
THE GIFT OF FEEDBACK: IMPROVING ASR MODEL QUALITY BY LEARNING FROM
USER CORRECTIONS THROUGH FEDERATED LEARNING

Lillian Zhou Yuxin Ding Mingqing Chen Harry Zhang
Rohit Prabhavalkar Dhruv Guliani Giovanni Motta Rajiv Mathews

Google LLC, Mountain View, CA, U.S.A.
{lqz, yxding, mingqing}@google.com

ABSTRACT
Automatic speech recognition (ASR) models are typically

trained on large datasets of transcribed speech. As language
evolves and new terms come into use, these models can be-
come outdated and stale. In the context of models trained
on the server but deployed on edge devices, errors may result
from the mismatch between server training data and actual on-
device usage. In this work, we seek to continually learn from
on-device user corrections through Federated Learning (FL)
to address this issue. We explore techniques to target fresh
terms that the model has not previously encountered, learn
long-tail words, and mitigate catastrophic forgetting. In ex-
perimental evaluations, we find that the proposed techniques
improve model recognition of fresh terms, while preserving
quality on the overall language distribution.

Index Terms— speech recognition, federated learning,
deep learning, catastrophic forgetting, on-device training

1. INTRODUCTION

Human language is constantly shifting and evolving. In order
to serve a high quality ASR model that can be deployed to
user devices as an input mechanism, it is crucial to train on
data that is representative of the actual, current vocabulary of
user dictation. While it is possible to use proxy data for ini-
tial server-side training, stopping there means that the model
will lag behind the ever-changing user distribution in terms of
freshness and accuracy.

One way to improve model freshness is to make use of
the natural feedback loop that occurs during usage. When
the model makes recognition errors, users may make manual
edits to the output text; in the ideal case, this points to a mis-
recognition that the model has made, and additionally gives us
the corrected transcript to learn from. Paired with the original
audio, these training examples are a treasure trove for improv-
ing model quality, containing up-to-date transcriptions that
faithfully reflect actual user requirements. Federated Learn-
ing (FL) [1, 2] affords us a privacy-preserving mechanism to
leverage this training data and these valuable user correction
signals.

Related work has explored mining challenging training
examples for model improvement [3, 4, 5, 6], but in this work
we utilize the model’s own errors, and user corrections
thereof, to target fresh terms. In this way, the model can im-
prove on precisely the words it struggles with, and learn fresh
terms unseen in the training corpus snapshot on the server.

However, not all user edits made naturally in the course of
usage are necessarily true corrections to the original spoken
utterance. In many cases, the edits may be revisions of orig-
inal intent, and the resulting edited text may diverge entirely
from the original audio. In this work, we propose a sim-
ple method to target legitimate user corrections: filtering
training examples to those that contain terms the model is
likely to misrecognize, for example fresh terms that did not
exist when the server training data was collected, and would
be unknown to the server model. These misrecognized words
are likely to be the target of true user corrections. As shown
in our experimental results, this approach successfully helps
to target high-quality training examples, and fine-tuning on
them improves model quality on these fresh terms.

This improvement on the targeted terms, however, can
also come with the unintended pitfall of regression on the
original distribution. We compare a number of techniques
for mitigating catastrophic forgetting [7, 8] in FL, includ-
ing variants of weight averaging algorithms [9]. We also rein-
troduce data from the original distribution, which in the FL
context requires mixing centralized training in with federated
rounds [10], to positive effect.

Finally, these fresh terms can be long-tail words, and
training examples may be exceedingly sparse. We propose
two approaches to improve learning on the rarest exam-
ples. We find that these combined techniques allow us to
learn fresh terms without harming overall model quality.

2. METHODOLOGY

2.1. Federated Learning

Federated Learning [1, 2] is a technique to train a single cen-
tralized model in a distributed fashion. During each round
of federated training, participating edge devices receive the

© IEEE 2023

ar
X

iv
:2

31
0.

