
U2-KWS: UNIFIED TWO-PASS OPEN-VOCABULARY KEYWORD SPOTTING
WITH KEYWORD BIAS

Ao Zhang1, Pan Zhou2, Kaixun Huang1, Yong Zou2,Ming Liu2, Lei Xie1∗

1Audio, Speech and Language Processing Group (ASLP@NPU), School of Computer Science,
Northwestern Polytechnical University, Xian, China

2Space AI, Li Auto

ABSTRACT

Open-vocabulary keyword spotting (KWS), which allows
users to customize keywords, has attracted increasingly more
interest. However, existing methods based on acoustic mod-
els and post-processing train the acoustic model with ASR
training criteria to model all phonemes, making the acoustic
model under-optimized for the KWS task. To solve this prob-
lem, we propose a novel unified two-pass open-vocabulary
KWS (U2-KWS) framework inspired by the two-pass ASR
model U2. Specifically, we employ the CTC branch as the
first stage model to detect potential keyword candidates and
the decoder branch as the second stage model to validate can-
didates. In order to enhance any customized keywords, we
redesign the U2 training procedure for U2-KWS and add key-
word information by audio and text cross-attention into both
branches. We perform experiments on our internal dataset
and Aishell-1. The results show that U2-KWS can achieve a
significant relative wake-up rate improvement of 41% com-
pared to the traditional customized KWS systems when the
false alarm rate is fixed to 0.5 times per hour.

Index Terms— Open-vocabulary keyword spotting, U2-
KWS, customized keyword bias, multi-task learning

1. INTRODUCTION

Keyword spotting (KWS) is the task of detecting predefined
keywords from a consecutive audio stream, which is widely
applied in edge devices with a speech interface. Traditional
KWS approaches are based on keyword/filler models which
involve modeling keyword and non-keyword segments with
hidden Markov model (HMM) [1, 2]. With the advance of
deep learning, many works are proposed to build systems
based on a single neural network without HMM and directly
predict the keyword or sub-word tokens of the keyword [3, 4,
5, 6, 7]. Nowadays, the majority of keyword spotting systems
primarily rely on such deep learning approaches. While these
systems can achieve high precision on the pre-defined key-
words, they require a large amount of specific training data

∗: Corresponding author.

that contains those pre-defined keywords. Additionally, key-
words cannot be changed after training, which requires the
user to remember specific keywords. To deal with such limita-
tions, open-vocabulary keyword spotting, which allows users
to customize keywords, has gained popularity in recent years.

Many previous works for open-vocabulary KWS employ
query-by-example (QbyE) methods, which use only audio
signals as input [8, 9]. QbyE methods enroll reference key-
word speech and compare it with new input speech queries.
These methods require users to record the speech of keywords
during customization and their performance is influenced
apparently by the reference keyword speech. In contrast,
customizing keywords based on text makes it easier to set
keywords and is stable for different speakers. A common
text-based open-vocabulary KWS method usually adopts an
acoustic model from ASR to transform speech into phonetic
posteriorgrams and then leverage a post-processing technique
such as HMM to predict keyword existence [10, 11, 12, 13].
In practice, the system with a single streaming acoustic model
produces a large number of false alarms [14, 15]. Therefore,
the multi-stage strategy has been previously adopted to re-
duce false alarms [14, 16, 17, 18]. In general, the first stage is
a lightweight always-on keyword detector. Once a keyword
candidate is detected, the corresponding audio segment is
sent to the following stage(s) for further verification. Multi-
stage systems have several modules and complex structures,
making them hard to build. Recently, there has been increas-
ing interest in unifying multi-stage modules into one single
model. In this direction, Cascaded Transducer-Transformer
(CATT-KWS) uses two-pass models, which unify streaming
and non-streaming ASR approaches [19, 20], to unify multi-
stage KWS into one model [21]. Specifically, it uses the
streaming part, which is originally used to generate stream-
ing hypotheses, as the first-stage model to detect possible
keywords, and then uses the non-streaming parts, which are
originally used to re-score streaming hypotheses, as the vali-
dation stages for further verification of keywords detected in
the first stage. Although this approach changes the inference
of two-pass models from the original recognition & rescoring
to the multi-stage KWS, the two-pass model is still trained

979-8-3503-0689-7/23/$31.00 ©2023 IEEE

ar
X

iv
:2

31
2.

