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ABSTRACT

Attention-based encoder-decoder models with autoregressive (AR)
decoding have proven to be the dominant approach for automatic
speech recognition (ASR) due to their superior accuracy. However,
they often suffer from slow inference. This is primarily attributed
to the incremental calculation of the decoder. This work proposes
a partially AR framework, which employs segment-level vectorized
beam search for improving the inference speed of an ASR model
based on the hybrid connectionist temporal classification (CTC)
attention-based architecture. It first generates an initial hypothe-
sis using greedy CTC decoding, identifying low-confidence tokens
based on their output probabilities. We then utilize the decoder
to perform segment-level vectorized beam search on these tokens,
re-predicting in parallel with minimal decoder calculations. Ex-
perimental results show that our method is 12 to 13 times faster
in inference on the LibriSpeech corpus over AR decoding whilst
preserving high accuracy.

Index Terms— Decoding algorithm, autoregressive, semi-
autoregressive, hybrid CTC/attention, beam search

1. INTRODUCTION

Due to recent advances in deep learning, automatic speech recog-
nition (ASR) has witnessed remarkable achievements [1–3]. ASR
plays an essential role in facilitating human-computer interaction by
providing an interface for converting audio to text and demonstrat-
ing substantial applicability in real-world scenarios. In particular,
the RNN-Transducer model [4], which operates relatively fast and
can be extended to streaming speech recognition, is widely used
in real-world applications. Recent research in ASR has also made
significant progress in achieving higher accuracy through Attention-
based Encoder-Decoder (AED) models [5, 6]. AED models have
also been utilized in models such as Whisper [7] and speech transla-
tion [8], and their usefulness has been reevaluated. However, there
are various trade-offs that can potentially limit its application in cer-
tain scenarios. For example, one can construct an ASR system with
high accuracy through large and complex models, but this comes at
the expense of increased computational cost and inference time.

There has been extensive research devoted to alleviating the
trade-off between recognition accuracy and inference speed. In-
spired by the great success in neural machine translation [9, 10],
non-autoregressive (NAR) models have been actively studied in the
context of ASR, with the aim of achieving fast inference [11–14].
Compared to the conventional autoregressive (AR) models [15, 16],
which generates output at each step conditioned on the previously
generated outputs, NAR models can produce multiple outputs si-
multaneously. This parallel computation accelerates the inference
process of ASR, resulting in a significant reduction in inference

time compared to AR models [17]. However, it remains a challenge
to achieve the same level of recognition accuracy as AR models.
In addition, NAR models require a complex model structure or a
unique training strategy for the successful implementation of parallel
generation during inference [17].

Regarding AR decoding, the decoder is trained to learn linguis-
tic information. This allows us to utilize the relationship between
the current token and the previous token. Furthermore, it is common
to enhance accuracy by implementing the beam search algorithm,
which is a heuristic search for the best hypothesis. However, be-
cause AR requires the previous tokens to estimate the next token,
it is not possible to parallelize the inference of a single audio. As
a consequence, achieving NAR-level speed through inference paral-
lelization is challenging.

In this paper, we focus on the difference in trade-off balance be-
tween AR and NAR, and propose a new decoding method, the par-
tially autoregressive (PAR) method as a fast and accurate decoding
method. By utilizing the NAR approach and segment-level vector-
ized beam search, we can compensate for the weaknesses of both
AR and NAR. This results in a better trade-off between accuracy
and latency. In particular, we show that by optimizing the inference
operations of the pre-trained hybrid connectionist temporal classifi-
cation (CTC) and attention model, we are able to achieve NAR-level
inference speed while maintaining its high accuracy, as well as not
needing additional training of the model.

In this paper, we make the following contributions:
• We propose a new decoding framework that combines AR

and NAR.
• We demonstrate a better balance of accuracy-latency trade-off

without additional training.

2. RELATED WORKS

Numerous studies have been conducted to balance the accuracy-
latency trade-off. In general, there are two main approaches; reduc-
ing latency while preserving good accuracy or improving accuracy
while preserving fast inference speed.

