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ABSTRACT

We introduce a text-to-speech (TTS) framework based on a
neural transducer. We use discretized semantic tokens ac-
quired from wav2vec2.0 embeddings, which makes it easy
to adopt a neural transducer for the TTS framework enjoy-
ing its monotonic alignment constraints. The proposed model
first generates aligned semantic tokens using the neural trans-
ducer, then synthesizes a speech sample from the semantic
tokens using a non-autoregressive (NAR) speech generator.
This decoupled framework alleviates the training complexity
of TTS and allows each stage to focus on 1) linguistic and
alignment modeling and 2) fine-grained acoustic modeling,
respectively. Experimental results on the zero-shot adaptive
TTS show that the proposed model exceeds the baselines in
speech quality and speaker similarity via objective and sub-
jective measures. We also investigate the inference speed and
prosody controllability of our proposed model, showing the
potential of the neural transducer for TTS frameworks.

Index Terms— speech synthesis, neural transducer, zero-
shot adaptive text-to-speech, speech representation

1. INTRODUCTION

Neural Text-to-Speech (TTS) systems face two main prob-
lems: alignment modeling and one-to-many sequence gen-
eration. Because of the strong inductive bias that text and
speech are monotonically aligned, learning and representing
the alignment efficiently are important parts of designing a
TTS system. For example, autoregressive (AR) TTS mod-
els [1, 2, 3] find alignments by themselves using attention
mechanisms. On the contrary, non-autoregressive (NAR)
TTS family [4, 5, 6] uses external alignment search al-
gorithms [7, 8] and phoneme-wise duration predictors for
length regulation. As a sentence can be spoken in various
ways, representing and controlling the diversity of speech
are also crucial issues for TTS. Numerous factors, including
speaker, prosody, and recording conditions, can induce this
one-to-many problem. Recent TTS models use deep gener-
ative models or conditioning information such as reference
speech to cover this problem. Although these two issues can
be treated independently, we assume that they are highly in-

terrelated each other. For example, when the diversity of the
data gets larger, especially in the case of zero-shot adaptive
TTS, it becomes harder to learn the exact alignment, and the
misalignment can make training unstable, which results in
degraded sample quality and insufficient controllability. In
this perspective, to alleviate this complexity, we decompose
the TTS pipeline into alignment modeling and fine-grained
acoustic modeling, and then solve each part with carefully
designed methods.

Meanwhile, one of the sophisticated sequence genera-
tion models with monotonic alignment is the neural trans-
ducer (e.g. RNN-T) [9]. As a sequence generator, the neural
transducer finds the alignment using a special ⟨blank⟩ token
and learns the marginal conditional likelihood of sequences
of all the possible monotonic alignments. Although these
properties seem suitable for the TTS objective as for au-
tomatic speech recognition (ASR), it is difficult to directly
adopt a neural transducer for TTS because TTS has continu-
ous output space, while the neural transducer is suitable for
discrete sequences. Among previous works [10, 11] which
leveraged the neural transducer, SSNT-TTS [10] calculates
the joint probability of mel-spectrogram and alignment, while
Speech-T [11] proposed a lazy forward algorithm which de-
couples aligning and mel-spectrogram prediction. However,
these regression-based approaches still have limitations as
they cannot represent one-to-many distributions of speech.
Therefore, these previous works only explored single-speaker
TTS with limited data complexity.

In this paper, we propose a TTS model which consists of
two stages: text-to-token (T2T) and token-to-speech (T2S)
stage. The token, named semantic token, indicates the index
of k-means clustering on wav2vec2.0 embeddings [12]. As
the semantic token has disentangled semantic information, we
can separately focus on 1) semantic and alignment modeling
in the T2T stage and 2) acoustic diversity modeling in the
T2S stage. Especially for the T2T stage, we employ a neural
transducer. As semantic tokens are in a discrete domain, we
can easily take advantage of the neural transducer, including
its monotonic alignment constraints. This allows us more ef-
ficient and robust alignment modeling. For the T2S stage,
we use a VITS-based architecture [5] for high-fidelity and
fast speech generation. To control the paralinguistic attributes
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such as prosody and speaker, we condition a reference speech
on both stages. The references speech respectively controls
alignment-related prosody (e.g. speech rate) in the T2T stage
and fine-grained acoustic details (e.g. speaker, recording con-
dition) in the T2S stage. Our experiment results on zero-shot
adaptive TTS demonstrate that the proposed model outper-
forms the baselines regarding intelligibility, naturalness, and
zero-shot speaker adaptation. In addition, we found that the
proposed model generates speech much faster than in real-
time and is able to control prosody using the reference speech
of the neural transducer. We provide the samples on our demo
page: https://gannnn123.github.io/transduce-and-speak