09
76

0v
1

 [
ee

ss
.A

S]
 1

5
D

ec
 2

02
3

according to the criterion of ASR, and the model does not
explicitly utilize the information of the keywords. The model
without knowledge of keywords is optimized for the accuracy
of all words, thus resulting in the under-optimization problem
for the KWS task.

Therefore, it is important to particularly integrate the
keyword information into the acoustic model to make it
more sensitive to the user-defined keywords. Recent works
have employed cross-attention techniques [22] to incorpo-
rate keyword representation in the context of acoustic rep-
resentation. These approaches can be categorized into two
categories based on the type of query employed for cross-
attention: acoustic-query attention and keyword-query at-
tention. The acoustic-query attention employs the acoustic
representation as the query, utilizing the keyword information
to bias the acoustic model towards the user-defined key-
words [23, 14, 15, 24]. This attention method can process
audio frame by frame, and the output of the attention mech-
anism is used to predict phonetic posteriorgrams. Because
the information in one frame is relatively limited, such at-
tention cannot adequately model the relationship between
the entire audio and the keyword. In contrast, the keyword-
query attention employs the keyword representation as the
query and performs cross-attention with the entire audio.
This method effectively models the dependencies between
keywords and audio and the attention output represents the
temporal correlation patterns between acoustic representa-
tions and keywords, which can be used for direct keyword
prediction [25, 26, 27, 28]. This approach queries entire audio
and thus better models global relationships. However, due to
its global attention mechanism, it is not suitable for streaming
inference.

In this paper, we propose the unified two-pass open-
vocabulary keyword spotting framework (U2-KWS). Unlike
the previously mentioned multi-stage KWS model, our ap-
proach focuses on improving the two-pass model specifi-
cally for the KWS task rather than relying on an acoustic
model trained with the criterion of ASR. First, we employ
attention-based keyword bias methods to bias the model to-
wards user-defined keywords. Unlike previous works that use
single-type attention, we apply the acoustic-query attention
in the streaming branch and the keyword-query attention in
the decoder branch within our framework. This allows us
to leverage the strengths of each method, considering both
streaming capability and accuracy. Besides, we redesign the
training and inference of the two-pass model. We only feed
the attention decoder with the keywords and corresponding
acoustic representations, thus training it as a specific keyword
rescoring module focusing on the task of keyword verifica-
tion. We simulate the process of customizing keywords by
sampling keywords from transcripts to generate positive and
negative samples during training. We evaluate the proposed
U2-KWS framework on the AISHELL-1 dataset [29] and
an internal in-car speech communication dataset. Results

Bias Module

CTC Decoder Attention
Decoder

Post-processing

Time Clip

b ao b ei

First-level
Score

Second-level
Score

Encoded
States

Clipped
StatesKeyword

Encoder

Shared Encoder
Keyword

Audio

Time
Stamp

Fig. 1. Block diagram of the proposed U2-KWS.

on the proposed approach demonstrate an impressively high
wake-up rate and low false alarm rate.

2. U2-KWS

In this section, we provide a detailed introduction to our pro-
posed U2-KWS framework. First, we provide an overview
of the entire architecture of the two-pass keyword spotting
framework. Next, we discuss the use of keyword-bias meth-
ods in both streaming and non-streaming branches. Finally,
we present the newly designed training and inference proce-
dures for the two-pass keyword spotting.

2.1. Model Architecture

The proposed model architecture is shown in Fig. 1. It con-
tains four parts: a shared encoder, a bias module, a CTC de-
coder, and an attention decoder. The green part of the figure
is the streaming CTC branch in the two-pass model, which
is employed as the first stage model for detecting potential
keyword candidates in the audio, while the blue part is the
non-streaming branch in the two-pass model, which works as
the second-stage model by verifying the detected candidates
with an attention decoder to reduce false alarms. The yellow
part represents the keyword encoder which models relation-
ships within keywords and encodes keywords into high-level
representations.

