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Abstract
Hybrid meetings have become increasingly necessary during
the post-COVID period and also brought new challenges for
solving audio-related problems. In particular, the interplay be-
tween acoustic echo and acoustic howling in a hybrid meeting
makes the joint suppression of them difficult. This paper pro-
poses a deep learning approach to tackle this problem by for-
mulating a recurrent feedback suppression process as an instan-
taneous speech separation task using the teacher-forced train-
ing strategy. Specifically, a self-attentive recurrent neural net-
work is utilized to extract the target speech from microphone
recordings with accessible and learned reference signals, thus
suppressing acoustic echo and acoustic howling simultaneously.
Different combinations of input signals and loss functions have
been investigated for performance improvement. Experimental
results demonstrate the effectiveness of the proposed method
for suppressing echo and howling jointly in hybrid meetings.
Index Terms: hybrid meetings, acoustic echo cancellation,
acoustic howling suppression, teacher forcing training

1. Introduction
Hybrid meetings, which involve a combination of in-person and
remote participants, have become increasingly essential in the
post-COVID era [1, 2]. As of 2022, a significant proportion of
workplaces (78%) have adopted hybrid work strategies, indicat-
ing a growing trend towards hybrid work as the future of work
[3]. However, despite the benefits of hybrid meetings, audio-
related problems such as acoustic echo and acoustic howling
can pose significant challenges and need to be addressed to en-
sure full-duplex communication.

Acoustic echo refers to the phenomenon where sound orig-
inating from a speaker on one end of a communication sys-
tem is captured by the microphone on the other end and sub-
sequently replayed back to the speaker, creating an unwanted
echoing effect [4, 5]. Acoustic howling arises when sound from
the speaker’s end is captured by the microphone on the same
end, leading to a feedback loop that amplifies the sound until it
becomes unbearable [6, 7]. Despite having similar underlying
mechanisms, acoustic echo and howling are distinct problems,
and they can be particularly challenging to address in hybrid
meetings where both issues can occur simultaneously. There-
fore, it is crucial to have robust and effective algorithms that
can address both acoustic echo cancellation (AEC) and acous-
tic howling suppression (AHS) in a joint manner, taking into
account the complex acoustics of the hybrid meeting environ-
ment. However, the presence of one problem can affect the es-
timation and suppression of the other, making it difficult for
conventional algorithms to effectively suppress both echo and
howling jointly.

Recently, deep learning has emerged as a promising ap-
proach for solving the challenges of AEC and AHS due to its
ability to model complex nonlinear relationships [8, 9, 10, 11,
12, 13, 14]. In AEC, the problem can be directly formulated as
a supervised speech separation problem [15, 8, 16]. However,
AHS poses a more complex challenge since it involves the re-
cursively amplification of the playback signal, which makes for-
mulating it as a supervised learning problem non-trivial. To ad-
dress this challenge, Zhang et al. [14] recently proposed a deep
learning based AHS method (Deep AHS) using teacher-forced
training strategy, resulting in improved performance when com-
pared to baselines. We believe that recent advances in deep
learning based AEC and AHS make it possible to develop ef-
fective deep learning methods to address them jointly and solve
the full-duplex communication problem in hybrid meetings.

In this study, we tackle the challenges posed by joint AEC
and AHS by considering them as an integrated feedback sup-
pression problem and propose a deep learning approach to ad-
dress it. The recursive feedback suppression process is con-
verted to a speech separation process through teacher forcing
training strategy [17, 18], which simplifies the problem formu-
lation and accelerates model training. To accomplish this task, a
self-attentive recurrent neural network (SARNN) [19] is utilized
to extract target speech from microphone signal with multiple
reference signals as additional inputs. Various combinations of
inputs are explored to take full use of the accessible reference
signals. Given the difficulties in suppressing both forms of feed-
back jointly, a specific loss function is designed to mitigate leak-
age introduced due to improperly suppressed feedback, with re-
sults demonstrating its efficacy. Experimental results show the
effectiveness of the proposed method for joint echo and howling
suppression.

