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ABSTRACT

Learning phone types from phone instances has been a
long-standing problem, while still being open. In this work,
we revisit this problem in the context of self-supervised learn-
ing, and pose it as the problem of matching cluster centroids
to phone embeddings. We study two key properties that
enable matching, namely, whether cluster centroids of self-
supervised representations reduce the variability of phone
instances and respect the relationship among phones. We
then use the matching result to produce pseudo-labels and
introduce a new loss function for improving self-supervised
representations. Our experiments show that the matching
result captures the relationship among phones. Training the
new loss function jointly with the regular self-supervised
losses, such as APC and CPC, significantly improves the
downstream phone classification.

Index Terms— self-supervised learning, acoustic unit
discovery, Gromov–Wasserstein distance

1. INTRODUCTION

Frame representation produced by self-supervised models
have shown to work well at distinguishing phone identities at
the frame level [1, 2, 3, 4] and at the segment level [5, 6, 7].
Although phones are thought to be largely separable in the
space of speech representation, the separability is based on
instances. Whether it is possible to learn representations of
types as opposed to instances remains an open problem.

In this paper, we will focus on phone types, because pho-
netic properties are salient even after crude quantization down
to 100 or even 50 codes [8, 9, 10]. The problem of learn-
ing phone types has a long history and shows up under dif-
ferent names, such as acoustic unit discovery [11, 12, 13]
and unsupervised speech recognition [14, 15, 16, 17, 18, 19].
It is also highly related to unsupervised phone segmentation
[20, 12, 13] and lexical discovery [21].

Most, if not all, approaches assume that types arise from
clustering of instances. Approaches based on dynamic time
warping for acoustic unit discovery rely on clustering [11].
Bayesian models for acoustic unit discovery is another form
of clustering [22]. Much of the recent progress focuses on ad-
versarial approaches to distinguish sequences of cluster IDs
and phone sequences observed in data sets [14, 15, 16, 17,

18]. In this paper, we follow the same footsteps and study
whether cluster centroids of instances can be a good repre-
sentation for types in the context of self-supervised learning.

Even though cluster centroids have been used as types for
almost all approaches to learning phone types, it is also true
that the types discovered by these approaches are never one
to one. There is abundant variability of phones within and
across speakers, and we generally do not know the correct
number of clusters to use. Recent work on analyzing repre-
sentations of self-supervised predictive coding finds that pho-
netic and speaker information are largely represented in or-
thogonal subspaces [23]. We will use this as a tool to measure
and reduce the variability of phone instances among speakers.

For the second problem where there is not always a one-
to-one mapping between the centroids and phone types, we
take a different route and assume access to a set of phone em-
beddings. We introduce an additional matching step to find
the correspondence between the centroids and phone embed-
dings. This is reminiscent to the line of work in unsupervised
machine translation [24, 25, 26]. We will adopt a similar ap-
proach, using optimal transport, in particular, optimizing the
Gromov-Wasserstein distance [27, 28] to match the centroids
and phone embeddings.

We see several applications once we match the centroids
and phone embeddings. One immediate application is to use
the matching result to provide pseudo-labels on unlabeled
speech. The pseudo-labels can be used to further improve
the speech representations. We introduce a loss function
predicting pseudo-labels as self-supervised learning, similar
to [8, 29].

Our experiments show that centroids of self-supervised
frame representation provide a good starting point for learn-
ing types. We will show quantitative and qualitive results for
matching centeroids to phone embeddings. In addition, by
predicting the pseudo-labels produced by the matching result
gives a sizable improvement in downstream phone classifica-
tion.

