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ABSTRACT

Recently, text-guided content generation has received ex-
tensive attention. In this work, we explore the possibility
of text description-based speaker generation, i.e., using text
prompts to control the speaker generation process. Specifi-
cally, we propose PromptSpeaker, a text-guided speaker gen-
eration system. PromptSpeaker consists of a prompt encoder,
a zero-shot VITS, and a Glow model, where the prompt en-
coder predicts a prior distribution based on the text descrip-
tion and samples from this distribution to obtain a semantic
representation. The Glow model subsequently converts the
semantic representation into a speaker representation, and the
zero-shot VITS finally synthesizes the speaker’s voice based
on the speaker representation. We verify that PromptSpeaker
can generate speakers new from the training set by objective
metrics, and the synthetic speaker voice has reasonable sub-
jective matching quality with the speaker prompt. Our audio
samples are available on the demo website 1.

Index Terms— Speaker Generation, Text-to-Speech,
Prompt

In recent years, speech synthesis has made significant im-
provements driven by deep learning [1], which encourages
the synthetic speech natural as human-like in closed domains.
Typical speech synthesis models usually generate speech in
the speaker’s voice included in the training data. But these
models obviously can’t satisfy the demand for custom voices
in real-world scenarios since it’s difficult to obtain speech
training data for novel speakers. Moreover, for applications
that require many distinct voices, such as virtual characters in
games, voice selection for speaker anonymization as well as
personalized voice assistants, collecting speech training data
of each target speaker always incurs a high cost, which is not
a practical solution.

Aiming at synthesizing speech in nonexistent human-
sounding voices, speaker generation [2] is proposed re-
cently as an effective solution for custom voice generation.
Speaker generation has attracted increasing attention in re-
cent years [3, 4], with the wide applications of multi-speaker
speech synthesis. Since speaker identity is typically repre-

* Corresponding author.
1Demo: https://promptspeaker.github.io/demo/

sented as a high-dimensional vector, extracted by a speaker
encoder or speaker ID, the speaker generation task can be
simplified to generate a new vector of speaker representa-
tion in a multi-speaker TTS system. In light of this idea,
TacoSpawn [2] utilizes a parametric prior distribution to
represent speaker embeddings for speaker generation. The
distribution makes producing a new speaker’s voice possi-
ble through the sampling process. Although such methods
can generate new voices and achieve coarse control from the
gender and geographical attributes of the generated speakers,
they are limited in precise control from the natural language
of speaker’s characteristics, such as age and fine-grained
speaking styles like croaky or breathy.

For controlling generated speaker’s timbre more precisely,
the goal of controllable speaker generation is to produce de-
sired new voices according to given conditions. In real-world
applications, it is natural for users to describe the character
of a desired speaker using natural language, e.g., “I want a
husky voice from a middle-aged man”. Therefore, drawing
inspiration from recent advances in language-guided image
generation [5], audio generation [6, 7] and style-controlled
speech synthesis [8, 9, 10], we propose a method that can
generate desired speaker’s voices based on text descriptions.
Since the speaker timbre’s description is subjective, it is dif-
ficult to extend the data in some ways in the audio generation
task, such as constructing new annotated data by concatenat-
ing two annotated audio segments [7]. The establishment of
cross-modal mappings between semantic representations and
speaker representations is also difficult.

In this paper, we propose PromptSpeaker, a controllable
speaker generation model based on text prompts. PromptS-
peaker is composed of a prompt encoder, a Glow model and
a zero-shot TTS system. The prompt encoder synthesizes the
semantic prior distribution of speaker. The zero-shot TTS
system takes a vector of speaker representation inferred by
a pretrained speaker encoder network to synthesize target
speaker’s speech. Importantly, the Glow model establishes
an invertible mapping between the semantic representations
and the speaker representations, facilitating speaker gener-
ation from text prompt. The process of language-guided
speaker generation starts with predicting the prior semantic
distribution based on the input text description and sam-
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Fig. 1. Architecture of the PromptSpeaker.

pling to obtain the semantic representation. Then the Glow
model transforms the semantic representation into a speaker
representation, and finally the zero-shot TTS system synthe-
sizes the generated speaker’s speech based on the generated
speaker representation. In this way, PromptSpeaker can
generate new speakers according to user’s natural language
description on speaker characteristics, including gender, age
and fine-grained speaker attributes.