To reduce latency, there are several methods to lower the com-
putational cost during inference. One such method is the pruning
technique [18–20], which reduces the number of parameters in a
trained model by identifying subnetworks with better performance
and fewer parameters. Another method is knowledge distillation [21,
22], which trains a smaller model to reduce the number of param-
eters required during inference. To further reduce the number of
search iterations, hypotheses can be predicted in a batch [23], or
the search process can be stopped prematurely [24]. In addition,
other approaches focus on utilizing machine resources more effi-
ciently [25–27], rather than relying solely on the model architecture,
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(a) Autoregressive (AR) (b) Non-autoregressive (NAR) (c) Partially autoregressive (PAR)

Fig. 1: Overview and comparison of AR, NAR, and PAR decoding. <sos> denotes the “start-of-sequence” symbol,and the mask token
is denoted by # or red characters. PAR is a hybrid of AR and NAR methods, in which the masking process is applied first, followed by
segment-level vectorized beam search.

to achieve faster processing. In this study, we parallelized the AR
decoding of single audio to achieve high-speed processing. The pro-
cess is similar to batch processing of hypotheses, but in this case, the
audio is segmented and parallelized in addition to the hypotheses.

On the other hand, we can also improve the accuracy of a low-
latency model, such as a non-autoregressive (NAR) model, though
at a lower accuracy than typical AR models. For example, by replac-
ing and inserting the model output with a mask sequence [11–13,28],
NAR can more accurately predict the target sequence compared to a
standard NAR model. We can also improve the accuracy by utilizing
an external language model [29,30]. Additionally, several investiga-
tions have been undertaken to improve both the inference speed and
accuracy, such as parallelizing the decoding process in the stream-
ing situation [31]. In our work, it is not possible to perform parallel
processing of all tokens as investigated above. However, high accu-
racy can still be achieved by utilizing AR decoding in areas where
parallel processing leads to decreased accuracy.

Research has investigated the combination of AR and NAR
methods [32]. The researchers trained a dual-mode Transformer
decoder that can be used for both NAR and AR-style processes.
They first applied NAR-style decoding to generate several hypothe-
ses, then used AR-style rescoring to select the best hypothesis. Our
approach indeed uses AR decoding after NAR decoding. However,
we utilize NAR decoding in our work to parallelize AR decoding
within a single audio, so the purpose of NAR decoding is different.

3. BACKGROUND

In this section, to provide a clear understanding of how the pro-
posed approach combines the benefits of autoregressive (AR) and
non-autoregressive (NAR) decoding, we begin with a brief overview
of the conventional encoder-decoder-based models, including hybrid
CTC-attention [33] and Mask-CTC [13]. Additionally, we investi-
gate the role of each encoder and decoder in influencing the overall
inference time for each model.

3.1. Autoregressive ASR with Hybrid CTC/Attention

AR decoding is a recursive method for estimating target sequences.
In the example shown in Fig. 1a, the token s is estimated first and

(a) AR

(b) NAR

Fig. 2: Average inference time and proportion of time spent on the
encoder, decoder, and CTC computation for (a) AR, as well as the
encoder and decoder computation for (b) NAR architectures.



Table 1: Decoding example from the LibriSpeech test-clean set (1089-134686-0002). The target sequence is initially predicted by gCTC and
replaced with masks (“#”). Consecutive masks are merged into one mask. Red tokens indicate the best hypotheses from the segment-level
vectorized beam search at each iteration. We set max iteration to 5 and have five sentences for this sample. However, we only show iterations
1 and 2 since there is no difference from the third iteration.

Masked sequence after early night# the yellow lamps would light up here and there the squalid quarter of the#el#
iteration=1 after early nightfall the yellow lamps would light up here and there the squalid quarter of the braels
iteration=2 after early nightfall the yellow lamps would light up here and there the squalid quarter of the brothels
Ground truth after early nightfall the yellow lamps would light up here and there the squalid quarter of the brothels

then used to estimate the next token, e. This simple left-to-right
beam search similar to [15] is widely used in ASR to search for the
most likely transcriptions [16].

However, due to the iterative nature of beam search, this can
greatly slow the inference time of AR decoding. For example, using
the hybrid CTC/attention architecture, the beam search requires de-
coder computation and CTC rescoring process for each search itera-
tion, hence inference time increases if the search process is iterated a
large number of times. This effect is shown in Fig. 2a, which shows
the proportion of time spent on the encoder and decoding process,
including decoder and CTC prefix score computation, as well as the
average time spent during inference for various lengths of audio in-
put. This shows that as the audio length and inference time increase,
the proportion of time spent in the decoding process also increases.