2. PROPOSED APPROACH

An overview of our proposed approach is illustrated in Fig-
ure 1. The goal is to match type vectors derived from a self-
supervised model to phone embeddings (without using paired
transcriptions). Vectors produced by self-supervised mod-
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Fig. 1: An overview of our proposed approach. Phone embed-
dings are learned from phone sequences with CBOW. Type
vectors are derived from clustering self-supervised frame rep-
resentations. Matching assigns phone labels to each cen-
troid and can be used to provide pseudo-labels for unlabeled
speech. Based on the matching result, an additional objec-
tive is introduced for self-supervised learning that predicts the
pseudo-labels.

els are contextualized, meaning that different phone instances
would have different sequences of vectors. Since vectors pro-
duced by self-supervised models tend to be sufficiently clus-
tered by phones [8], we make the first assumption that a type
can be represented by the mean of its instances. As a result,
we define type vectors to be centroids after clustering frame
vectors produced by self-supervised models.

We further make a second assumption that the derived
type vectors respect the relationship among phones, for ex-
ample, similar pronouncing phones are closer in space. If we
have access to phone embeddings that also respect the rela-
tionship of phones, the two sets of vectors have the potential
to be matched. In this work, we use phone embeddings from
a continuous bag-of-word (CBOW) model [30, 31] trained
on phone sequences extracted from texts and a pronunciation
dictionary.

To match the two sets of vectors, we use optimal trans-
port, in particular, optimizing the Gromov-Wasserstein dis-
tance [27, 28]. Finally, with the goal of improving speech
representations, we infer the matched phone labels for ev-
ery frame, and treat them as pseudo-labels for self-supervised
learning.

Our approach is unsupervised, in the sense that it does
not require manual transcriptions paired with speech. The de-

pendency on texts and a pronunciation dictionary may seem
stringent. However, as we will show in the experiments, we
observe improvements even when the matching result is only
approximate. This suggests that the requirement on texts and
a pronunciation dictionary can be relaxed, and we leave it as
future work.

3. ASSUMPTIONS AND VALIDATION

There are two main assumptions in our approach: one is that
the mean of instances would be representative of the instances
and the other is that type vectors respect the relationship of
phones. In the first assumption, whether the mean is repre-
sentative of the instances depends on the variability of frame
representations. In the second assumption, whether the re-
lationship of phones are respected depends on how they are
organized in space and their nearest neighbors. We will study
both assumptions in this section.

3.1. Variability of Phone Instances

To study the variability of phone instances, inspired by [23],
we collect all frame vectors produced by a self-supervised
model of the same phone label into a matrix and compute
PCA on it. Specifically, suppose all frames produced by a
self-supervised model are forced aligned to phones. We com-
pute PCA on the matrix Mp whose column vectors are frames
labeled as phone p in a data set. In other words, the set of
eigenvectors we get spans the subspace of a particular phone
and captures the variance of the instances of that particular
phone.

Similarly, we define the speaker subspace as the span of
speaker vectors, each of which is an average of frame vec-
tors that have the same speaker label. We compute PCA on
M spk = [ms1 , . . . ,msJ ] for a set of J speakers {s1, . . . , sJ}
where ms = avg({h : the frame h is from speaker s}). We
compute PCA on the speaker vectors as well to obtain eigen-
vectors for the speaker subspace. Given two sets of eigenvec-
tors (one from phone instances and one from speakers), we
can study how correlated they are.

We conduct our analysis on the 100-hour subset of Lib-
rispeech with 3-layer LSTMs trained with APC [3] and
CPC [1] (more details in the experimental section). In Fig-
ure 2, we focus on APC and use the phone [ih] as an example
and show the absolute of dot products of the two sets of eigen-
vectors. In Figure 2 (a), the first speaker direction (ranked
third) contributes significantly to the variability of the phone
instances.1 We adopt the idea in [23], projecting a frame vec-
tor h to a subspace orthogonal to the first speaker direction v
(called collapsing in [23])

hc = h− (h⊤v)v, (1)

1The first speaker direction likely indicates the average fundamental fre-
qeuencies, separating males and females [23].



(a) before collapsing (b) after collapsing

Fig. 2: The absolute of dot products among the top 20 eigen-
vectors from the APC speaker subspace (x-axis) and those
from the frame representation of the phone [ih] (y-axis).
(a) The absolute of dot products before collapsing the first
speaker direction. (b) The same measures after collapsing the
first speaker direction.