PromptTTS [11] is the most related work that takes text
descriptions to guide the speech synthesis process. The ap-
proach directly feeds the encoded text representations into the
TTS system. Thus it is not suitable for the speaker generation
task because it ignores the one-to-many mapping between
the text prompt and the speaker timbre. In other words, the
prompt “a man’s voice” can correspond to all male speakers
in the training data, making it difficult for the model to estab-
lish a one-to-one correspondence between the prompt and the
specific speaker timbre. The prompt can only represent some
typical characteristics of the speaker’s timbre, such as gentle,
and low speaking speed, but cannot define the speaker’s fine-
grained timbre. As mentioned, since there is a one-to-many
mapping between prompt and speaker timbre, in PromptS-
peaker, we synthesize the distribution of a speaker represen-
tation based on the prompt. We sample this prior distribution
to obtain the speaker representations not present in the train-
ing set. However, speaker representations do not match the
semantic scale, i.e., two speakers’ representations are not nec-
essarily close even if they have similar timbre characteristics.
Therefore, we use the Glow [12] model to establish an invert-
ible mapping between speaker representations and semantic
representations, realizing new speaker generation based on
text descriptions.

1. METHOD

As shown in Fig. 1, PromptSpeaker consists of a prompt
encoder, a zero-shot TTS system and a Glow model. The
prompt encoder produces the mean and variance for the se-
mantic prior distribution. The zero-shot TTS system aims

to take the speaker representation as input to synthesize the
target speaker’s speech. The Glow model establishes an
invertible transformation between semantic and speaker fea-
tures to achieve cross-modal mapping. To generate a new
speaker, we first sample from the semantic prior distribu-
tion and transform it to speaker representations by the Glow
model. Subsequently, the zero-shot TTS system takes the
speaker representation as input to synthesize speech of the
generated speaker. We will describe these modules in detail.

1.1. Prompt Encoder

The prompt encoder extracts semantic information from
speaker prompt with BERT [13] to predict the distribution
of semantic prior representations. As shown in Fig.1 (c), the
prompt encoder consists of a pre-trained BERT model, FFT
blocks [14], a GRU layer, a token layer [15] and a linear
layer. The text-based speaker prompt is first fed into the
BERT model to extract semantic features. Then, we feed the
semantic features into a GRU layer to compress the sequence
features into a vector to obtain a global-level speaker timbre
representation. Subsequently a token layer is followed to
further simplify the semantic features. The last linear layer
finally produces the mean and variance of the semantic prior
distribution.

1.2. Zero-Shot TTS System
Since we need to synthesize speech based on the speaker rep-
resentation of a generated unseen speaker, a zero-shot TTS
system is desired. Due to the success of the VITS architec-
ture [16] in the zero-shot task [17], we take VITS with a pre-
trained speaker encoder 2 as our zero-shot TTS system.

VITS adopts a conditional variational autoencoder (CVAE)
structure, which includes three parts: a posterior encoder, a
decoder, and a conditional prior network. The posterior en-
coder encodes the linear spectrogram to latent variables, and

2https://github.com/resemble-ai/Resemblyzer
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the decoder generates waveform based on the latent vari-
ables. The conditional prior network constrains the latent
variables’ encoding process and establishes the mapping of
text to latent variables. In the speech synthesis process, the
input text is mapped to latent features by the conditional prior
network and then upsampled to the waveform. Specifically,
VITS uses a flow model to improve the flexibility of the prior
distribution.

