latency
(P50, P90, P99) are reported in all experiments. The EP
latency of an utterance is the time difference between the
ground truth EOS and the end of speech frame detected by
the EP system, with a minimum frame resolution of 30ms.

5. RESULTS AND DISCUSSION

5.1. EP Arbitrator can delay endpoints

In Table 1, we compare the baseline that uses a 1st-pass-only
EP detector (described in section 4.3.1), with an EP system

that is augmented with the EP Arbitrator as a 2nd-pass detec-
tor (described in section 4.3.2). The EP arbitrator improves
the EEPR by 16.34% relative and WER by 3.12% relative on
the transactional query test set. On the partial utterances test
set, we see a relative improvement of 32.45% in EEPR. These
results show that the EP Arbitrator delays EP decisions for
utterances that have longer pauses, hesitations or are seman-
tically incomplete. This is obtained at the cost of no degrada-
tion to median latency, a minor increase in P90 latency, and a
larger increase in P99. We evaluate the same model, with the
same operating point, on conversational data, where we ob-
serve a 1.48% relative improvement in EEPR with no degra-
dation to p90 latency. We consider this an out-of-domain eval-
uation since both the 1st and 2nd pass endpointing models
have not seen any conversational data during training.

In Table 2, we present endpointing results on the SLURP
dataset. We observe an 8.37% relative improvement (2.39%
to 2.19%) in early EP rate, with no increase in latency at
p90, and a small increase in latency at P99, similar to the
observations on the voice-assistant datasets. Since EP ar-
bitrator was not trained on SLURP, these results show that
our method generalizes to unseen datasets without any ex-
plicit training. Further, we report state-of-the-art WER on the
SLURP dataset 1.

5.2. EP Arbitrator improves early-EP vs latency tradeoff
In order to verify that the EP Arbitrator performance cannot
be obtained by selecting a different operating point on the
baseline model, we present the EEPRR vs average latency and
WERR vs average latency for both the baseline models and
the model including the arbitrator in Figure 2, on the transac-
tional query test set. To obtain a baseline curve across various
operating points of early EP rate reduction (EEPRR) and la-
tency, we sweep the hyperparameters of the baseline EP sys-
tem. This includes the first-pass standalone acoustic-EP de-
tector threshold TEP , and hyperparameters that control scal-
ing of the RNNT EOS emission probability in decoding [15].
For the experimental system, the arbitrator detector threshold
Tarb is swept to obtain a curve, with the first-pass EP param-
eters kept unchanged with respect to the baseline.

1Our reported WER on SLURP (13.64%) is better than the state-of-the-
art results (14.8%) [25]. The WER without silence padding of utterances
is 14.9%, adding digital silence to the end of each utterance improves this
to 13.64%. This is due to RNNT emission delay, even when the model is
trained with delay correction methods [17], causing deletion errors at the end.
This finding is orthogonal to our proposed method but can provide valuable
insights to the ASR community.
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actional queries dataset. WERR, EEPRR are computed with
respect to the baseline in Table 1
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Fig. 3: EEPRR% vs. Avg Latency on Conversational test set,
EEPRR is computed with respect to the conversational data
baseline in Table 1

The results in Figure 2 show that the EP arbitrator im-
proves both WER and EEPR at any given average latency
operating point compared to the baseline system. Further, in
Figure 3, we observe that the same model provides a better
EEPR vs latency trade-off on the out-of-domain conversa-
tional data, compared to the baseline system, as measured
at different average latency operating points (lower on the
curves is better, since negative EEPRR indicate improve-
ments). This shows that our method generalizes to out-of-
domain conversational data, and improves early EP rate vs
latency trade-off.

5.3. Analysis with different 1st pass models

To measure efficacy of our method with different 1st-pass
EP systems, we present the performance of the EP Arbitrator
model on top of two modified baselines that have as 1st-pass
EP detector: (1) a standalone acoustic-based EP detector only
(2) an end-to-end EP detector only. This is contrast with all
the results presented previously where the baseline system in-
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Fig. 4: EEPRR% vs. Average Latency with different first pass
models on transactional queries dataset, EEPRR is computed
with respect to the baseline in Table 1

cluded both detectors. Figure 4 shows the results of the exper-
iment. With either detector as the 1st-pass, the EP arbitrator
model as a 2nd-pass provides a better tradeoff between early
EP rate and latency. The EP arbitrator provides higher reduc-
tion in EEPR with a stand-alone acoustic-based EP baseline,
compared to the E2E EP baseline. This can be explained by
the lack of semantic information in the standalone acoustic
EP model. EP arbitrator still demonstrates benefits when the
end-to-end EP model is used in the first pass. This is owing to
the segment level information used by the arbitrator model.

6. CONCLUSIONS

Endpoint detection has to trade-off between accuracy and la-
tency, as waiting longer reduces the chance users get cut-off
early. We proposed a novel two-pass solution for endpointing
to improve the performance of an existing endpointing sys-
tem, by verifying endpoints with a 2nd-pass EP model termed
EP arbitrator. We show improved trade-off between early EP
rate and EP latency with our proposed system compared to
the baseline. We show that the method generalizes to pro-
vide early EP rate improvements on both transactional queries
and conversational datasets, without explicit training on con-
versational data. Further, we propose small modifications to
the publicly available SLURP dataset by padding it with dig-
ital silence making it suitable for performance evaluation on
the endpointing task. Our method improves early EP rate on
SLURP by 8% without degrading latency significantly. Fi-
nally, we demonstrate that our method shows improvements
regardless of the first-pass EP model.
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