Fig. 3: The absolute of dot products comparing the top 20
principle directions of the APC speaker subspace (x-axis) and
those from the utterance subspace (y-axis).

where hc is the collapsed frame vector. The resulting abso-
lute of dot products is shown in Figure 2 (b). Collapsing ef-
fectively reduces the variability along the speaker directions.
We could continue collapsing but the second speaker direc-
tion (ranked 15th) contributes significantly less than the first.

The collapsing approach relies on speaker labels that are
not always at hand. We discover an alternative approach to
find the speaker direction without using speaker labels. In-
stead of averaging frame vectors based on speakers, we aver-
age frame vectors based on utterances and compute PCA on
it. The absolute of dot products of the two approaches are
shown in Figure 3, and the eigenvectors are surprisingly well
aligned for the first few directions.

The findings hold for most phones and for both APC and
CPC. Later in the experiments, we will approximate speaker
directions with utterances and collapse the first speaker di-
mension before clustering. Controlling variability of in-
stances is deemed essential in unsupervised automatic speech
recognition. For example, [17] relies on silence removal,
dimensionality reduction with PCA after k-means, and mean
pooling.

Table 1: Top 3 nearest neighbors of phone types from APC
and CBOW. Phone types from APC are the averages of frame
representation (of the same phone label) based on forced
alignments. Nearest neighbors that appear in both sets are
underlined.

Phone APC CBOW Phone APC CBOW

ae eh aw ay ih ow aw k g, t, p m, t, f
ah spn, ih, uh er, ih, ow m n, spn, b t, s, l
aw aa, ae, eh ae, ay, ih p b, k, t s, t, m
er r, spn, ah ah, spn, ih t d, spn, jh d, m, z
ey iy, ih, eh eh, aa, ah th f, dh, t t, z, ch
ih ah, spn, eh ah, ow, ae z s, spn, t d, t, s
ch jh, t, sh t, m, z s z, spn, t m, z, b
d t, spn, n t, z, m sh ch, zh, jh t, s, ch
g k, b, d k, f, b v b, spn, f b, m, n
jh ch, t, d t, v, b zh sh, jh, ch jh, t, f

3.2. Nearest Neighbors of Phone Types

To study whether the type vectors respect the relationship
of phones, we use forced alignments (only for analysis) and
compute the means of frame vectors that have the same phone
label. Table 1, based on APC, shows the nearest neighbors of
the means and the phone embeddings learned from CBOW.
We observe that the vectors in the two spaces share similar
nearest neighbors. In addition, vowels share nearest neigh-
bors with vowels, while consonants share nearest neighbors
with consonants. Manners and places of articulation for con-
sonants also form groups. This provides us evidence that there
is enough signal to match the two spaces. It also suggests that
an accurate matching is not required (if possible at all). An
approximate match would provide training signals to distin-
guish vowels and consonants or even the manners and places.

4. MATCHING

There are many algorithms that aim to match two sets of vec-
tors. Based on the analyses in the previous section, we choose
to optimize the Gromov–Wasserstein distance [27, 28] as it
respects distances among vectors and does not assume a lin-
ear transformation between the two spaces. Suppose the set
of vectors {c1, . . . , cn} are the centroids after clustering the
frame vectors produced by a self-supervised model, and the
set of vectors {y1, . . . , ym} are the phone embeddings learned
from CBOW. Note that n and m are not required to be the
same. We compute two distances matrices S and S′ on the
two spaces, where Sij = ∥ci − cj∥22 and S′

ij = ∥yi − yj∥22.
The goal is to find Γ where Γij indicates the probability of
matching ci to yj . When ci is matched to yj and ck is matched
to yl, we incur a cost (Sik − S′

jℓ)
2 for not respecting the dis-

tances. Based on these definitions, the Gromov-Wasserstein



distance is defined as

min
Γ

∑
ij

∑
kℓ

(Sik − S′
jℓ)

2ΓijΓkℓ − ϵH(Γ)

s.t. Γ1 = p, Γ⊤1 = q, Γ ≥ 0

where 1 is an all-one vector, H(Γ) is the sum of entropy for
all rows in Γ, and ϵ is the entropy regularization parameter.
The objective additionally has two unigram distribution vec-
tors p and q. In our case, p is the unigram distribution of cen-
troids, and q is the unigram distribution of phones in the texts
for training CBOW. Both can be computed without relying on
manual transcriptions or forced alignments.