00
14

1v
2 

 [
cs

.C
L

] 
 3

0 
N

ov
 2

02
3



Word Source Seen Count

warnock current events 85
webb technology 48

addams media 38
mbappe sports 27
salman current events 8
sumeru media 8

Table 1. Examples of words used for filtering, based on fresh
or trending terms at time of experimentation.

most recent centralized checkpoint, locally train on available
on-device training examples, and send only the model gradi-
ents back to the server, never any user data. These updates
are aggregated into the central model, which is then sent out
again for the next federated round.

In the context of this work, on-device training examples
consist of speech audio, the original transcript output by the
inference model, along with the final text committed by the
user after any edits.

2.2. Filtering Examples By Fresh Words

In order to target high-quality training examples, we generate
a list of fresh words that are likely to be misrecognized by
the model, and hence the target of legitimate user correction,
rather than other edits. In the long term, this step should be
automated, e.g., by aggregating over user corrections across
devices through Federated Analytics [11]. Words that are cor-
rected by a large number of users are likely to be true mis-
recognitions. For this work, we experiment with a manually-
curated list of 241 words selected from sources such as pop
culture, current events, and recent technologies. The terms
vary greatly in how often they appear in on-device training
examples (Fig 1), and some examples are shown in Table 1.

0 500 1000 1500 2000 2500 3000
Times Seen During Training

0
100

101

102

Nu
m

be
r o

f W
or

ds

Fig. 1. Histogram of wordlist word frequency during training.
Approximately 50% of words were seen after 300 rounds of
training, with a wide range of frequency.

While training in FL, we filter the utterances available on-
device to examples that contain at least one word from this
wordlist and have a user edit. In this way, we target cases

where the user spoke one of these words, the model produced
the wrong transcript, and the user corrected it.

Because these words are by nature long-tail and represent
only a small portion of utterances, evaluating improvement is
challenging. To do so, we create a targeted testset focused
on measuring quality on these rare words. We compile 4-
5 sentences containing each wordlist word: a combination of
manually-generated sentences and sentences scraped from the
web. Then we generate corresponding audio using Text-to-
Speech (TTS) [12], and use the resulting audio-sentence pairs
as our targeted testset. Due to the nature of TTS audio, and the
fact that the terms used for the testset are inherently challeng-
ing and rare, including terms that were infrequently or never
encountered during training, the resulting WER tends to be
high, but serves as a useful benchmark to understand qual-
ity improvement on these targeted words. We further perform
per-word error analysis before and after fine-tuning to directly
understand how recognition of each term is affected.

2.3. Mitigating Forgetting

2.3.1. Static Checkpoint Averaging

To mitigate forgetting, we experiment with several tech-
niques, starting with simple weight averaging [9]. Prior to
evaluation, we average the weights of each federated check-
point with the weights of the initial pre-trained checkpoint,
modified by a scaling factor (Fig 2a). Federated rounds pro-
ceed as usual, and are not impacted by this averaging.

2.3.2. Dynamic Checkpoint Averaging

As above, this approach averages the weights of each feder-
ated checkpoint with the initial checkpoint (Fig 2b). How-
ever, here each averaged checkpoint is then used to initialize
the subsequent federated round. In other words, the feder-
ated training process is modified to initialize from the new
averaged checkpoint, rather than from the purely federated
checkpoint from the round before.

2.3.3. Mixture of Centralized and Federated Training

Finally, we perform server-side training in parallel with feder-
ated training (Fig 2c), as described in [10]. While FL rounds
learn the on-device data, we simultaneously perform central-
ized training on the same server datasets used to train the ini-
tial pre-trained checkpoint. These centralized model updates
are included along with those of the federated clients during
aggregation at the end of each round.

2.4. Learning Long-tail Words

Because the fresh and misrecognized words tend to be long-
tail words, training examples are difficult to come by. All but
non-existent in the server training corpus, they are rare even



Initial 
Checkpoint

Federated 
trainer

Training steps

(a) Static checkpoint averaging

Initial 
Checkpoint

Federated 
trainer

Training steps

(b) Dynamic checkpoint averaging

Centralized 
trainer

Federated 
trainer

Training steps

(c) Mixture of Centralized and Federated Training

Fig. 2. Illustration of techniques to mitigate forgetting. Each
shows consecutive federated training rounds (yellow), with
varying types of server-side modification (blue), and progres-
sion of the centralized model being trained (gray).

in on-device data. Within the long-tail words, availability also
varies drastically from term to term; training on this imbal-
anced distribution results in little improvement on the least
frequent words. To address this, we propose two techniques:
probabilistic sampling and client loss weighting.