2. PROPOSED METHOD

This section introduces the novel two-stage TTS framework
with text-to-token (T2T) and token-to-speech (T2S) stages.
In the T2T stage, text inputs are converted into a sequence
of semantic tokens, and semantic tokens are converted back
into a speech sample in the T2S stage. Semantic tokens are
obtained from representations of the wav2vec2.0 model. Sim-
ilar to [13, 3], we conduct k-means clustering on wav2vec2.0
embeddings and use the cluster index sequence as the seman-
tic tokens. The details of each stage are described in sections
3.1 and 3.2.

2.1. Text-to-Token (T2T)

We employ a neural transducer for the T2T stage. The neu-
ral transducer learns the alignments and encodes high-level
semantic information from text sequences. Exploiting the se-
mantic tokens as a target helps to overcome the limitations
of adopting a neural transducer for TTS. Quantization by k-
means clustering makes the output space discrete, which en-
ables the adoption of a neural transducer without using com-
plex schemes. In addition, using semantic tokens reduces the
data complexity induced by fine-grained speech conditions,
which makes it easier for the neural transducer to learn the
alignment and semantic information.

2.1.1. Neural transducer for semantic token prediction

We follow the formulation of a neural transducer for our T2T
model. Let’s denote the text sequence X = {xu}Uu=1 and
the target semantic token sequence Y = {yt}Tt=0, where U
and T are lengths of text and semantic token sequences re-
spectively and y0 corresponds to the ⟨SOS⟩ token. The neu-
ral transducer learns conditional likelihood P (Y |X) using
the lattice {α(u, t)|1 ≤ u ≤ U, 0 ≤ t ≤ T}. As depicted in
Fig. 1, each node α(u, t) represents the probability of emit-
ting first output tokens y0:t by the text sequence x1:u. For ev-
ery node, the neural transducer calculates the emission prob-
ability P (yt+1|u, t) and transition probability P (∅|u, t). The
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Fig. 1: The output probability lattice for the neural transducer.
The red path shows an example of monotonic alignment be-
tween text and semantic tokens.

⟨blank⟩ token ∅ represents the transition to the next text sym-
bol, indicating the horizontal arrows in Fig. 1. Consequently,
the support set of the transducer’s output is V ∪ {∅}, where
V is the set of the defined semantic tokens. The training ob-
jective of the neural transducer is defined as follows:

Ltrans = − logP (Y |X)

= − log
∑

a∈F−1(Y )

P (a|X). (1)

In (1), a stands for the possible monotonic alignment and F−1

denotes the inverse function of F . The function F removes
∅ from each alignment. Therefore, Ltrans is derived as the
marginalized likelihood of all the possible monotonic align-
ment and satisfies Ltrans = α(U, T )P (∅|U, T ) by the dy-
namic forward-backward algorithm below:

α(u, t) = α(u− 1, t)P (∅|u− 1, t)

+α(u, t− 1)P (yt|u, t− 1).
(2)

Beyond the basic neural transducer, we use reference speech Sref

for the transducer framework to control the prosody of gener-
ated speech. Sref controls the high-level prosody information
in semantic tokens, such as speech rate and accent. Therefore,
the transducer learns the conditional likelihood of semantic
tokens given text and reference speech so that we re-formulate
the training objective as follows:

Ltrans′ = − log
∑

a∈F−1(Y )

P (a|X,Sref ). (3)

Training a neural transducer consumes notoriously large
memory because of searching all the possible monotonic
paths. To alleviate this problem, we apply a pruning method
proposed in [14]. Excluding the implausible paths, the joiner
only computes pruned nodes, which reduces the memory
complexity from O(UT ) to O(U). Therefore, the final train-
ing objective is Lt2t = α1Lprune+α2Ltrans′ , where Lprune

is the loss for searching pruning range and {α1, α2} are scale
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Fig. 2: The overall architecture of the proposed neural trans-
ducer.

factors. Although the pruning method had been explored only
for ASR objectives, we found that it also works effectively
for our TTS objective.