The structure of this paper is as follows: Section 2 pro-
vides an overview of the audio-related issues in hybrid meeting
systems. Section 3 presents the proposed method. The experi-
mental setup is outlined in Section 4, and Section 5 reports the
corresponding results. Section 6 concludes the paper.

2. Hybrid meetings

2.1. Signal model in a hybrid meeting system

For a hybrid meeting system with J devices on the same end and
all of them have both a loudspeaker and a microphone turned
on, then the total number of acoustic paths in the system will be
J2. Take a simplified system with two devices on the same end
as an example, as shown in Figure 1 (a). While capturing the
target speech si, the microphone on device iwill also record the
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Figure 1: (a) A simplified hybrid meeting system. (b) and (c)
illustrate the two closed acoustic loops related to device 1.

background noise ni, and playback signals from all devices:

yi = si + ni +

2∑
j=1

dji = si + ni +

2∑
j=1

(xj ∗ hji) (1)

where xj is the loudspeaker signal on device j, and dji is the
signal picked up by microphone i from loudspeaker j through
the acoustic path hji. Among these playback signals, dii is the
playback from device i’s own loudspeaker to its microphone,
which is known as acoustic echo. Compared to dji (j 6= i),
acoustic echo (dii) is relatively easier to suppress since each
device usually only has access to its own loudspeaker signal xi,
which can be used as a reference signal during the attenuation
of dii.

Challenges arise when speakers on the far end and near end
talk simultaneously. Considering that each device cannot dis-
tinguish whether other devices are exposed in the same space or
not, it treats all other devices as far end and sends its processed
signal to them. The loudspeaker signal xi will then be a combi-
nation of the far-end signal x and the processed signals sent to
device i from device j (denoted as xji, (j 6= i)):

xi = x+ xji, j 6= i (2)

If feedback suppression module on each device works properly,
the resulting processed signal, xji, should resemble a delayed,
scaled, and reverberant version of the near end speech s. From
the perspective of signal sources, microphone signal given in
(1) can be rewritten as:

yi = si + ni +

2∑
j=1

dxji +

2∑
j=1

dsji (3)

where dxji and dsji represent the playback components origi-
nated from x and s, respectively. It is more challenging to sup-
press dsji because it comes from the same source as that of the
target speech si, and reducing it could distort the target signal.

2.2. Joint acoustic echo and acoustic howling suppression

Let us focus on device 1 to analysis the audio-related problem
in a hybrid meeting system. There are two closed acoustic loops
(CAL) per device in the system, shown in Figure 1 (b) and (c),
that can cause acoustic howling. The first CAL, due to acoustic
echo, is easier to handle since acoustic echo occurs once per
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Figure 2: Signal flow with teacher-forced learning strategy.

transmission and is handled on both ends. The second CAL is
more challenging due to two reasons: 1) Device 1 lacks access
to the reference signal that causes feedback d21. 2) The two
devices involved in this CAL are exposed in the same space.

Without any processing, the microphone signal will be
played out through loudspeaker and repeatedly re-enter the
pickup. The microphone signal y1 at time index t can then be
represented as:

y1(t) =s1(t) + n1(t) + d11(t)+ (4)
NL [(y1(t−∆t1) + x(t)) ·G2] ∗ h21(t)

where ∆t1 denotes the system delay from device 1 to device
2, G2 is the gain of amplifier on device 2, and NL(·) the non-
linear function of loudspeaker. Playback d11(t) is the acoustic
echo. The recursive relationship between y1(t) and y1(t−∆t)
causes re-amplifying of playback signal and leads to an annoy-
ing, high-pitched sound, which is known as acoustic howling.

In hybrid meetings, achieving full-duplex communica-
tion requires addressing both AEC and AHS simultaneously.
Nonetheless, the presence of either issue can hinder the accurate
detection and elimination of the other, resulting in a shortage of
effective solutions.