2.4.1. Probabilistic Sampling

Probabilistic sampling aims to artificially massage the train-
ing examples into a more uniform distribution by down-
sampling the federated clients that only have examples of
the most common words from the wordlist. Each word is
assigned a sampling probability p, where p ∈ (0, 1]. The
more frequent a word is in the original data distribution, the
smaller its p value.

If the client data contains a targeted word w, then it is
included in the FL round with probability pw. If the client
has multiple wordlist words, either within the same utterance
or over multiple training examples, then its probability is the
maximum among the words’ sampling probabilities. Due to

the limited number of clients included in each round, this in-
creases the occurrences of less frequent words seen during
training.

2.4.2. Client Loss Weighting

Client loss weighting aims to more heavily penalize the wrong
predictions of the rarest wordlist words. Each target word
is assigned a client loss weight (w). The more frequent the
word, the smaller the w. On the client, the loss is computed
for each utterance, and then additionally scaled by the w of
any wordlist word the utterance contains. If an utterance con-
tains multiple target words, its w is the maximum among all
the weights. The client loss is the sum of each utterance loss
multiplied by the utterance loss weight:

Lclient =
∑
u∈U

max
d∈D

(wd) · lossu (1)

where Lclient is the client loss, computed over U utterances on
the client and D words per utterance.

3. MODEL AND DATA

3.1. Architecture

All models described in this paper are end-to-end, streaming
transducer models [13, 14, 15] based on the Conformer ar-
chitecture [16]. Due to the cost of training in FL, we initially
demonstrate the wordlist filtering approach in server-side sim-
ulation, before expanding to a production FL setup on user
devices. For the simulation experiments, we use a streaming
Conformer model [17], while in production, we use a varia-
tion of this model that utilizes cascading encoders [18].

One important consideration for on-device learning is
computational efficiency. Research in deep learning has
shown that neural networks benefit from being overparam-
eterized [19, 20]. In particular, when seeking to learn new
words in a deep ASR model, previous research has shown
the majority of quality gains can be achieved by training only
the topmost layers, such as the joint layer, or the joint and
prediction network (which together we refer to as the decoder
portion of the model) [5]. We adopt this setting; compared
to training the entire model, this affords us significant mem-
ory savings. For example, for the production model [18],
the decoder portion is only 40M parameters out of the entire
150M-parameter model. A static, frozen, and compressed
encoder is used to generate encoder features, which are then
used as input for decoder training.

3.1.1. On-Device Minimum Word Error Rate Training

In addition to standard RNN-t loss, we also incorporate Mini-
mum Word Error Rate (MWER) loss [21], which is computed
from the loss of each of the N-best hypotheses from beam



search. If x are the input acoustic frames, and yn are the N-
best hypotheses for the output label sequence, then the loss
can be written as:

LMWER =

N∑
i=1

P̂ (yi|x)·

(
W (yi, y)−

∑N
i=1 W (yi, y)

N

)
(2)

where P̂ is the probability of the i-th hypothesis normalized
over all N-best hypotheses, and W (yi, y) is the number of
word errors in the i-th hypothesis relative to the ground truth.

MWER loss is a component of server-side training, but
would be too computationally expensive for an on-device set-
ting due to the memory cost of computing the N-best hypothe-
ses. Instead, we create a modified version for on-device by
caching the hypotheses produced by the model decoder dur-
ing training, and incorporating them during loss computation.

3.2. Training Data

In all our experiments, the model is pretrained on speech data
from a multi-domain dataset (MD), encompassing domains
of search, farfield, telephony, YouTube, etc [22, 23], includ-
ing a Short-Form (SF) and Medium-Form (MF) domain. The
model is then fine-tuned on training examples containing the
interesting terms. All data are anonymized, and are collected,
managed, and used for training models in accordance with
Google AI Principles [24].