3.2. Non-autoregressive ASR with Mask-CTC

NAR decoding is a method that avoids recursively estimating the tar-
get sequences to address the problem of slow inference. There are
various architectures for this method [17], but this work focuses on
the Mask-CTC [13] model. In the Mask-CTC model, we first esti-
mate the target sequences with greedy CTC decoding (gCTC) out-
put, and then a mask is applied based on the CTC probabilities for
each token. As illustrated in Fig. 1b, the token e, a, and m is masked
due to its lower probability. Then, the masked token # is estimated
using the masked language model decoder. Since the decoder is only
required for the masked token, and the number of decoder calcula-
tions is fixed, the number of decoder computations is significantly
reduced compared to the AR method.

Fig. 2b illustrates the proportion of time spent on the encoder
and decoder, and the inference time for the Mask-CTC model. We
set the number of the decoder iterations to 10 for measurement.
Compared to Fig. 2a, we can see that the encoder’s share of NAR
is larger than AR. Considering the number of encoder computations
is always 1, a large encoder’s share means a shorter computation
time. As audio length increases, the inference time also increases,
but the impact on inference time is small. Therefore the difference
in inference time between AR and NAR can be seen as the difference
in the proportion of the encoder and decoding process.

However, there is an accuracy issue with the Mask-CTC-based
NAR decoding. If the number of masked tokens is different from the
actual number of tokens, the accuracy degrades significantly. For ex-
ample, if the correct sequence is s, e, a and the masked sequence
is s, #, #, a, the result of Mask-CTC becomes incorrect, since
it tends to assign the same numbers of tokens to the masks, e.g.,
s, e, e, a or s, e, a, a. Similarly, if the masked sequence
is s, e, #, a, it will have an insertion error. In our preliminary
experiments, we observed that almost 40% of the masked sequences
do not match the proper length. Additionally, we have observed that
insertion errors caused by the absence of a target token, occur with a
probability of 2%.

4. PARTIALLY AUTOREGRESSIVE FRAMEWORK

4.1. Partially Autoregressive Inference

To address the issues inherent in AR and NAR decoding, we pro-
pose a partially autoregressive (PAR) decoding method. Both AR
and NAR models use the CTC and decoder components, but there
is a significant difference in the trade-off balance based on usage.
AR uses an iterative process to predict the target sequence, so it does
not have an accuracy issue with target sequence length. NAR first
uses gCTC results to reduce the number of tokens that need to be
predicted with the decoder, resulting in fast inference. In PAR, we
combine NAR-style CTC usage and AR-style decoder usage to uti-
lize these two advantages fully.

The architecture of PAR is illustrated in Fig. 1c. PAR first gen-
erates a sequence of tokens by gCTC approach, then apply the mask
process using the Mask-CTC method [13]. Finally, it predicts the
tokens corresponding to a mask token using beam search, similarly
to the AR approach. To reduce the computational complexity, we
propose the segment-level vectorized beam search, which signifi-
cantly reduces the number of search iterations. By applying this
beam search, we can solve the NAR accuracy issue related to the
incorrect target length.

As an example, let us focus on a case where only one mask is in
the sequence for simplicity, and let the Pthres represent the threshold
value ranging from 0 to 1. Initially, we use the gCTC result, obtained
without the AR process. However, the resulting text can contain
errors due to the conditional independence assumption. We expect
these errors can be corrected by the AR process, where we utilize the
pre-trained decoder and beam search. To determine which tokens to
update using the AR process, we use Pthres as a filter for posterior
probability. Tokens with probability less than Pthres will be consid-
ered less confident and replaced with the mask token. Consecutive
mask tokens are merged into a single mask because we will estimate
the sequences in the AR process. Finally, we use beam search to
estimate the tokens.

We iterate the beam search for max iteration times for any audio
length, where max iteration denotes the maximum number of tokens
for one mask. The value of max iteration is highly dependent on the
threshold Pthres, where a higher value is required when Pthres is
closer to 1 and more tokens are replaced with mask tokens.