The shared encoder consists of multiple Conformer [30]
layers and is trained with the dynamic chunk strategy [31]
which enables latency control and can forward in different
chunk sizes. The keyword encoder is a single LSTM. The bias
module consists of a multi-head attention for model bias and

a linear layer for dimensional transformation. The CTC de-
coder consists of a linear layer and a log-softmax layer, which
outputs the phonetic posteriorgrams. The attention decoder
is a Transformer decoder [22] but gets keywords instead of
the hypotheses as input and does cross-attention with acous-
tic representations corresponding to the keyword phrase.

2.2. Customized Keyword Bias

In this section, we will provide a detailed explanation of the
keyword bias methods based on acoustic-query attention and
keyword-query attention. Afterward, we will discuss how we
unify these methods into our two-pass model.

2.2.1. Attention-based Keyword Bias

The cross-attention mechanism is a widely used and efficient
approach for modeling inter-modal relationships. In this pa-
per, we formalize the cross-attention mechanism as:

Attention(Q,K, V) = softmax

(
Q KT

√
dk

)
V. (1)

Here, Q represents the query vector, K represents the key
vector, and V represents the value vector. We will now dis-
cuss the attention-based keyword bias method.

The acoustic-query attention method employs the acoustic
representation ha as the query and the keyword representation
hk as the key and value, which can be formulated as:

ha
linear−−−→ Qa;hk

linear−−−→ Kk, Vk, (2)

h̃a = Attention(Qa,Kk, Vk). (3)

The resulting attention output h̃a retains the same dimension
as the acoustic representation and can be combined with ha

for the prediction of phonetic posteriorgrams.
The keyword-query attention method utilizes the keyword

representation hk as the query and the acoustic representation
ha as the key and value. The resulting attention output h̃a rep-
resents the agreement between the audio and text [27]. This
process can be described as follows:

hk
linear−−−→ Qk;ha

linear−−−→ Ka, Va, (4)

h̃k = Attention(Qk,Ka, Va). (5)

2.2.2. Two-pass Keyword Bias

The applications of acoustic-query attention and keyword-
query attention in our framework are shown in Fig. 2. To in-
corporate the acoustic-query attention, we integrate it into the
streaming branch of the two-pass model. Firstly, we encode
the customized keyword into an embedding using the key-
word encoder. Next, we utilize the acoustic-query attention
in the bias module to integrate the keyword information into
the acoustic representation encoded by the shared encoder.
The output of the attention module is concatenated with the

Cross-Attention
q k v

Encoder
Out

Keyword
Representation

Cat Linear

 Biased Encoder Out

Concatnate
Cross-Attention

v k q

Self-Attention
v k q

Add & Norm

Add & Norm

Feedforward

Keyword

× N

Embedding Positional
Encoding

Clipped
Encoder out

(a) streaming branch bias (b) non-streaming branch bias

Decoder Out

Fig. 2. Block diagram of keyword bias in U2-KWS.

original acoustic representation and then projected back to the
original dimension. The resulting biased encoder output in-
cludes both the acoustic and keyword information and is used
for subsequent inference.

For the keyword-query attention, we use it in the mod-
ified transformer decoder to bias the non-streaming branch.
We keep the original transformer decoder structure and fix
its input as keywords instead of the decoding results of the
steaming branch, thus making the decoder a specialized key-
word re-scoring module. In this case, the self-attention mod-
ule encodes keywords into high-level representations and the
cross-attention is the keyword-query attention. The output of
the decoder is the token-level posterior probability, and we
calculate the possibility of the keyword path as the score of
the second stage model. This approach more adequately mod-
els the correlation between keywords and speech but is also
more resource-intensive so we only used this structure for the
non-streaming branch.

2.3. Training and Inference

2.3.1. Training of First Stage

We train the streaming branch first. The streaming branch
is optimized with CTC loss, and since we introduced the
keyword-bias module we need to generate keyword samples
during training. To generate positive and negative samples,
we employ a sampling technique on the transcripts to simulate
user-defined keywords. Specifically, for a given utterance, we
randomly select a consecutive word sub-sequence from its
transcript as the keyword to create a positive sample. For
generating a negative sample, we randomly combine words
from the lexicon that are not present in the transcribed text of

the utterance. To introduce a training error for keyword spot-
ting and encourage the model to pay attention to the keyword
information, we add a <eok> token after the sampled key-
word, which is similar to the label-augment method proposed
for context bias in CLAS [32]. To provide a clearer under-
standing of this process, we take the sample “Call you Jarvis”
as an example. The positive and negative samples produced
for this sample are illustrated in Table 1. To be concise, we
employ words as an instance for illustrating purposes, as we
actually convert words into phonemes during training and
inference.