2.1.2. Model architecture

As described in Fig. 2, the proposed transducer consists of
four modules: a text encoder, a reference encoder, a decoder,
and a joint net. For the text encoder which takes a phoneme
sequence x1:U and returns text embedding sequence henc

1:U , we
leverage conformer blocks [15]. The decoder generates to-
ken embedding sequence hdec

0:t from the previous tokens y0:t.
We use uni-directional LSTM blocks for the decoder. We use
LSTM instead of the commonly used transformer block as an
AR decoder to reduce the computational cost for fast infer-
ence. The reference encoder takes reference speech Sref and
returns a prosodic embedding vector href . We exploited the
architecture of ECAPA-TDNN [16] for the reference encoder.
Finally, the joint net takes the concatenation of the text em-
bedding and the token embedding [henc

u , hdec
t ] and returns the

categorical distribution of V ∪ {∅}. The joint net consists of
linear layers and conditional layer normalization layers. For
conditioning reference speech, the reference embedding href

is projected frame-wise for the scale factors of each normal-
ization layer.

2.2. Token-to-Speech (T2S)

In the T2S stage, we generate speech from the semantic to-
ken. The missing information of the semantic token (e.g.
speaker, recording condition, and acoustic details) is injected
by conditioning a reference speech. As semantic tokens are
already aligned to speech frames, we don’t have to consider
the length variability and alignment. Therefore, we design
this stage with a NAR architecture rather than AR models for
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Fig. 3: The structure of the VITS-based T2S stage. The col-
ors of the arrows indicate the data flow of the training and
inference phases.

parallel computation. We note that this stage can be trained
on audio-only data since semantic tokens are obtained without
text labels. It is a significant advantage, as it allows training
models on much larger datasets, which can lead to improved
performance.

2.2.1. Model architecture

We exploit the architecture of VITS [5] with several mod-
ifications. As an end-to-end (E2E) TTS model, VITS can
generate high-quality speech samples with a single training
stage. The main modification is that we replace the text in-
put with the semantic token, and accordingly, we replace the
text encoder with a token encoder. The token encoder has
the same architecture as the posterior encoder of VITS. We
do not use the monotonic alignment search (MAS) algorithm
and duration predictor because semantic tokens are already
aligned to speech frames. To condition acoustic information,
we use a reference encoder with the same structure as that of
the T2T stage. The extracted reference embedding conditions
affine coupling layers of the normalizing flow as in the origi-
nal VITS. We clarify that both reference encoders in T2T and
T2S stages have the same architecture, but they are trained for
different objectives, so that they extract different attributes of
speech. We describe the entire architecture of the T2S stage
in Fig. 3. We recommend referring to [5, 13] for the specific
architecture and training objectives.

3. EXPERIMENTAL SETTINGS

3.1. Dataset

We conduct our zero-shot adaptive TTS experiments on the
LibriTTS [17] corpus. For training, we use train subsets of
LibriTTS (train-clean-100, train-clean-360, train-other-500),
which contain about 555 hours of labeled speech recorded by
2311 speakers. For evaluation, we use the test-clean subset
consisting of about 8 hours of speech with 39 speakers not
overlapping with speakers of the training set. The dataset has
24 kHz sample rate, and our experiments are conducted on
the same sample rate.