4.2. Segment-level Vectorized Beam Search

The beam search process explained in the previous section focused
on the case where there is a single mask token. However, in practice,
multiple mask tokens may exist for a given sequence. To handle
multiple masks, we parallelize the decoding of masks by extending
the vectorized beam search [23]. The vectorized beam search is an
extension of traditional beam search that allows for the calculation
of B beams simultaneously. In an offline scenario, it can also be
extended to the parallel computation of S utterances. In other words,



Algorithm 1 Segment-level Vectorized Beam Search

Beam size: B and the number of masks: S
Encoder output: X
Initialize decoder cache: C
Initialize a S-length list for ended hypotheses: FS

Initialize hypotheses YS,B and end-of-sequences ES

for i = 1 to max iteration do
Calculate probability prob = Decoder(YS,B , X,C)
Update hypotheses YS,B by top-k method.
for s = 1 to S do

for b = 1 to B do
if last token of Ys,b is Es then

Fs.push(Ys,b)
end if

end for
end for

end for
for s = 1 to S do

Replace s-place mask in the masked sequence with best hy-
pothesis in Fs

end for

S × B hypotheses can be calculated as a single batch at each step.
In our work, we treat the value S as the number of masks to enable
parallel computation of all mask tokens.

The overview of the proposed segment-level vectorized beam
search is described in Algorithm 1. First, we initialize S × B hy-
potheses YS,B from the gCTC result and masked sequence. Initially,
there is only one hypothesis, so Ys,1 contains the gCTC result up
to the corresponding mask as the hypothesis. The rest of the hy-
potheses, from Ys,2 to Ys,B , are initialized with dummy hypotheses.
Additionally, we store the next token for each mask in an end-of-
sequence list, ES . Next, we calculate the probabilities of the next
token for each hypothesis and update YS,B . We then check, for each
mask s, if Es is predicted as the next token for each of the hypothesis
from Ys,1 to Ys,B . We push the ended hypothesis to the list of ended
hypotheses, Fs. Finally, after iterating max iteration times, we
replace each mask token with the best hypothesis in Fs. To simplify
the implementation, we apply padding to the missing hypotheses so
that the number of hypotheses remains constant, similar to [34].

Table 1 shows an example of the decoding process of a sample in
the LibriSpeech test-clean set. After calculating the gCTC result and
merging the consecutive masks, there are three masks in this exam-
ple. Since the beam size B is set to 10, there are 30 hypotheses. In
the first iteration, we correctly estimated the first and third mask to-
kens. Since we used the BPE token for this model, the red characters
fall, bra, and swere estimated in a single iteration. In the second
iteration, we successfully predicted the second mask, which has two
corresponding tokens: bro and th. This example demonstrates that
it is possible to predict multiple tokens from a single mask token, en-
abling us to handle the accuracy issue in NAR due to incorrect target
length. Moreover, the overall number of iterations in beam search
is significantly lower than in AR by utilizing the segment-level vec-
torized beam search, indicating that PAR is effective in avoiding AR
issues.

We determine whether to end the beam search by observing the
next token of the mask token. For example, in the example in Fig. 1c,
when the first mask detects a space token _ and the second mask
detects b, the hypothesis is terminated and pruned from the overall
search.

5. EXPERIMENT

5.1. Experimental setup

5.1.1. Models

To test the effectiveness of PAR, we compare both its performance
and inference speeds of various algorithms to AR and NAR. As
PAR decoding can be seen as an optimization of AR decoding, PAR
can be tested using pre-trained AR models. As a result, for both
AR and PAR inference, we used E-Branchformer models [6] that
were pre-trained on the following datasets and are publicly avail-
able on the HuggingFace hub: AISHELL-11, JSUT2 LibriSpeech-
100h3, LibriSpeech-960h4, TED-LIUM25. Note that we used two
types of models trained with LibriSpeech: a model trained with the
entire dataset of 960 hours of audio (LS-960), and another model
trained with the subset of 100 hours of audio (LS-100). The model
trained with the LS-100 dataset is considered less accurate than the
one trained with LS-960, so we used LS-100 to investigate the effect
of gCTC accuracy on PAR decoding. For comparison against NAR
decoding, we trained models using the Conformer [5] architecture
on LS-100. We prepared AR and NAR models with approximately
30 million parameters for a fair evaluation. We used the Conformer
model to test if there would be any differences caused by encoder
architecture. All the models were trained and evaluated using the
ESPnet toolkit [35].