Similar to YourTTS [17], we adopt the speaker encod-
ing method [18] to construct the zero-shot VITS model. A
well-trained zero-shot VITS can synthesize speech based on
speaker representation of an unseen speaker. In the speaker
generation process, the zero-shot VITS accepts a generated
speaker representation to synthesize the speech of a speaker
that does not exist in the training set.

1.3. Glow
We use a speaker encoder pre-trained on the speaker clas-
sification task to extract speaker representations, but the
distribution of speaker representations does not necessarily
match the distribution of semantic features, i.e., speakers sat-
isfying a certain feature are not necessarily similar in speaker
representations. In order to establish a matching association
between speaker representations and semantic representa-
tions, we introduce the Glow model to PromptSpeaker. In
the training process, the Glow model transforms the speaker
representation into a semantic representation that matches
the prompt prior distribution. In the inference process, the
semantic representations sampled from the prompt prior dis-
tribution is transformed by the inverse of Glow to obtain the
speaker representation.

1.4. Training and Inference

During the training process, since there is a one-to-many map-
ping between text description and speaker timbre, we use the
speaker representations extracted by the speaker encoder as
the input of the TTS system. In this way, we can ensure that
the input of the TTS system contains complete speaker infor-
mation. In the inference process, we obtain the prior distri-
bution based on the text description of a desired speaker and
sample from the prior distribution. The Glow model trans-
forms the semantic representation into the speaker represen-
tation. The zero-shot TTS system synthesizes the generated
speaker’s speech based on the input text and the generated
speaker representation.

2. DATASET

We built a multi-speaker Mandarin dataset with natural lan-
guage descriptions of speaker characteristics. The speaker
generation task requires diverse data from enormous speak-
ers, so our dataset is composed of internal and open-source
data simultaneously, as summarized in Table 1. Specifically,

we first manually annotate the high-quality internal data from
74 stylistic speakers, as described in Table 1. Different people
may have different descriptions of the same speaker, so each
speaker is annotated by 13 annotators, reflecting the one-to-
many mapping between text description and speaker timbre.
Additionally, we use two open-source datasets, AISHELL-
3 [19] and DiDiSpeech [20], to increase the number of speak-
ers. Both datasets provide gender and age annotations for
each speaker, and we automatically construct simple text de-
scriptions based on these annotations, such as “voice from a
middle-aged man”, “a boy’s voice”, etc. To balance the data
coverage, we do not use all the audio from the open-source
data but only 20 sentences per speaker.

3. EXPERIMENTS

3.1. Model Configuration

We train the baseline and proposed models with the following
model configuration for comparison.

• Baseline: The baseline model consists of a prompt en-
coder and VITS. Similar to the structure of PromptTTS [11],
the baseline model feeds the encoded semantic features
directly into the VITS system as speaker representa-
tions, and no speaker ID or extracted speaker embed-
ding are used. The baseline model takes the same
prompt encoder structure as the proposed model. Dur-
ing the inference process, the VITS model synthesizes
speech based on the input text and the extracted se-
mantic representations. Since the baseline model does
not have the ability to obtain multiple speakers by sam-
pling, we compare with the baseline model only in
terms of speaker timbre accuracy when given a speaker
prompt.

• PromptSpeaker: The proposed speaker generation
system. The prompt encoder uses a pre-trained BERT
model without finetune to extract word embedding and
feed it into two layers of FFT blocks. The hidden di-
mension and filter dimension of FFT blocks are 256
and 1024, respectively. The hidden dimension of GRU
is 256, and the token layer has 10 tokens. The di-
mensions of both semantic representation and speaker
representation are 256. The Glow model contains 12
flow blocks and each flow block contains an activation
normalization layer, an invertible 1 × 1 convolution
layer, and an affine coupling layer. The kernel size and
layer number of the affine coupling layer are 1 and 4,
respectively.