Table 1. Example of keyword sampling

Class Positive Negative

Text Call you Jarvis

Keyword Jarivs Alex

Keyword

Encoder Input
Jarvis<eok> Alex<eok>

CTC Target Call you Jarvis<eok> Call you Jarvis

Decoder Input <sos>Jarvis <sos>Alex

Decoder Target Jarvis<eok> <eos><eos>

2.3.2. Training of Second Stage

After the training of the streaming branch, we jointly opti-
mize the whole two-pass model with attention loss and CTC
loss. In the training phase, we follow the same method to
generate positive and negative samples as before. The over-
all forward and loss calculations of decoder training remain
the same with the attention decoder in the ASR task, but we
make modifications to the input token and target. Specifically,
we configure the input of the decoder to be a fixed sequence
consisting of “<sos>+ keyword”. For positive samples, the
target is set as “keyword + <eok>”, while for negative sam-
ples, the model directly predicts <eos>, as shown in Table 1.
In this way, the decoder focuses on the prediction of keyword
sequence during training and becomes a token-level classifier
with keyword discrimination capability.

Inspired by the end-to-end segmentation method used in
the two-pass ASR model [33], we use timestamp information
from the streaming branch to clip the encoder output for the
decoder branch. This allows the cross attention of the decoder
to only focus on the acoustic representation that contains the
keyword. By doing so, we can reduce the complexity of the
task for the decoder and improve keyword spotting perfor-
mance.

To achieve the clip of the encoder output, we require the
start and end times of the keyword. With the <eok> token in
the first-level model, we can identify the frame with the high-
est posterior probability of <eok> as the end frame. To esti-

mate the start frame, we use a method similar to the spike trig-
ger CTC [34], where we consider a spike as any non-blank to-
ken with a posterior probability exceeding a pre-set threshold.
We count the number of spikes from the end frame back to the
start of the speech, and when the number of spikes exceeds the
length of the keyword sequence, we consider the last counted
spike as the starting frame. This method doesn’t need ex-
tra alignment information and can output stable lengths com-
pared with the alignment method based on CTC posterior
probability.

The joint loss function for the entire two-pass model can
be expressed as:

L = λLctc + (1− λ)Latt, (6)

where Lctc and Latt represent the CTC loss and the attention
loss, respectively. The hyper-parameter λ controls the contri-
bution of each loss to the overall training objective.

2.3.3. Inference

In the initialization phase, the keyword encoder generates a
high-level representation of the customized keyword entered
by the user, which is marked in yellow in Figure 1. The first
stage model, highlighted in green in the same figure, pro-
cesses the input audio stream chunk by chunk to get the pos-
terior probability of CTC. We search the keyword path on the
post probability to get the path with the highest probability
and use the probability as the score of the first stage. If the
score surpasses the threshold set for the first stage, we clip
the acoustic representation based on the <eok> token and
non-blank token spikes of CTC. Then, we employ the de-
coder to conduct keyword rescoring by sequentially feeding
the keyword sequence token into the decoder and computing
the probability of the next token of the keyword. This score is
compared to the threshold for the final prediction. Since our
encoder is trained with dynamic chunks, the encoder can in-
fer in full-chunk mode to fully utilize the context. We can re-
feed audio segments containing keyword candidates detected
in the first stage to the encoder again in full-chunk mode to
get more informative acoustic representations for the rescor-
ing of the decoder in the second stage. Thus we further im-
prove performance by only introducing minimal latency. We
call the direct use of streaming encoder output the causal de-
coder, and the re-feeding method the full decoder.

3. EXPERIMENTS

In this section, we introduce the corpus and describe the ex-
perimental setup including our model configuration. Experi-
mental results and analysis are also presented at last.

3.1. Corpus

Internal Corpus: Models are trained on a Mandarin ASR
corpus comprising 1,000 hours of speech collected in hybrid

electric vehicles. We randomly shuffled the development set
from the training set. To evaluate the accuracy of our mod-
els, we record the positive test set in the same environment
as the training set. This test set contains 30 different key-
words, each including 200 samples, for a total of 3,000 pos-
itive samples. These keywords are composed of two to four
Chinese characters. To evaluate false alarms, we used a sepa-
rate audio set of 60 hours, which mainly contained chat, com-
mand, and radio broadcasts, as the negative test set. All the
data mentioned above, including the training set, development
set, positive test set, and negative test set, are anonymous and
hand-transcribed.