To optimize the Gromov–Wasserstein distance, follow-
ing [28], we iteratively compute a loss matrix L and the
matching matrix Γ as follows.

L← S2p1⊤ + 1q⊤S′2⊤ − 2SΓS′⊤ (2)

a← p⊘Kb, b← q ⊘K⊤a (3)
Γ← diag(a)Kdiag(b) (4)

where K = e−L/ϵ. We technically do not need to learn a lin-
ear transformation between the two spaces (if the two spaces
can be matched at all with a linear transformation). If this is
necessary, we can use Procrustes analysis to find the linear
transformation between the two spaces. Specifically, if the
SVD of CΓY ⊤ is UΣV ⊤, the linear transformation between
the two spaces is UV ⊤.

5. PSEUDO-LABELS FROM MATCHING

Once matching is done, every centroid is matched to a
phone embedding. We can label each frame vector based on
which centroid it belongs and what phone embedding it gets
matched. This process creates sequences of pseudo-labels
for unlabeled speech without relying on manual transcrip-
tions. With the goal of improving speech representations, we
can create a new self-supervised loss function, predicting the
pseudo-labels discovered with this process.

More formally, we assign each frame at t a pseudo-label

st = argmax
i

Γzt,i (5)

where zt is the centroid that the frame belongs. In other
words, the pseudo-label is the matched phone given the cen-
troid that the frame belongs. Predicting pseudo-labels is a
common approach to self-supervised learning. For example,
wav2vec 2.0 uses the quantized output of the convolution
layers as pseudo-labels [32], while HuBERT uses quantized
MFCCs or one of its own layers as pseudo-labels [8]. There
is even evidence that randomly quantizing log Mel features
(also known as BEST-RQ in [29]) could serve as pseudo-
labels for self-supervised learning.

When predicting the pseudo-labels, we have two options:
one is to use cross entropy loss and the other is to get close to
the target embedding with the ℓ2 loss. For cross entropy loss,
we add the loss

T−k∑
t=1

1⊤
st+k

log softmax(Wht), (6)

to measure the prediction quality, where 1i is a one-hot vec-
tor with the i-th dimension set to 1, ht is the frame vector
produced by a self-supervised model at time t, W is for lin-
ear prediction, and st+k is the pseudo-label. As an aside, if
st+k is the cluster ID of clustering log Mel features with a
random codebook, this approach becomes a special case of
BEST-RQ [29].

In the second case, more formally, recall that yi is the i-th
phone embedding from CBOW. To predict the target embed-
ding, we will add

T−k∑
t=1

∥yst+k
−Wht∥22 (7)

to the training objective where W is for linear regression, and
yst+k

is the embedding looked up with the pseudo-label st+k.
Note that we have applied a time shift of k on the targets to
be consistent with APC and CPC.

6. EXPERIMENTS

Following the protocol of [3], we evaluate our proposed ap-
proach by pre-training on the 360-hour subset of LibriSpeech
and performing phone classification on Wall Stree Journal
(WSJ). The pre-trained models are frozen after pre-training,
as we are interested in the quality of speech representations
after pre-training. Ten percent of the training set (si284) in
WSJ is used as a development set for choosing the best phone
classifier. We report the phone error rates of the selected prob-
ing models on dev93 and eval92. A phone set with 41 phones
are used in our study, including one label (sil) for silence and
one (spn) for spoken noise. To compare against prior work,
we use 3-layer uni-directional LSTMs with a hidden size of
512 dimension in all experiments. To test the generalization
across self-supervised losses, we compare both APC [3] and
CPC [1]. We choose a time shift of 5 for both APC and CPC,
and train them with a batch size of 32 and a step size of 10−3

using the Adam optimizer. For CPC, following [2], we do
not use convolution layers and directly contrast on log Mel
features. A set of 100 negative samples are uniformly drawn
from the log Mel frames of the same utterance. All models
are trained with 15 epochs for pre-training, and another 15
epochs for phone classification.