5.1.2. Decoding setup

For AR decoding, we set the beam size to 10, the CTC weight to 0.3,
and employed the vectorized beam search [23]. For PAR decoding,
the beam size is set to 10, but note that for PAR inference, we do not
compute the CTC prefix score, so the CTC weight is set to 0. We
also set the Pthres to 0.95 and max iteration to 5 for PAR decoding.
The decoding speed was measured using a single RTX 2080 Ti.

5.1.3. Evaluation Datasets

We used several datasets of different languages for evaluation,
described in Table 2. For this study, we used LibriSpeech and
TED-LIUM2 as English datasets, JSUT as a Japanese dataset, and
AISHELL-1 as a Mandarin dataset. For LibriSpeech, we evaluated
dev and test sets, each containing clean and other sets. Each of
the five evaluation datasets was evaluated using the AR/PAR model
trained on the equivalent dataset. For example, the E-branchformer
model pre-trained on the AISHELL-1 dataset was evaluated using
the AISHELL-1 evaluation set.

5.1.4. Metrics

We evaluated accuracy with word error rate (WER) or character error
rate (CER) according to the dataset. We used the real-time factor
(RTF) to measure the inference speed. The maximum memory usage
of the GPU during inference is also measured to observe the effect
of mask parallel decoding. For the RTF and memory usage, we took
the mean of all evaluation sets. The speedup column compares the
RTF values with PAR compared to AR.

1https://huggingface.co/pyf98/aishell e branchformer
2https://huggingface.co/pyf98/jsut e branchformer
3https://huggingface.co/pyf98/librispeech 100 e branchformer
4https://huggingface.co/asapp/e branchformer librispeech
5https://huggingface.co/pyf98/tedlium2 e branchformer



Table 2: Dataset descriptions. The order of evaluation sets corresponds to the error results in Table 3. †Data split based on ESPnet [35].

Dataset Language Hours Token Metric Evaluation Sets

AISHELL-1 [36] zh 170 char CER dev / test
JSUT [37] ja 10 char CER dev / test (†)
LS-100 [38] en 100 BPE WER dev-{clean,other} / test-{clean,other}
LS-960 [38] en 960 BPE WER dev-{clean,other} / test-{clean,other}
TED-LIUM2 [39] en 210 BPE WER dev / test

Table 3: Comparison of WER, CER, RTF, elapsed time, and memory usage for each model. RTF, inference time, and memory usage compare
mean and standard deviation (in brackets) values. The symbols (↓) and (↑) indicate a lower or higher number is preferable, respectively.

AR PAR

Dataset RTF (↓) Error [%] (↓) Memory Usage [MB] RTF (↓) Error [%] (↓) Memory Usage [MB] Speedup (↑)

AISHELL-1 0.027 (0.006) 4.6 / 5.0 176.3 (4.2) 0.010 (0.006) 4.6 / 4.9 176.3 (5.9) 2.70×
JSUT 0.129 (0.021) 11.8 / 13.2 208.4 (6.2) 0.018 (0.008) 12.0 / 13.3 199.4 (6.4) 7.17×
LS-100 0.111 (0.038) 6.2 / 16.8 / 6.4 / 17.1 197.5 (25.3) 0.009 (0.006) 6.5 / 17.2 / 6.7 / 17.7 210.6 (81.6) 12.33×
LS-960 0.110 (0.039) 2.2 / 5.2 / 2.5 / 5.2 528.4 (44.8) 0.008 (0.006) 2.2 / 5.5 / 2.5 / 5.6 550.5 (132.6) 13.75×
TED-LIUM2 0.182 (0.060) 7.3 / 7.1 281.1 (47.7) 0.012 (0.008) 7.6 / 7.3 474.8 (298.9) 15.17×

Fig. 3: Average inference time and proportion of time spent on the
encoder and decoder computation during PAR decoding. The de-
coder’s share is greatly reduced from AR.

5.2. Results

5.2.1. AR and PAR

The evaluation results comparing AR and PAR are shown in Table 3.
Focusing on accuracy, it is evident that compared to AR, PAR shows
a similar WER or CER for all models and evaluation datasets. The
beam search process can properly update the tokens that gCTC can-
not accurately estimate. While the accuracy has slightly degraded,
this is due to the accuracy of the gCTC result. We will explain it fur-
ther in detail in the following limitations section 5.3.1. In terms of
the RTF, we have achieved approximately 10 times faster inference
compared to AR. In particular, since the inference speed does not
largely depend on the audio length, the standard deviation is approx-
imately 17.5% of that of AR decoding. This feature is more effec-
tive for longer audio and in the test-clean dataset, and we observed
89.7× speed up for 29 second audio as the maximum speedup. Note
that this speedup depends on several factors, such as the number of
masks or input audio length.