AISHELL-1: We also conduct experiments on the pub-
lic Chinese Mandarin speech corpus AISHELL-1 [29]. For
training and validation, we use the train set and dev set of
AISHELL-1. For evaluation, we construct a test set con-
sisting of 7,176 pairs of positive and negative samples from
the AISHELL-1 test set using the keyword sampling method
adopted in training.

3.2. Configuration

Our model used 80-dimensional log Mel-filter banks with a
25ms window and a 10ms shift. SpecAugment [35] is ap-
plied 2 frequency masks with maximum frequency mask (F
= 10), and 2 time masks with maximum time mask (T = 50)
to alleviate over-fitting. Two convolution sub-sampling layers
with kernel size 3*3 and stride 2 are used in the front of the
encoder.

The baseline CTC model we used consists of a 12-layer
conformer with 128-dimensional input, 4 self-attention heads,
and 256 linear units. The larger baseline expands the input
dim to 256 and the number of linear units to 2048 which
makes it nine times larger than the baseline model. For the
keyword bias, the keyword encoder comprises an embedding
layer and one layer LSTM with a dimensionality of 128. The
bias module is a multi-head attention layer of 128 hidden
states and 4 attention heads. For the decoder branch, we em-
ploy 2 transformer layers with 512 linear units as the decoder.
All models are trained with dynamic chunks and conducted
inference in chunks of 8.

The output units include 210 context-independent (CI)
phones, a <sos/eos>symbol, and a <eok>symbol. The
model consists of multiple components with their respective
parameter sizes. The encoder has a size of 3.75M, the CTC
decoder has a size of 0.2M, the attention decoder has a size of
0.6M, the keyword encoder has a size of 0.16M, and the bias
module has a size of 0.04 M. In total, the model has 4.75M
parameters. It is important to note that the keyword encoder
only works for the system initialization, and the decoder is
activated only when the streaming branch detects keyword
candidates. This allows the two-pass model to have only
0.04M extra always-on parameters compared to the baseline
model, making it suitable for deployment on edge devices.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
False alarms per hour

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fa
lse

 re
je

ct
io

n
ra

te

Baseline
 + Keyword Bias (First Stage)
 + Casual Decoder (Second Stage)
 + Full Decoder (Second Stage)

Fig. 3. ROC curves for different systems.

3.3. Evaluation Metrics

We evaluate the performance in terms of the receiver oper-
ating characteristic (ROC) curve and F1-score. To generate
the ROC curves for each keyword, we utilize corresponding
positive samples and the 60-hour negative test set. To evalu-
ate the overall performance of different keywords, we average
the false rejection rates of all keywords at the same false alarm
rate. This allows us to plot overall ROC curves, providing a
comprehensive evaluation of models. Similar to the process
of ROC curves, we compute the F1-score for each keyword
and average them to evaluate the overall performance.

3.4. Performance of Two-pass KWS Framwork

In Fig. 3 and Table 2, we show the results of our proposed
framework and baseline model on the internal test sets. The
baseline system consists of an acoustic encoder with the CTC
decoder. Integrating keyword information with keyword bias
into the baseline model we get the first stage model. Com-
pared with the baseline model, the first stage model increases
the wake-up rate by 20% under the condition of 0.5 false
alarms per hour. This shows that integrating keyword infor-
mation through attention is a very effective method for open-
vocabulary keyword spotting. Both the causal decoder and
the full decoder introduced in Sec 2.3.3 can further improve
performance on the first stage model. The causal decoder uti-
lizes the output of the streaming encoder for rescoring, mak-
ing better use of contextual information and achieving a 6%
improvement in wake-up rate under a 0.5 false wake-up con-
dition. On the other hand, the full decoder uses the full-chunk
encoder to obtain more accurate acoustic representations, re-
sulting in a 10% improvement under a 0.25 false wake-up
condition.