For CBOW on phone sequences, we use the texts on the
100-hour subset of Librispeech and CMUdict version 0.7. We
train CBOW with a window size of 5, a step size of 0.005, a



Table 2: Analyses on clusters and matching with forced
alignments. The evaluation metrics are phone purity (PP),
cluster purity (CP), and frame and type phone error rates
(PER). We compare APC, CPC, and their counterpart APCc

and CPCc after collapsing the first speaker direction. Hu-
BERT and random projection are also listed.

frame PP (↑) CP (↑) frame type
vectors PER (↓) PER (↓)
APC 50.1 37.3 50.1 93.1
APCc 47.5 36.6 50.1 76.8
CPC 51.1 37.7 48.9 73.0
CPCc 50.6 38.2 47.8 72.6

HuBERT 50.3 37.8 48.3 -
Rand Proj 22.1 29.5 73.0 -

batch per utterance, and gradient clipping to norm 5.2 Given
the relatively small number of classes, we consider all classes
and do not use negative samples.

6.1. Matching with Gromov-Wasserstein Distance

Before matching, we first evaluate the quality of clustering
frame vectors produced by self-supervised models. Follow-
ing [8, 9], we analyze the phone purity (PP), cluster pu-
rity (CP) and phone error rates (PER) with forced alignments.
Note that phone purity first computes a purity for each in-
dividual cluster and averages them, while frame phone error
rates is the total number of errors summed over all clusters
divided by the total number number of frames.

We run Lloyd’s algorithm for k-means clustering with 50
clusters on the 100-hour subset of LibriSpeech for 20 epochs.
We choose the second LSTM layer for APC and CPC, as well
as the ninth transformer layer for HuBERT, because the pho-
netic information is most prominent in these layers [3, 8]. For
APC and CPC, we also include the ones after collapsing the
first speaker direction (denoted APCc and CPCc). We include
random projection on log Mel features [29], initializing the
projection matrix using the Glorot initialization [33] and the
codebook with a unit Gaussian.

Results are shown in Table 2. Surprisingly, similar per-
formance has been observed among APC, CPC and HuBERT,
despite that HuBERT is much larger in size and trained with
more data. There is a drastic difference in phone purity and
frame PER for random projection. This is due to large im-
balance in cluster sizes. We will leave HuBERT and random
projection for future work and focus on APC and CPC for the
rest of the paper.

Next, we evaluate the quality of matching centroids to
phone embeddings with Gromov–Wasserstein distance. We

2Incidentally, there is little prior work on CBOW for learning phone em-
beddings. There was a blog post on this by Gabriel Synnaeve written in 2014,
and an unpublished manuscript by Michael Hammond in 2020.

compute type phone error rates, i.e., how often an incorrect
phone label is assigned to a centroid. The ground truth label
of a centroid is determined with the majority vote of frames
based on forced alignments. Prior to computing the distance
matrices, we center and normalize the vectors to unit norm,
following [25, 26]. We use entropy regularization of 0.0005
for APC and 0.01 for CPC. The iterative algorithm is run for
1,000 iterations. The unigram distribution for both the cen-
troids and the phones are computed on the respective data sets
that they are trained on. Results are shown in the last column
of Table 2. Collapsing the first speaker direction improves
both frame and type PERs.

To evaluate the matching result qualitatively, we use Pro-
crustes analysis to learn the linear transformation of the two
spaces and plot the two spaces together with tSNE. The visu-
alization for APC is shown in Figure 4. Though the type PERs
are high, the matching is qualitatively successful in grouping
vowels, consonants, and silence. Within consonants, frica-
tives, stops, and nasals also form groups.

Fig. 4: A t-SNE plot of the matching result. The type vec-
tors are projected onto the space of phone embeddings us-
ing a linear transformation learned with Procrustes analysis.
Phone embeddings are boxed, while the centroids are not. The
color uses the first phone direction in [23] that correlates with
sonority.