For our simulation experiments, the fine-tuning dataset
consists of utterances from the SF domain that contain long-
tail words (SF-LT). Learning is evaluated on the targeted SF-
LT testset, a disjoint set of utterances containing the same
long-tail words as the training data. Additionally, to ensure
the model quality does not degrade on the overall distribution,
we also use disjoint testsets from the SF and MF domains to
measure regression on non-targeted words.

In production experiments, a similar pre-trained model is
fine-tuned on user data through on-device FL, filtered to ex-
amples containing the long-tail words. For server-side evalu-
ation, we create a corresponding targeted eval set, as outlined
in the methodology. We also make use of the MF testset as
our benchmark for preserving quality on the overall distribu-
tion. In both these cases, our goal is to improve WER on the
targeted testsets, while maintaining WER on the overall dis-
tribution testsets.

4. EXPERIMENTAL RESULTS

4.1. In Simulation

As shown in Table 2, we started with a baseline trained on
our multidomain dataset. By fine-tuning only on examples
containing the long-tail words (SF-LT), we saw a 31% rel-
ative improvement over the baseline on the targeted testset,
but observed catastrophic forgetting in the form of significant

Dataset MF WER SF WER SF-LT WER

MD (Baseline) 3.7 6.3 45.5

Fine-tuning Whole Model

SF-LT 7.8 9.3 31.4
SF-LT + SF + MF 4.4 6.2 35.1

Fine-tuning Joint Layer

SF-LT 6.4 8.4 38.1
SF-LT + SF + MF 3.8 6.3 40.6

Table 2. In simulation, fine-tuning afforded improvement on
the targeted testset (SF-LT), but degraded overall testset qual-
ity (MF + SF). Reintroducing SF + MF training data mitigated
forgetting. When training was limited to the joint layer, the
model was still able to improve on the targeted testset, while
recovering the original WER for the overall testsets.

degradation on the testsets that represent the overall distribu-
tion, including over 100% regression on MF.

As these simulation experiments were done entirely
server-side, we were able to address forgetting by reintro-
ducing training examples from the original domain (SF and
MF) during training, in equal proportion to the SF-LT dataset,
similar to the Mixture of Centralized and Federated Training
approach we proposed for production. This way, we were still
able to achieve a 23% improvement in the targeted testset,
while seeing much less degradation in the overall domain.

In order to understand the most memory-efficient setting,
we also tried fine-tuning only the joint layer of the model.
Here, we saw less improvement on the targeted testset, but
even lower degradation on the overall domain. By fine-tuning
on both the targeted data and the overall data distributions, we
saw a 11% improvement on the targeted testset, and little or
no regression on the overall testsets.

4.2. Necessity of Wordlist Filtering In Production

In production experiments, we began by training on all exam-
ples with user edits, but the model quality quickly and dramat-
ically degraded (Figure 3), lending credence to our hypothesis
that many of these edits are indeed revisions to the original ut-
terance, rather than corrections of an incorrect ASR transcript,
and likely result in significantly divergent text-audio pairs.

However, using our list of fresh words that were likely
to be misrecognized, we were able to filter training examples
largely to those containing true user corrections. When on-
device training was limited to examples with edits that con-
tained a word in our fresh wordlist, the WER was stabilized.

4.3. Catastrophic Forgetting

As shown in Table 3, this approach was able improve model
quality on the targeted testset, but we did observe the expected



0 50 100 150 200 250 300
step

4

6

8

10

12

14
W

ER
Training on Examples with User Edits

All Examples with Edits
With Wordlist Filtering

Fig. 3. Training on all examples with user edits caused the
model quality to quickly diverge, indicating many were not
actual corrections. However, filtering these examples by our
wordlist resulted in far more stable model quality.

Setup Overall WER Targeted WER

Baseline 4.4 17.5
Pure FL 4.6 16.1

Static Ckpt Avg 4.4 16.1
Dynamic Ckpt Avg 4.4 16.6

Table 3. In a production-like setting, both techniques were
able to restore the baseline overall WER, but Static Check-
point Averaging gave better results on the targeted testset.

forgetting of the overall distribution. From the baseline, we
saw that filtering on-device training examples to those con-
taining targeted words allowed us to improve 8% relative on
the targeted testset. However, we also saw a 4.5% regression
on the overall WER, highlighting the necessity of techniques
to mitigate catastrophic forgetting.