The baseline and proposed models are trained up to 500K
steps with a batch size of 12. To improve the performance of
the zero-shot TTS system, we use a pre-trained VITS model



Table 1. Dataset with text description on speaker voice characteristics

dataset speakers
samples

per speaker
text description

example
Internal Stylistic 74 100 a husky voice from a middle-aged man
AISHELL-3 [19] 218 20 voice from a middle-aged man
DiDiSpeech [20] 500 20 a boy’s voice

as the initial model for the zero-shot VITS model. The pre-
trained VITS model is trained using 500 hours of data from
250 speakers.

3.2. Evaluation Metric

We evaluate the two models in terms of subjective and objec-
tive metrics. The subjective metrics consist of the naturalness
MOS of the synthesized audio and speaker timbre matching
MOS. Specifically, we ask 10 listeners to evaluate whether
the generated speaker’s timbre in synthetic speech matches
the provided 20 test text descriptions, with 0 representing a
total mismatch and 5 representing a perfect match. In addition
to this, we also count the accuracy of the generated speaker’s
gender matching the text description.

We also compute objective metrics to demonstrate whether
the generated speaker differs from the speakers in the training
set. As there is no typical standard on how difference be-
tween the two speakers, we follow the method in [2], which
designs several metrics and measures the difference between
speakers based on the d-vector. Specifically, we take WeS-
peaker [21], a powerful speaker embedding model, to extract
the d-vector from speech utterance and average the d-vectors
extracted over ten sentences to obtain speaker-level d-vectors.
The cosine similarity between speaker-level d-vectors is used
as a distance metric between two speakers. We compute
speaker-level d-vectors V for three types of speakers:

• Ground truth training speaker (gt): we compute V gt
i

for each training speaker i on the ground-truth audio.

• Synthesized training speaker (syn): we compute
V syn
i for each training speaker i on the synthesized

audio.

• Generated speaker (gen): we compute V gen
i for the

generated speaker i when given the test speaker prompt.

We average the speaker embedding extracted from the
ten sentences to obtain the speaker-level d-vector and calcu-
late the cosine distance d(V1, V2) = 1 − V1

∥V1∥ · V2

∥V2∥ as the
distance [22] between two speakers. When the cosine dis-
tance d(V1, V2) between two speaker-level d-vectors is larger
than a threshold, we consider V1 and V2 to be different speak-
ers. Similar to the previous speaker generation work [2], we
define this threshold by computing the cosine distance be-
tween the training speakers when they are synthesized. We

define the set of training speakers as T and the set of gener-
ated speakers as G, and the following metrics are calculated:

• syn2syn-same: the distance between the same training
speaker.

mean
i∈T

d(V syn
i , V syn

i ) (1)

• syn2syn-near: the distance between the closest differ-
ent synthesized training speakers.

mean
i∈T

min
j∈T,i ̸=j

d(V syn
i , V syn

j ) (2)

• gen2syn-near: the distance between the generated
speaker and the closest synthesized speaker.

mean
i∈G

min
j∈T

d(V gen
i , V syn

j ) (3)

• gen2gen-near: the distance between the closest gen-
erated speakers when given the same speaker prompt.

mean
i∈G

min
j∈G,i ̸=j

d(V gen
i , V gen

j ) (4)

The same means we compute the metrics on the same speaker
and the near means that we compute the metrics on different
speakers and select the one with the smallest distance. Differ-
ent from Speaker Generation [2], we additionally computed
the distance between the same synthesized training speaker
syn2syn-same to specify the threshold of speaker distance.
The gen2syn-near represents the distance between the gener-
ated speaker and the nearby training speaker. When gen2syn-
near is close to syn2syn-same, we assume that the generated
speaker is one of the training speakers, i.e., the model does
not generate a new speaker. When gen2syn-near is close to
syn2syn-near, we consider that the generated speaker is not
one of the training speakers, i.e., a new speaker is generated.