3.2. Implementation Details

Semantic token: We exploit the pre-trained wav2vec2.0-
XLSR [18]1 to obtain semantic tokens. We conduct k-means
clustering on representations of the 15th layer as in [13] and
use the cluster index sequence as semantic tokens. We set the
number of clusters k = 512 for our experiments.
T2T implementation: We use the icefall toolkit2 to im-
plement the neural transducer. We convert text sequences
to International Phonetic Alphabet (IPA) sequences using
phonemizer library3. For the text encoder, we build 6 con-
former blocks4 with 384 hidden dimension, 1536 feed for-
ward dimension, and kernel size 3. The decoder consists of
2 layers of uni-directional LSTM with 512 hidden dimen-
sion. The joint net has 3 feed forward blocks with 512 hidden
dimension. As a reference speech for training, we use the
target speech randomly sliced to be 3 seconds. We found that
slicing the reference speech reduces the mismatch between
training and inference and improve the pronunciation. For the
pruned training method, we verify that the pruning bounds
constant S = 50 operates well for our experiments. The
model is trained for 30 epochs with a dynamic batch size
containing up to 240 seconds of speech per iteration. We use
Adam optimizer with β1 = 0.9, β2 = 0.98, and learning
rate 0.05. The training takes about 54 hours on 2 Quadro
RTX8000 GPUs.
T2S implementation: We follow the configuration of [5]
unless otherwise explained. To match the sample rate to be
24 kHz, we adjust the intermediate frame length to be 10ms,
and upsampling rates of the decoder to be (10, 6, 2, 2). For
efficient training, we randomly slice each sample to be 2 sec-
onds at every iteration. We train the model for 400k iterations
with batch size 64, which takes about 5 days on 2 Quadro
RTX8000 GPUs.

3.3. Baselines

We employ two baseline models for comparison: VITS and
VALL-E [19]. To build the baseline VITS on a zero-shot
adaptive scenario, we use an ECAPA-TDNN as a reference
encoder. Thus, the baseline VITS has the same architecture
as our T2S model, except for the text encoder, duration pre-
dictor, and the monotonic alignment search (MAS) algorithm.
The baseline VITS is used to represent the effectiveness of us-
ing semantic tokens generated by our neural transducer com-
pared to directly using text input. We adopted the transfer

1https://huggingface.co/facebook/
wav2vec2-xlsr-53-espeak-cv-ft

2https://github.com/k2-fsa/icefall
3https://github.com/bootphon/phonemizer
4We used the modified version of conformer not officially documented.

We recommend referring the code for the detailed architecture:
https://github.com/k2-fsa/icefall/blob/master/
egs/librispeech/ASR/pruned_transducer_stateless6/
conformer.py

learning method proposed in [13] for training stability, ex-
ploiting our T2S model as a pre-trained model.

For the baseline VALL-E, we use an unofficial implemen-
tation5. The baseline VALL-E is trained on the same dataset,
LibriTTS, for about 4 days on 8 Tesla A100 GPUs. We clarify
that the baseline VALL-E shows degraded performance com-
pared to the paper because the unofficial implementation is
trained on a much smaller training dataset and resources.

4. RESULTS

4.1. Overall Performance

We evaluate the generated sample quality on subjective and
objective measures. For subjective evaluation, we conducted
a mean opinion score (MOS) and a similarity mean opinion
score (SMOS) test. In the MOS test, 16 testers rated the
quality of randomly selected samples with 5 scaled scores
from 1 to 5 regarding naturalness and intelligibility. In the
SMOS test, the same testers listened to the pairs of the refer-
ence and generated speech, and rated the similarity of speaker
and prosody in 5 scale. For objective measures, we calcu-
late character error rate (CER) and speaker embedding cosine
similarity (SECS). CER represents the intelligibility of sam-
ples using an ASR model. We transcribed samples using the
whisper-large model [20]. To calculate the speaker similarity,
we use a pre-trained speaker verification model from speech-
brain [21]. The SECS is ranged from -1 to 1, where the higher
score means the higher similarity. The results of all of the
measures are presented in Table 1.

Table 1: Results of zero-shot adaptive TTS. MOS and SMOS
are represented with 95% confidence intervals.