3. Proposed method
3.1. Problem formulation

To address the recursive nature of howling, a deep neural net-
work (DNN) module needs to be integrated into the closed
acoustic loop and trained recursively. However, this is not prac-
tical due to its high computational cost. Alternatively, teacher
forcing training strategy can be used to formulate the joint AEC
and AHS task as a general feedback suppression problem, as is
detailed in Figure 2. This is based on the assumption that the
model, once properly trained, can attenuate all feedback signals
(d11 and d21) and transmit only the target speech s1. Through
teacher-forced learning, the actual output ŝ1 is replaced with the
teacher signal s1 during model training. As a result, rather than
generated recursively, the microphone signal (4) is simplified to
a mixture of target signal, background noise, acoustic echo, and
an one-time playback signal determined by s1:

y1(t) =s1(t) + n1(t) + d11(t)+ (5)
NL[(s1(t−∆t1) + x(t)) ·G2] ∗ h21(t)

And the overall problem can thus be formulated as a speech
separation problem during model training where the task is to
separate target signal from the microphone recording with ac-
cessible loudspeaker signals (x1, and/or x, x21) as references.



3.2. Inputs and reference signals

Appropriate reference signals, which enables accurate estima-
tion of the playback signals, are crucial for AEC and AHS al-
gorithms. The reference signal for device 1 is a mixture of two
signals, as shown in Figure 1 and (2). The most direct approach
is to use the integrated signal x1 as a reference for suppressing
the two feedback signals d11 and d21 in y1. However, this may
be less effective for suppressing d21. Known from equation (3)
that the playback signals share common components originat-
ing from different sound sources. Depending on the design of
the audio system, we could also have access to x and x21 in ad-
dition to the integrated loudspeaker signal x1. Using separated
loudspeaker signals (x and x21) as references could make the
suppression of both feedbacks more efficient.

Besides these accessible reference signals obtained directly
from device, we have also designed the network to estimate
some intermediate outputs from the inputs and use them as non-
linear reference signals to further improve feedback cancella-
tion performance [9, 20].

3.3. Network structure

Network of the proposed method is given in Figure 3. It takes
the microphone signal and one or two reference signals (repre-
sented as r1 and r2) as inputs. The input signals, sampled at 16
kHz, are transformed into the frequency domain using a 512-
point short-time Fourier transform (STFT) with a frame size of
32 ms and frame shift of 16 ms. The resulting frequency domain
inputs are labeled as Y , R1, and R2, respectively.

To extract more information from inputs and facilitate the
suppression of playback signals, we follow [19, 14] and design
the input feature as a concatenation of the normalized log-power
spectra (LPS), correlation matrix across time frames and fre-
quency bins, and channel covariance of input signals. These
features are concatenated and then passed through a linear layer
for feature fusion, followed by a gated recurrent unit (GRU)
layer with 257 hidden units and three 1D convolution layers to
estimate three complex-valued filters. The filters are then ap-
plied to the inputs through deep filtering [21] to obtain the cor-
responding intermediate signals, Ỹ , R̃1, and R̃2. These signals
serve as additional nonlinear reference signals and their LPS are
then concatenated with the original fused feature, and another
linear layer is used for feature fusion.

Next, an SARNN module is used to estimate a four-channel
enhancement filter, which is then applied on the microphone
signal and the three learned reference signals to obtain the en-
hanced target signal Ŝ1. Finally, an inverse STFT (iSTFT) is
used to obtain the waveform ŝ1. More details regarding the fea-
ture design and network structure can be found in [19].

3.4. Loss functions

In the initial stage of this study, a combination of time-domain
scale-invariance signal-to-distortion ratio (SI-SDR) [22] loss
and frequency-domain mean absolute error (MAE) of spectrum
magnitude is used as loss function for model training:

Loss1 = −SI-SDR(ŝ, s) + λMAE(|Ŝ|, |S|) (6)

Given that the feedback signals have a strong correlation with
the target signal, suppressing them could be difficult. To further
suppress the leakage introduced due to improperly attenuated
playback signals, we propose to include a correlation loss:

Losscorr = [1− corr(ŝ1, s1)] + corr(ŝ1 − s1, d∗) (7)
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Figure 3: Architecture of the DNN module for joint acoustic
echo and howling suppression. Where the block in gray denotes
a combination of 1D convolution layer and deep filtering. A
“Conv-1D” outputs a complex-valued ratio filter, which is then
applied upon signal ∗ through deep filtering, denoted as �.