Following [2], we also evaluate speaker fidelity by com-
puting the distance between the synthesized and ground truth
training speakers. We compute:

• syn2gt-same: the distance between the synthesized
training speaker and the same ground truth training
speaker.

mean
i∈T

d(V syn
i , V gt

j ) (5)

• syn2gt-near: the distance between the synthesized
training speaker and the closest ground truth training
speaker.

mean
i∈T

min
j∈T,i ̸=j

d(V syn
i , V gt

j ) (6)



Table 2. Objective metrics on the quality of speaker generation
speaker fidelity speaker generation

syn2gt-same syn2gt-near syn2syn-same syn2syn-near gen2syn-near gen2gen-near
0.143 0.252 0.024 0.113 0.085 0.088

Table 3. The naturalness MOS accessed on ground truth
speech and synthetic speech from the training and generated
speakers

ground
truth

training
speaker

generated
speaker

MOS 4.25 ± 0.10 3.68 ± 0.10 3.53 ± 0.09

When syn2gt-same is smaller than syn2gt-near, we believe
that the zero-shot system can synthesize the corresponding
speaker’s timbre based on speaker embedding.

3.3. Experimental Results

3.3.1. Objective evaluation results

To evaluate whether the generated speakers appear in the
training set, we calculate the speaker distance metrics listed
in Section 3.2. We use 20 test text descriptions to generate
speakers. As shown in Table 2, we can see that syn2gt-same
is smaller than syn2gt-near, indicating that the zero-shot sys-
tem can synthesize the corresponding speaker’s speech based
on speaker embedding. We can also see that gen2syn-near
is between syn2syn-same and syn2syn-near and is closer
to syn2syn-near, so we believe that the generated speaker
is more likely to be a speaker that is not in the training
set. We also compute the distance gen2gen-near between
nearby speakers when we generate multiple speakers through
sampling for a given text description, and we can see that
gen2gen-near is larger than syn2syn-same, so we consider
that the generated speaker timbres are diverse. In addition,
syn2gt-same is larger than syn2syn-same, which indicates that
there is still a difference between the speech synthesized by
the TTS system and the real speech.

3.3.2. Subjective evaluation results

In a subjective evaluation, we assess the quality of the gen-
erated audio and the accuracy of the generated speaker when
given a textual description. We use 20 test text descriptions
to generate speakers, and one speech sample is generated
for each text description. As shown in Table 3, we can see
that there is no significant decrease in the naturalness MOS
of the generated speakers compared to the training speakers.
But there is still a gap between the synthetic speech and the
ground truth speech. This is largely attributed to the use of
low-quality open-source data for training speaker expansion.

We further count the gender accuracy and speaking timbre
matching MOS of the generated speakers for the given text

Table 4. Subjective metrics in terms of gender accuracy and
speaker timbre matching MOS

gender accuracy speaker MOS
ground-truth 100% 4.34 ± 0.15

baseline 46% 1.87 ± 0.28
proposed 96% 3.23 ± 0.20

descriptions. As shown in Table 4, we can see that Prompt-
Speaker performs significantly better than baseline in gen-
der accuracy and speaker timbre MOS. This also proves that
there is a one-to-many mapping between text description and
speaker timbre, and it is reasonable to establish a mapping
between speaker representation and text prior distribution for
speaker generation. We notice that there is still a gap be-
tween ground-truth and generated speaker in speaker timbre
matching MOS. In other word, the generalization ability of
the learned semantic-speaker-timbre space is limited due to
limited training data on speaker text-prompt pairs.

4. CONCLUSIONS

In this work, we propose PromptSpeaker, a controllable
speaker generation model based on text descriptions, to make
the speaker generation process more user-friendly. PromptS-
peaker encodes text descriptions as semantic representations
and transforms the semantic representations into a novel
speaker representation as input for the zero-shot TTS system
to generate speech. Experiments show that PromptSpeaker
can generate speech from speakers that do not exist in the
training set, with reasonable naturalness and matching qual-
ity between language prompt and generated speaker timbre.
But mainly due to the data limitation, there is substantial
room for improvement and the gap can be further mitigated
by labeling a large dataset. Moreover, we will continuously
improve the accuracy of the generated speakers by modeling
fine-grained speaker attributes separately.
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