Fig. 3 shows the proportion of time spent on the encoder and
decoder process and the inference time for each audio length, eval-
uated on the LS-960 dataset. Compared to Fig. 2a, the decoder-to-

encoder ratio is significantly reduced. Furthermore, we can observe
that the increase in inference time with respect to audio length is
small, similar to that of NAR. This is because, in this work, we set
the max iteration to 5, which means that the number of beam search
iterations is limited to a maximum of 5. Moreover, if there are no
masks, the inference is simply a gCTC result, where we do not run
decoder computation. Therefore, the AR process does not have a
high computational cost for long audio inputs. We can confirm that
the inference speed of PAR depends on the computation speed of
each model, such as the encoder or decoder, considering that the in-
ference time slightly increases with audio length and the number of
search iterations is fixed. The computation speed of the encoder or
decoder depends on the audio length, but its impact on the overall
inference speed is small.

We investigated the correlation between the WER and RTF
as shown in Fig. 4, by changing the beam size from 1 to 20, and
measured the WER and RTF using the test-clean dataset from
Librispeech on the E-Branchformer based pre-trained models for
LS-100 and LS-960 datasets. Comparing the AR models, the RTF
differs greatly because the model sizes are different, however, the
RTF of the PAR method remained almost the same. This is because
the inference time of PAR depends on the computation time of the
models itself. Therefore, the PAR curves have a significantly lower
RTF compared to the AR curves, and the change in RTF is negligible
as the beam-size changes, hence the narrower width. Although the
RTF remains constant, we still see the differences in WER for the
PAR models, especially with the pre-trained model of the LS-100
dataset compared to the model for the LS-960 dataset. This is due to
the accuracy degradation problem we mention in Section 5.3.1.

5.2.2. NAR and PAR

Comparing NAR and PAR, we can see that PAR is not as fast as
NAR, as shown in Table 4. The number of decoder iterations is 10,
which is larger than max iteration for PAR, but it performs faster
than PAR. One reason for this is that the size of the decoder input
is different. In this work, we added a dummy hypothesis as men-
tioned in Section 4.2. As a result, the batch size of decoder input
for PAR decoding is S×B, where the batch size for NAR decoding
is S. Therefore, it seems that the computation time per decoder is



Fig. 4: The comparison of WER and RTF measured using the AR
and PAR methods. We used the models trained with LS-100 and
LS-960 datasets and measured by changing the beam size between 1
and 20.

shorter for Mask-CTC NAR, and the resulting decoder processing
time becomes faster.

In terms of accuracy, we can see that PAR outperforms NAR.
Improvement in performance is similar to that of E-branchformer
models in both RTF and WER, and it was confirmed that there was
no difference in improvement due to architecture differences. From
these results, it is evident that applying the PAR method can solve
the built-in accuracy issue for the NAR method we mentioned in
Section 3.2. In particular, we can confirm that PAR obtains a speed
between AR and NAR but achieves similar accuracy to AR. There-
fore, a new trade-off balance that is not present in AR and NAR has
been realized.

Table 4: Comparison with NAR. The speedup shows the speedup
from the AR decoding.

Model RTF (↓) WER [%] (↓) Speedup (↑)

AR CTC/Attention 0.198 (0.080) 6.7 / 18.3 / 7.0 / 18.6 1.00×
NAR CTC 0.005 (0.004) 7.7 / 21.0 / 7.9 / 21.4 39.60×

Mask-CTC 0.008 (0.005) 7.1 / 20.8 / 7.5 / 21.0 24.75×
PAR CTC/Attention 0.014 (0.009) 6.2 / 18.5 / 6.6 / 18.7 14.14×

5.3. Limitations

5.3.1. Accuracy with PAR

The accuracy of PAR can be degraded if the gCTC result is not ac-
curate. If the result of gCTC is incorrect with high confidence, we
cannot use the AR process to refine the gCTC result. From the com-
parison of the LS-100 and LS-960 models in Table 3, we can see that
more accuracy degradation can occur with the LS-100 model.