6.2. Self-Supervised Learning with Pseudo-Labels

Though matching between centroids and phone embeddings
produces high type PERs, there are relationship among
phones recovered from matching is still valuable for speech
representation learning. We produce pseudo-labels for the
360-hour subset of LibriSpeech by looking up the centroid
each frame belongs to and the phone embedding it is matched.
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Fig. 5: Phone error rates (PER) for evaluating joint self-
supervised and supervised pre-training under different per-
centages of corruption to forced alignments. Both layer 2
(ly2) and layer 3 (ly3) of LSTMs are reported. We measure
the prediction of phone embeddings with ℓ2 loss, hence the
label MSE.

We introduce a new self-supervised loss function by predict-
ing the target embeddings of the pseudo-labels.

Note that if we obtain a perfectly accurate match between
the two spaces, the task of predicting pseudo-labels falls back
to supervised phone classification. Based on this observa-
tion, we first conduct a topline of jointly training with a self-
supervised loss function and a supervised loss function [34,
35]. We further conduct a set of experiments, adding corrup-
tion to phone labels to simulate joint training with matching.
Note that when the percentage of corruption is 100%, we ran-
domly sample a phone embedding to predict, so it is different
from BEST-RQ [29] that predicts codeword vectors from a
random codebook.

Results of adding corruption to phone labels during joint
self-supervised and supervised training are shown in Figure
5. In particular, since we get about 77% type errors in Table 2
for APC, we are interested in the case where the pseudo-labels
have high type errors. We observe improvements in phone
classification even at a high percentage of corruption. This
suggests that even when the matching result has a type PER
of 77%, we can still expect improvements.

Results of predicting pseudo-labels derived from match-
ing are shown in Table 3. We observe a 1.5% and 2.1% abso-
lute improvement over regular APC on dev93 and eval92. The
improvements are observed for both layer 2 and layer 3. The
results are also similar when training with CPC. We include
random projection on log Mel features as another set of base-
line. We follow [29], quantizing log Mel features with a ran-
dom codebook sampled from unit Gaussian. We also include
a variant where we use ℓ2 (MSE) as the loss and the codeword

Table 3: Phone error rates (PER) for the downstream phone
classification on WSJ. The additional loss function is anno-
tated with MSE for the ℓ2 against the target embeddings and
CE for the cross entropy loss against the codes. The settings
for forced alignments with 77% corruption (FA @ 77%) are
also listed.

objective pseudo-labels layer 2 layer 3
dev93 eval92 dev93 eval92

APC - 22.0 22.0 23.8 24.2
APC + MSE Matching 20.5 19.9 22.5 22.2
APC + MSE Rand Proj 22.5 22.3 26.8 28.5
APC + CE Rand Proj 21.3 21.1 24.5 24.8

CPC - 20.7 20.3 23.2 23.4
CPC + MSE Matching 20.0 19.6 21.9 21.8
CPC + MSE Rand Proj 22.5 22.7 28.0 29.5
CPC + CE Rand Proj 20.8 20.4 24.2 24.8

APC + MSE FA @ 77% 21.4 21.2 22.3 22.2
CPC + MSE FA @ 77% 19.5 19.2 21.2 20.9

vectors as targets, to compare with the matching result using
the same loss function. Our proposed approach is better than
random projection. Finally, we list the result of corrupting
77% of the phone labels based on forced alignments. Jointly
predicting pseudo-labels and training with APC actually per-
forms better, while the CPC counterpart is not far behind.

7. CONCLUSION

In this paper, we have studied the space of self-supervised rep-
resentations and presented a novel approach to match frame
representations to phone embeddings without paired manual
transcriptions. While the type error rates are high after match-
ing, qualitative analysis shows promising results. Using the
matching result to generate pseudo-labels as prediction tar-
gets, we observe a sizeable improvement on the downstream
phone classification. The approach can be further refined
by iterating between matching and self-supervised learning.
Our positive result also suggests that it might be possible to
jointly perform matching while optimizing a self-supervised
loss function.
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