Table 2. F1-scores of different systems on varying lengths

Model F1-score in different word length
Overall 2 3 4

Baseline 0.790 0.711 0.813 0.847
+ Encoder Integration 0.872 0.791 0.893 0.932

+ Casual Decoder 0.894 0.793 0.926 0.963
+ Full Decoder 0.910 0.807 0.946 0.977

3.5. Impact of Varying Keyword Length

To investigate the impact of keyword lengths on system per-
formance, we conducted experiments by grouping the test sets
based on the character number of keywords and evaluated
them separately. In Table 2, we present the average F1-scores
for each keyword length. Our findings indicate that longer
keywords tend to result in better overall performance. This
can be attributed to the fact that shorter keywords are more
prone to generating false alarms. We can observe that the
longer the keywords are, the greater the improvement the de-
coder branch brings. There are two reasons for this. First, for
short sequences, the structural benefit of the decoder which
makes full use of context becomes smaller, and the second is
that long sequences need to calculate more steps in the de-
coder, which can give full play to the distinguishing ability of
the decoder.

3.6. Impact of Decoder Strategy

We conduct comparative experiments with the causal decoder
to explore various methods of clipping the encoder output
during decoder training and inference. The results of these
experiments are depicted in Fig 4. The method without clip-
ping assigns the task of searching keyword-related acoustic
representations to the cross-attention of the decoder, which
increases the complexity of decoder tasks. Using timestamp
information in the first stage to clip the output of the encoder
can make the decoder focus on the keyword validation task, so
the clip method is better than the non-clip method. Although
the method based on CTC alignment can get accurate times-
tamps for clean positive samples, it will output too long or too
short clipping ranges for negative samples and difficult posi-
tive samples, resulting in decoder instability. In contrast, the
spike-based methods provide a more stable clipping range by
deriving the timestamp based on the number of peaks rather
than specific content. Although this method may clip redun-
dant parts, the cross-attention of the decoder is resilient to
a small amount of redundant information. Thus, the spike-
based method yields the best results.

3.7. Performance on AISHELL-1

To ensure our findings are reproducible, we carry out ad-
ditional experiments using the publicly available Mandarin

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
False alarms per hour

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fa
lse

 re
je

ct
io

n
ra

te

spike clip
no clip
align clip

Fig. 4. ROC curves for systems with different clip strategies.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
False alarms per hour

0.0

0.1

0.2

0.3

0.4

0.5

Fa
lse

 re
je

ct
io

n
ra

te

Baseline
Larger Baseline
U2-KWS

Fig. 5. ROC curves for different systems on AISHELL-1.

speech corpus AISHELL-1. The ROC curve presented in
Fig. 5 clearly demonstrates that our proposed framework U2-
KWS significantly outperforms the baseline. These results
are consistent with the conclusions drawn from our analysis
of the internal dataset.

4. CONCLUSIOSN

In this paper, we propose a novel two-pass open-vocabulary
keyword spotting framework U2-KWS. The framework uses
the streaming branch as the first stage model to detect key-
word candidates, while the non-streaming branch is activated
to make further validation only when the first stage model has
detected keyword candidates. To make the model sensitive to
the keywords, we introduce keyword bias into both branches
and design a two-pass training process for KWS with key-
word sampling and encoder clipping. Our method outper-
forms the baseline by a significant margin on both internal
and open datasets. We also set up additional experiments to
explore the effectiveness of the decoder strategy and the im-
pact of different keyword lengths.

5. REFERENCES

[1] Fengpei Ge and Yonghong Yan, “Deep neural network
based wake-up-word speech recognition with two-stage
detection,” in Proc. ICASSP. 2017, pp. 2761–2765,
IEEE.

[2] Minhua Wu, Sankaran Panchapagesan, Ming Sun, Ji-
acheng Gu, Ryan Thomas, Shiv Naga Prasad Vita-
ladevuni, Björn Hoffmeister, and Arindam Mandal,
“Monophone-based background modeling for two-stage
on-device wake word detection,” in Proc. ICASSP.
2018, IEEE.

[3] Tara N. Sainath and Carolina Parada, “Convolutional
neural networks for small-footprint keyword spotting,”
in Proc. Interspeech. 2015, pp. 1478–1482, ISCA.

[4] Guoguo Chen, Carolina Parada, and Georg Heigold,
“Small-footprint keyword spotting using deep neural
networks,” in Proc. ICASSP. IEEE, 2014, pp. 4087–
4091.