4.3.1. Checkpoint Averaging

Both Static Checkpoint Averaging and Dynamic Checkpoint
Averaging were able to bring us back to parity on the overall
distribution, while still affording improvement on the targeted
distribution (Table 3). In particular, with Static Checkpoint
Averaging, we were able to achieve the 8% improvement on
the targeted testset from pure FL, while keeping the WER on
the overall distribution from the baseline.

4.3.2. Mixture of Centralized and Federated Training

To test the technique of mixing centralized training in with
the federated rounds, we first refreshed the model with more
in-domain training data. This led to a much improved base-
line, and a far greater regression after our targeted fine-tuning,
as shown in Table 4. This 20% relative gap was greater than
weight averaging techniques could address. However, once
we mixed in centralized training simultaneously with the fed-

Setup Overall WER Targeted WER

Baseline 3.5 16.6
FL-only 4.4 16.1

FL + Centr. Mix 3.5 16.1

Table 4. After refreshing server-side training data, the base-
line was much improved (3.5 WER), and regression from for-
getting was much greater (20% relative). However, mixing
federated and centralized training rounds restored the base-
line Overall WER while keeping FL Targeted WER wins.

erated training rounds, we were able to achieve the best of
both worlds: keep the wins on Targeted WER from targeted
on-device training, while achieving the same best Overall
WER from the server-only baseline.

4.4. Word Improvement

4.4.1. Error Correction Percent

To directly understand how much fine-tuning improved model
recognition of each wordlist word, we computed an Error
Correction Percent according to the following formula:

EC% =
Accexp −Accbase
1.0−Accbase

(3)

Each wordlist word appears in multiple testset examples;
for each word, the accuracy Acc is the number of examples
where the word was correctly recognized, normalized by the
total number of examples containing the word. The EC%
shows how many errors made by the baseline model were cor-
rected by the fine-tuned model, as a ratio of the total number
of errors for each word. For words with an EC% of 100%,
fine-tuning corrected all errors made by the baseline.

Fig. 4. Comparing number of errors before and after on-
device fine-tuning, most words seen at least 100 times had
all errors corrected after FT. This suggests that more training
examples are needed for the remainder.

Looking closely at how each wordlist word was improved
in Figure 4, we saw that the majority of words that were seen



Setup Overall WER Tgt WER

Baseline 4.4 17.5
Simple Fine-Tuning 4.6 16.1

Static Ckpt Avg 4.4 16.1
Client Loss Weighting 4.4 16.0
Probabilistic Sampling 4.6 15.8

Prob Samp + St Ckpt Avg 4.5 15.9

Table 5. Client Loss Weighting was able to slightly improve
our already fine-tuned targeted WER from 16.1 to 16.0. Prob-
abilistic Sampling did even better, improving our targeted
WER to 15.8. The WER on the overall distribution can be
restored by reintroducing checkpoint averaging.

at least 100 times in training had 100% of their errors fixed by
the experiment. Many words that were seen less frequently
were also improved, but errors were not fixed in all their oc-
currences. This suggested that it was important to increase the
frequency of training examples of words that we rarely saw,
motivating our probabilistic sampling approach.

4.4.2. Probabilistic Sampling and Client Loss Weighting

Training Round

W
or

ds
 S

ee
n

0

50

100

150

25 50 75 100 125 150 175

Probabilistic Sampling Default

Number of Unique Words Seen

(a) Unique words over rounds

Number of Times Seen

W
or

d 
C

ou
nt

0

25

50

75

100

125

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Probabilistic Sampling Default

Word Frequency during Training

(b) Word count histogram

Fig. 5. Probabilistic sampling was able to improve the num-
ber of unique words seen, as well as the number of words that
were seen at least 100 times.

By adding Probabilistic Sampling during fine-tuning, we
increased the number of unique words seen from around 100
to closer to 150. Additionally, we increased the number of
words seen at least 100 times (Fig. 5).