The correlation loss is composed of two terms. The first term
evaluates the similarity between the estimated and target sig-
nals, while the second term measures the similarity between a
playback signal d∗ and the residual signal in the estimated tar-
get. The modified loss function we used for model training is:

Loss2 = Loss1 + βLosscorr (8)

To ensure balance among different losses, we set λ and β to
10000 and 10, respectively, in our implementation.

4. Experimental setup
4.1. Data preparation

The AISHELL-2 [23] and INTERSPEECH 2021 AEC Chal-
lenge [24] datasets are used for carrying out experiments. A
total number of 10,000 room impulse response (RIR) sets are
generated using the image method [25], which incorporate ran-
dom room characteristics and reverberation times (RT60) range
of 0 to 0.6 seconds. Each RIR set consists of 6 RIRs, as shown
in Figure 1. During data generation, a randomly chosen RIR set
is utilized to create near-end speech signals and the correspond-
ing playback signals. System delay is defined as a random value
within the range of [0.1, 0.3] second and microphone nonlinear
distortions are simulated using a saturation type of nonlinearity
with hard clipping and Sigmoidal function [26, 15, 8]. The mi-
crophone signal is generated as a mixture with a randomly cho-



Table 1: Explorations regarding inputs/reference signals.

Net2−ch, Loss1 SI-SDR (dB) PESQ
SFR (dB) -10 -5 0 -10 -5 10
Unprocessed -9.49 -4.47 0.54 1.35 1.64 2.05
[y1, x1] 4.59 7.78 10.72 2.26 2.59 2.88
[y1, x] 3.24 6.40 9.28 2.06 2.38 2.71
[y1, x21] 4.67 7.69 10.43 2.55 2.88 3.12
[y1, x, x21] 5.25 8.21 10.98 2.58 2.89 3.11
[y1, x21, x] 5.31 8.53 11.42 2.69 2.99 3.23

Table 2: Explorations regarding loss functions.

Net2−ch, [y1, x1] SI-SDR (dB) PESQ
SFR (dB) -10 -5 0 -10 -5 10
Unprocessed -9.49 -4.47 0.54 1.35 1.64 2.05
Loss1 4.59 7.78 10.72 2.26 2.59 2.88

Loss2

ds21 3.95 6.58 8.52 2.13 2.43 2.67
d21 4.96 7.92 10.83 2.27 2.60 2.88
ds21+ds11 4.32 6.98 9.03 2.26 2.56 2.79
d21 + d11 4.74 7.65 10.32 2.27 2.58 2.86

sen signal-to-feedback ratio (SFR) in the range of [−20, 5] dB,
and signal-to-noise (SNR) ratio ranging from -10 dB to 30 dB.
We created a total of 10,000, 300, and 500 utterances for train-
ing, validation, and testing, respectively. The utterances and
RIRs used for generating testing data are different from those
used in the training and validation data. The model was trained
for 60 epochs using a batch size of 20.

4.2. Method evaluation

SI-SDR and perceptual evaluation of speech quality (PESQ)
[27] are used as evaluation metrics to show the playback atten-
uation performance and quality of enhanced speech. A higher
value denotes better performance.

5. Experimental results
5.1. Explorations regarding inputs/reference signals

To investigate the impact of reference signals on model perfor-
mance, we conducted experiments with different SFRs, and the
results are summarized in Table 1. To diminish the influence
of model size difference during the comparison, we remove the
deep filtering branches related to R̃2 in the network and use
the resulting simplified network, denoted as “Net2−ch”, for
training the inputs with either 2 or 3 channels. This implies
that when using an input with three channels, we extract in-
termediate signals from the first two channels, while the third
channel is only used for feature extraction. Using the integrated
loudspeaker signal x1 as a reference is the most straightforward
way to train the model, and the model trained with [y1, x1] is
referred to as the “initial” model. Among the models with 2-
channel inputs, the “initial” model achieves better SI-SDR in
most cases, while its speech quality (PESQ) is not better than
that of using x21 as the reference signal. Models trained using
separated reference signals (3-channel inputs) consistently out-
performed models using an integrated reference signal x1. For
Net2−ch, the order of reference signals x and x21 determines
from which R̃1 is extracted. The model trained with [y1, x21,
x] as input achieves the best overall performance.