[5] Bo Wei, Meirong Yang, Tao Zhang, Xiao Tang, Xing
Huang, Kyuhong Kim, Jaeyun Lee, Kiho Cho, and
Sung-Un Park, “End-to-end transformer-based open-
vocabulary keyword spotting with location-guided lo-
cal attention,” in Proc. Interspeech. 2021, pp. 361–365,
ISCA.

[6] Christin Jose, Yuriy Mishchenko, Thibaud Sénéchal,
Anish Shah, Alex Escott, and Shiv Naga Prasad Vita-
ladevuni, “Accurate detection of wake word start and
end using a CNN,” in Proc. Interspeech. 2020, pp.
3346–3350, ISCA.

[7] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz,
“Keyword transformer: A self-attention model for key-
word spotting,” in Proc. Interspeech. 2021, pp. 4249–
4253, ISCA.

[8] Guoguo Chen, Carolina Parada, and Tara N. Sainath,
“Query-by-example keyword spotting using long short-
term memory networks,” in Proc. ICASSP. 2015, pp.
5236–5240, IEEE.

[9] Jinmiao Huang, Waseem Gharbieh, Han Suk Shim, and
Eugene Kim, “Query-by-example keyword spotting
system using multi-head attention and soft-triple loss,”
in Proc. ICASSP. 2021, pp. 6858–6862, IEEE.

[10] Théodore Bluche, Maël Primet, and Thibault Gissel-
brecht, “Small-footprint open-vocabulary keyword
spotting with quantized LSTM networks,” arXiv
preprint arXiv:2002.10851, 2020.

[11] Kyuyeon Hwang, Minjae Lee, and Wonyong Sung,
“Online keyword spotting with a character-level recur-
rent neural network,” arXiv preprint arXiv:1512.08903,
2015.

[12] Christopher T. Lengerich and Awni Y. Hannun, “An
end-to-end architecture for keyword spotting and voice
activity detection,” in Proc. NIPS, 2016.

[13] Yimeng Zhuang, Xuankai Chang, Yanmin Qian, and Kai
Yu, “Unrestricted vocabulary keyword spotting using
LSTM-CTC,” in Proc. Interspeech. 2016, pp. 938–942,
ISCA.

[14] Zuozhen Liu, Ta Li, and Pengyuan Zhang, “RNN-T
based open-vocabulary keyword spotting in mandarin
with multi-level detection,” in Proc. ICASSP. IEEE,
2021, pp. 5649–5653.

[15] Yao Tian, Haitao Yao, Meng Cai, Yaming Liu, and Ze-
jun Ma, “Improving rnn transducer modeling for small-
footprint keyword spotting,” in Proc. ICASSP. IEEE,
2021, pp. 5624–5628.

[16] Siddharth Sigtia, Pascal Clark, Rob Haynes, Hywel
Richards, and John Bridle, “Multi-task learning for
voice trigger detection,” in Proc. ICASSP. 2020, pp.
7449–7453, IEEE.

[17] Runyan Yang, Gaofeng Cheng, Haoran Miao, Ta Li,
Pengyuan Zhang, and Yonghong Yan, “Keyword
search using attention-based end-to-end asr and frame-
synchronous phoneme alignments,” IEEE ACM Trans.
Audio Speech Lang. Process., vol. 29, pp. 3202–3215,
2021.

[18] Siddharth Sigtia, John Bridle, Hywel Richards, Pascal
Clark, Erik Marchi, and Vineet Garg, “Progressive
voice trigger detection: Accuracy vs latency,” in Proc.
ICASSP. IEEE, 2021, pp. 6843–6847.

[19] Binbin Zhang, Di Wu, Zhuoyuan Yao, Xiong Wang, Fan
Yu, Chao Yang, Liyong Guo, Yaguang Hu, Lei Xie, and
Xin Lei, “Unified streaming and non-streaming two-
pass end-to-end model for speech recognition,” arXiv
preprint arXiv:2012.05481, 2020.

[20] Arun Narayanan, Tara N. Sainath, Ruoming Pang, Ji-
ahui Yu, Chung-Cheng Chiu, Rohit Prabhavalkar, Ehsan
Variani, and Trevor Strohman, “Cascaded encoders for
unifying streaming and non-streaming ASR,” in Proc.
ICASSP. 2021, pp. 5629–5633, IEEE.