As shown in Table 5, in comparison with our previous best
fine-tuned result of 16.1, using Client Loss Weighting was
able to give us a small improvement to 16.0. Probabilistic
Sampling gave more significant wins, bringing our targeted
WER down to 15.8.

4.4.3. Contact Names

As an additional application, we turned these techniques to-
wards a related domain. Rather than learning fresh terms,

Setup Overall WER Contact Names WER

Baseline 3.8 5.7
Fresh Terms Filter 3.8 5.5

Names Filter 3.8 5.4

Table 6. Contact name recognition was improved by the
above techniques. Using a names wordlist for filtering instead
gave even better results, without harming the Overall WER.

we experimented with whether we could improve recognition
of another class of commonly misrecognized terms: names
from users’ contacts lists. Names are difficult to transcribe
correctly due to variety and alternate spellings, and benefit
greatly from a diverse and fresh training corpus.

Even using just the fresh wordlist filtering, training in FL
was sufficient to improve the WER on our Contact Names
testset from 5.7 to 5.5, as shown in Table 6. Though we did
not target any names with our filtering, the general exposure
to fresh training examples was able to improve the WER. We
further improved this by replacing the wordlist with a list of
the top 1000 baby names in each the US, China, and India.
With this new setting, we reached 5.4 WER on the testset, a
5% relative improvement.

This demonstrates that the proposed techniques can be ap-
plied to other settings, such as learning words of a certain do-
main, while maintaining quality on the overall distribution.

5. CONCLUSION

In this work, we explored how user corrections can be lever-
aged to improve ASR model quality, particularly on fresh
terms not available during model training, or on terms that
the ASR model tends to get wrong. The naive approach of
training directly on novel on-device user data sources posed
a number of difficulties, including the challenge of targeting
these inherently long-tail words, as well as catastrophic for-
getting leading to degradation of model quality on the overall
distribution.

To address these issues, we applied a number of tech-
niques, such as checkpoint averaging, mixing centralized and
decentralized training, and probabilistic sampling. Finally,
we experimentally demonstrated the potential of this tech-
nique, both for the original problem space of learning fresh
terms, as well as in adapting the model to other difficult do-
mains, such as names. We hope that these findings may lead
to further exploration of adapting ASR models to an ever-
changing language corpus.

6. ACKNOWLEDGEMENTS

We thank Yonghui Xiao, Andrew Hard, Sean Augenstein,
Khe Chai Sim, Guru Prakash, and Tien-Ju Yang for their valu-
able contributions to this work.



7. REFERENCES

[1] K. Bonawitz, H. Eichner, W. Grieskamp et al., “Towards
federated learning at scale: System design,” 2019.

[2] H. B. McMahan, E. Moore et al., “Communication-
Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, ser. Proceedings of Ma-
chine Learning Research, A. Singh and X. J.
Zhu, Eds., vol. 54. PMLR, 2017, pp. 1273–1282.
http://proceedings.mlr.press/v54/mcmahan17a.html

[3] J. Xue, J. Han, T. Zheng et al., “Hard sample mining
for the improved retraining of automatic speech recog-
nition,” 2019.

[4] L. Qu, C. Weber, and S. Wermter, “Emphasizing
unseen words: New vocabulary acquisition for end-to-
end speech recognition,” Neural Networks, vol. 161,
pp. 494–504, apr 2023. https://doi.org/10.1016%2Fj.
neunet.2023.01.027

[5] K. C. Sim, F. Beaufays, A. Benard et al., “Personaliza-
tion of end-to-end speech recognition on mobile devices
for named entities,” 2019.

[6] U. Alon, G. Pundak, and T. N. Sainath, “Contextual
speech recognition with difficult negative training exam-
ples,” 2018.

[7] R. M. French, “Catastrophic forgetting in connectionist
networks,” Trends in Cognitive Sciences, vol. 3, no. 4,
pp. 128–135, 1999.

[8] M. McCloskey and N. J. Cohen, “Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem,” ser. Psychology of Learning and Motivation,
G. H. Bower, Ed. Academic Press, 1989, vol. 24, pp.
109–165.