5.2. Explorations regarding loss functions

Table 2 compares the performance of models trained with
Net2−ch, input [y1, x1], and Loss2 calculated using different

Table 3: Proposed method for feedback suppression.

Input: [y1, x21, x] SI-SDR PESQ
SFR (dB) -10 -5 0 -10 -5 0
Unprocessed -9.49 -4.47 0.54 1.35 1.64 2.05
Net2−ch, Loss1 5.31 8.53 11.42 2.69 2.99 3.23
Net3−ch, Loss1 6.11 9.09 11.82 2.73 3.07 3.31
Net3−ch, Loss2 6.47 9.24 11.87 2.73 3.03 3.28

-10 dB -5 dB 0 dB

(a)

(b)

(c)

(d)

Figure 4: Spectrograms of processed signals obtained under dif-
ferent SFR levels: (a) unprocessed signal, (b) target signal, (c)
output of the “initial” model, and (d) output of the best model.

playback d∗. The results show that incorporating the correla-
tion loss does not consistently lead to performance improve-
ment while using Loss2 calculated based on d21 yields the best
performance and outperforms the model trained using Loss1,
especially in terms of SI-SDR. This is because d21 is more dif-
ficult to suppress due to a lack of direct reference signal, and
utilizing it in the calculation of Loss2 helps further attenuating
the leakage.

5.3. Proposed method for joint AEC and AHS

We combine the findings made through explorations regarding
inputs and loss functions and train a model to achieve the best
feedback suppression. Specifically, we utilize a 3-channel in-
put [y1, x21, x], Loss2 with d21, and the network illustrated in
Figure 3, denoted as “Net3−ch”, for model training. The per-
formance comparison results presented in Table 3 demonstrate
that using “Net3−ch” results in better performance than using
“Net2−ch”, and employing the modified loss function, Loss2,
could further improve playback attenuating performance. We
also provide spectrograms of processed signals obtained using
the “initial” model and the best-performing model in Figure 4 to
further illustrate the efficacy of our proposed approach for joint
acoustic echo and acoustic howling suppression.

6. Conclusion
We have proposed a deep learning based method for address-
ing audio-related problems in hybrid meetings. Our proposed
method treats acoustic echo and acoustic howling as an inte-
grated feedback problem and achieves simultaneous AEC and
AHS using a teacher-forcing learning strategy. By converting
the recursive feedback suppression problem into a speech sepa-
ration problem, an SARNN model is utilized to extract the tar-
get speech from microphone recording with multiple reference
signals as additional inputs. The impact of input signals, loss
functions on joint AEC and AHS performance has been inves-
tigated. Future work includes considering practical issues such
as computational complexity and investigating using cascaded
network to suppress acoustic echo and howling gradually.
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[1] B. Saatçi, R. Rädle, S. Rintel, K. O’Hara, and C. Nyland-

sted Klokmose, “Hybrid meetings in the modern workplace: sto-
ries of success and failure,” in Collaboration Technologies and
Social Computing: 25th International Conference, CRIWG+ Col-
labTech 2019, Kyoto, Japan, September 4–6, 2019, Proceedings
25. Springer, 2019, pp. 45–61.

[2] B. Z. Hameed, Y. Tanidir, N. Naik, J. Y.-C. Teoh, M. Shah, M. L.
Wroclawski, A. B. Kunjibettu, D. Castellani, S. Ibrahim, R. D.
da Silva et al., “Will “hybrid” meetings replace face-to-face meet-
ings post COVID-19 era? perceptions and views from the urolog-
ical community,” Urology, vol. 156, pp. 52–57, 2021.

[3] R. Carter, “What is a hybrid meeting? An in-
troduction,” https://www.uctoday.com/collaboration/
what-is-a-hybrid-meeting-an-introduction/.
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