The accuracy may also degrade at a higher Pthres because the
number of target tokens per mask may exceed max iteration. Since
we stop the beam search after max iteration iterations, if the number
of target tokens exceeds max iteration, we cannot predict the entire
sequence for one mask. Therefore, the accuracy may be degraded if
the Pthres is closer to 1.0. Fig. 5 describes the relationship between
WER and Pthres for max iteration. Using a max iteration of 5, we
observe the accuracy degrades at higher Pthres levels. This issue is
caused by the lack of beam search iterations, so to solve this prob-
lem, we need to increase the max iteration. In Fig. 5, we increased
the max iteration to 8 and observed a more accurate result.

Fig. 5: The relationship between the WER and Pthres. We evalu-
ated by changing the Pthres from 0.95 to 0.999. We used the E-
Branchformer-based pre-trained model for LS-960.

5.3.2. Memory usage

It is important to note the standard deviation of memory usage in
Table 3 increases greatly compared to AR. Since the decoder process
in PAR is computed simultaneously for all masks, we need more
GPU memory if there are many masks. Therefore if the number
of masks increases due to long audio inputs, high Pthres, or low
accuracy of the gCTC result, we may get an out-of-memory error
as GPU memory is exceeded during inference. Considering that the
inference of all masks does not depend on each other, it is possible
to alleviate this issue by using multiple GPUs to perform inference.

5.3.3. Segment-level Vectorized Beam Search

If a masked sequence contains multiple masks, the predicted tokens
for the second or later masks may not be accurate due to the inac-
curacy of the tokens predicted for the first mask. For example, in
Fig. 1c, the masked sequence is se#_cuc#ber, where we have
two masks at the positions of tokens e and am. Since we use the
gCTC result to predict masked tokens, the decoder input for estimat-
ing the mask for the am part becomes see_cuc, which is incorrect,
instead of the correct sea_cuc. This incorrect decoder input might
impact the accuracy of the prediction. However, considering that
even the AR decode may also have an incorrect decoder input, we
believe PAR can search the same hypothesis with AR by utilizing
the beam search.

6. CONCLUSION

In this work, we propose a partially autoregressive framework to ob-
tain a new trade-off balance between accuracy and latency. With our
novel architecture design to compensate for the weakness inherent
in each NAR and AR, PAR is a decoding method that takes advan-
tage of the strengths of these two methods. In our experiments, we
observed that the AR model can be inferred at NAR-level speeds
without sacrificing accuracy. Notably, the LS-960 pre-trained model
achieved a 13.75× speedup with the same WER on the test-clean
set. We believe that using PAR can significantly improve the usabil-
ity of the traditional hybrid CTC/Attention model. Our framework
has limitations, such as memory usage issues, that restrict the scenar-
ios where PAR can be applied. In future work, we plan to extend our
framework to edge devices with limited computational resources.
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Schlüter, and Shinji Watanabe, “End-to-end speech recogni-
tion: A survey,” arXiv preprint arXiv:2303.03329, 2023.

[4] Alex Graves, “Sequence transduction with recurrent neural
networks,” in Proc. ICML, 2012.

[5] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recognition,”
in Proc. Interspeech, 2020, pp. 5036–5040.

[6] Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan, Prashant
Sridhar, Kyu J. Han, and Shinji Watanabe, “E-Branchformer:
Branchformer with enhanced merging for speech recognition,”
in Proc. SLT, 2023, pp. 84–91.

[7] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever, “Robust speech
recognition via large-scale weak supervision,” 2022.

[8] Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki Karita,
Nelson Yalta, Tomoki Hayashi, and Shinji Watanabe, “ESPnet-
ST: All-in-one speech translation toolkit,” in Proc. ACL, On-
line, 06 2020, pp. 302–311, Association for Computational
Linguistics.

[9] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and
Richard Socher, “Non-autoregressive neural machine transla-
tion,” in Proc. ICML, 2018.

[10] Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang,
Tao Qin, and Tie-yan Liu, “A survey on non-autoregressive
generation for neural machine translation and beyond,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2023.

[11] Nanxin Chen, Shinji Watanabe, Jesús Villalba, Piotr Żelasko,
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