[21] Zhanheng Yang, Sining Sun, Jin Li, Xiaoming Zhang,
Xiong Wang, Long Ma, and Lei Xie, “CaTT-KWS:
A multi-stage customized keyword spotting framework
based on cascaded transducer-transformer,” in Proc. In-
terspeech. 2022, pp. 1681–1685, ISCA.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in Proc. NIPS, 2017, pp. 5998–6008.

[23] Yanzhang He, Rohit Prabhavalkar, Kanishka Rao, Wei
Li, Anton Bakhtin, and Ian McGraw, “Streaming small-
footprint keyword spotting using sequence-to-sequence
models,” in Proc. ASRU. IEEE, 2017, pp. 474–481.

[24] Yu Xi, Tian Tan, Wangyou Zhang, Baochen Yang, and
Kai Yu, “Text adaptive detection for customizable key-
word spotting,” in Proc. ICASSP. 2022, pp. 6652–6656,
IEEE.

[25] Théodore Bluche and Thibault Gisselbrecht, “Predict-
ing detection filters for small footprint open-vocabulary
keyword spotting,” in Proc. Interspeech. 2020, pp.
2552–2556, ISCA.

[26] Bo Wei, Meirong Yang, Tao Zhang, Xiao Tang, Xing
Huang, Kyuhong Kim, Jaeyun Lee, Kiho Cho, and
Sung-Un Park, “End-to-End transformer-based open-
vocabulary keyword spotting with location-guided lo-
cal attention,” in Proc. Interspeech. 2021, pp. 361–365,
ISCA.

[27] Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-
Whan Chung, and Hong-Goo Kang, “Learning audio-
text agreement for open-vocabulary keyword spotting,”
in Proc. Interspeech. 2022, pp. 1871–1875, ISCA.

[28] Yujie Yang, Kun Zhang, Zhiyong Wu, and Helen Meng,
“Keyword-specific acoustic model pruning for open-
vocabulary keyword spotting,” in Proc. ICASSP 2023.
IEEE, 2023, pp. 1–5.

[29] Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao
Zheng, “AISHELL-1: an open-source mandarin speech
corpus and a speech recognition baseline,” in Proc. O-
COCOSDA. 2017, pp. 1–5, IEEE.

[30] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang,
“Conformer: Convolution-augmented transformer for
speech recognition,” in Proc. Interspeech. 2020, pp.
5036–5040, ISCA.

[31] Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen, Lei
Xie, and Xin Lei, “WeNet: production oriented stream-
ing and non-streaming end-to-end speech recognition
toolkit,” in Proc. Interspeech. 2021, pp. 4054–4058,
ISCA.

[32] Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar, An-
juli Kannan, and Ding Zhao, “Deep Context: end-to-end

contextual speech recognition,” in Proc. SLT. 2018, pp.
418–425, IEEE.

[33] W Ronny Huang, Shuo-Yiin Chang, Tara N Sainath,
Yanzhang He, David Rybach, Robert David, Rohit Prab-
havalkar, Cyril Allauzen, Cal Peyser, and Trevor D
Strohman, “E2E segmentation in a two-pass cascaded
encoder asr model,” in Proc. ICASSP. 2023, pp. 1–5,
IEEE.

[34] Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Ye Bai,
Shuai Zhang, and Zhengqi Wen, “Spike-triggered non-
autoregressive transformer for end-to-end speech recog-
nition,” in Proc. Interspeech, 2020, pp. 5026–5030.

[35] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le,
“SpecAugment: A simple data augmentation method
for automatic speech recognition,” in Proc. Interspeech.
2019, pp. 2613–2617, ISCA.

	 Introduction
	 U2-KWS
	 Model Architecture
	 Customized Keyword Bias
	 Attention-based Keyword Bias
	 Two-pass Keyword Bias

	 Training and Inference
	 Training of First Stage
	 Training of Second Stage
	 Inference

	 Experiments
	 Corpus
	 Configuration
	 Evaluation Metrics
	 Performance of Two-pass KWS Framwork
	 Impact of Varying Keyword Length
	 Impact of Decoder Strategy
	 Performance on AISHELL-1

	 conclusiosn
	 References