[9] S. V. Eeckt and H. V. hamme, “Weight averaging: A
simple yet effective method to overcome catastrophic
forgetting in automatic speech recognition,” 2023.

[10] S. Augenstein, A. Hard, L. Ning et al., “Mixed federated
learning: Joint decentralized and centralized learning,”
2022.

[11] W. Zhu, P. Kairouz, B. McMahan et al., “Federated
heavy hitters discovery with differential privacy,” 2020.

[12] A. van den Oord, Y. Li, I. Babuschkin et al., “Parallel
wavenet: Fast high-fidelity speech synthesis,” 2017.

[13] A. Graves, A. Mohamed, and G. Hinton, “Speech
Recognition with Deep Recurrent Neural Networks,”
in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2013, pp. 6645–6649.

[14] T. N. Sainath, Y. He, B. Li et al., “A streaming on-
device end-to-end model surpassing server-side conven-
tional model quality and latency,” 2020.

[15] Y. He, T. N. Sainath, R. Prabhavalkar et al., “Stream-
ing end-to-end speech recognition for mobile devices,”
2018.

[16] A. Gulati, C.-C. Chiu, J. Qin et al., Eds., Conformer:
Convolution-augmented Transformer for Speech Recog-
nition, 2020.

[17] B. Li, A. Gulati, J. Yu et al., “A better and faster end-to-
end model for streaming asr,” 2021.

[18] T. N. Sainath, Y. He, A. Narayanan et al., “An efficient
streaming non-recurrent on-device end-to-end model
with improvements to rare-word modeling,” in Proc. of
INTERSPEECH, 2021.

[19] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and
generalization in overparameterized neural networks,
going beyond two layers,” CoRR, vol. abs/1811.04918,
2018. http://arxiv.org/abs/1811.04918

[20] B. Neyshabur, Z. Li, S. Bhojanapalli et al., “To-
wards understanding the role of over-parametrization
in generalization of neural networks,” CoRR, vol.
abs/1805.12076, 2018. http://arxiv.org/abs/1805.12076

[21] R. Prabhavalkar, T. N. Sainath, Y. Wu et al., “Minimum
word error rate training for attention-based sequence-to-
sequence models,” 2017.

[22] A. Misra, D. Hwang, Z. Huo et al., “A Comparison of
Supervised and Unsupervised Pre-Training of End-to-
End Models,” in Proc. Interspeech 2021, 2021, pp. 731–
735.

[23] A. Narayanan, R. Prabhavalkar, C.-C. Chiu et al.,
“Recognizing long-form speech using streaming end-
to-end models,” in IEEE Automatic Speech Recognition
and Understanding Workshop, ASRU 2019, Singapore,
December 14-18, 2019. IEEE, 2019, pp. 920–927.
https://doi.org/10.1109/ASRU46091.2019.9003913

[24] Google, “Artificial intelligence at Google: Our
principles.” https://ai.google/principles/

http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1016%2Fj.neunet.2023.01.027
https://doi.org/10.1016%2Fj.neunet.2023.01.027
http://arxiv.org/abs/1811.04918
http://arxiv.org/abs/1805.12076
https://doi.org/10.1109/ASRU46091.2019.9003913
https://ai.google/principles/

	 Introduction
	 Methodology
	 Federated Learning
	 Filtering Examples By Fresh Words
	 Mitigating Forgetting
	 Static Checkpoint Averaging
	 Dynamic Checkpoint Averaging
	 Mixture of Centralized and Federated Training

	 Learning Long-tail Words
	 Probabilistic Sampling
	 Client Loss Weighting


	 Model and Data
	 Architecture
	 On-Device Minimum Word Error Rate Training

	 Training Data

	 Experimental Results
	 In Simulation
	 Necessity of Wordlist Filtering In Production
	 Catastrophic Forgetting
	 Checkpoint Averaging
	 Mixture of Centralized and Federated Training

	 Word Improvement
	 Error Correction Percent
	 Probabilistic Sampling and Client Loss Weighting
	 Contact Names


	 Conclusion
	 Acknowledgements
	 References