Method MOS SMOS CER(%) SECS

Ground Truth 4.62±0.06 4.41±0.08 1.02 0.673

VITS 3.29±0.08 3.89±0.08 11.19 0.492
VALL-E 3.47±0.09 3.59±0.09 21.67 0.350
Proposed 4.11±0.07 4.42±0.06 3.05 0.504

As shown in Table 1, the proposed model shows higher
performance in all the metrics. Compared to VITS, our
performance improvements mainly stems from using inter-
mediate semantic tokens. The results also verify that the
neural transducer is a good candidate for semantic token gen-
eration. Although VALL-E generally generates high-fidelity
samples, we notice that VALL-E sometimes generates mis-
aligned samples with skipping or repetition, which critically
degraded the overall performance. We assume that it is be-
cause the VALL-E doesn’t have structural constraints on
monotonic alignment and fully relies on self-attention. On
the contrary, the proposed model shows more robust and

5https://github.com/lifeiteng/vall-e

https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft
https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft
https://github.com/k2-fsa/icefall
https://github.com/bootphon/phonemizer
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py
https://github.com/lifeiteng/vall-e


stable performance thanks to the monotonic alignment con-
straints of the neural transducer. One notable point is that
the proposed model shows comparable SMOS to the ground
truth. It is because even if the proposed model lacks speaker
similarity compared to the ground truth, the proposed model
also reflects the prosody of reference speech, whereas the
ground truth only shares speakers with the reference speech.

4.2. Inference Speed

We evaluate the inference speed on a Quadro RTX8000 GPU.
We fix the reference speech, which corresponds to the prompt
for VALL-E, to a 5-second sample. The result is shown in
Table 2 and Fig. 4. Overall, VITS shows the fastest inference
speed with a large margin because of its fully NAR architec-
ture. On the contrary, VALL-E shows the slowest inference
speed, which is due to its transformer-based AR structure and
relatively large model size. The proposed model has a slower
inference speed than VITS but is much faster than real-time.
This is because the proposed model has a hybrid architec-
ture that combines an AR T2T stage and a NAR T2S stage.
Although the transducer has an AR decoding and linearly in-
creasing tendency, the small LSTM-based decoder makes our
model work well enough in real-time.

Table 2: Inference speed on a Quadro RTX8000 GPU.

Method VITS VALL-E Proposed

×Real-time 96.40 0.314 10.28
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Fig. 4: Visualization of inference speed.

4.3. Controllability of Neural Transducer

We verify the prosody controllability of our neural trans-
ducer by comparing the mel-spectrograms of the reference
speech and the generated speech. We fix the text and refer-
ence speech for the T2S stage, and allowed only the neural
transducer to control the prosody of the generated speech. As
shown in Fig. 5, the generated samples show various prosody
depending on the given reference speech. In particular,
duration-related attributes such as silence between segments

and speech rate are well reflected in the generated speech.
We calculate the speech rate as the number of phonemes

duration of speech (sec) , and
show the positive correlation of speech rate between the ref-
erence and generated speech in Fig. 5. It demonstrates that
our neural transducer can control the speaking speed using
the reference speech. We upload audio samples on our demo
page to demonstrate more detailed results.

Reference #1

Generated #1

Reference #2

Generated #2

Reference #3

Generated #3

𝑠𝑟 = 11.96

𝑠𝑟 = 12.21

𝑠𝑟 ∶ 𝑠𝑝𝑒𝑒𝑐ℎ 𝑟𝑎𝑡𝑒 (𝑝ℎ𝑜𝑛𝑒𝑚𝑒𝑠/𝑠𝑒𝑐)

𝑠𝑟 = 15.03

𝑠𝑟 = 16.61

𝑠𝑟 = 18.20

𝑠𝑟 = 19.12

Fig. 5: Mel-spectrogram visualization for pairs of reference
speech (T2T) and generated speech.

5. CONCLUSION

We proposed a novel TTS framework that uses a neural trans-
ducer to predict semantic tokens. The semantic tokens are
highly disentangled from complex acoustic variability, thanks
to wav2vec2.0 embeddings. This allows the neural transducer
to easily learn the alignment and semantic information, taking
advantage of the monotonic alignment constraints. A VITS-
based speech generator then synthesizes speech from seman-
tic tokens, focusing on the acoustic details. Our experimental
results show that the proposed two-stage framework outper-
forms the baselines regarding speech quality and zero-shot
adaptation. In addition, it also has benefits in inference speed
and prosody controllability. In future work, we will further
investigate the neural transducer for TTS systems regarding
architecture improvement and controllability.
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