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ABSTRACT

Whispering is a distinct form of speech known for its soft,
breathy, and hushed characteristics, often used for private
communication. The acoustic characteristics of whispered
speech differ substantially from normally phonated speech
and the scarcity of adequate training data leads to low auto-
matic speech recognition (ASR) performance. To address the
data scarcity issue, we use a signal processing-based tech-
nique that transforms the spectral characteristics of normal
speech to those of pseudo-whispered speech. We augment an
End-to-End ASR with pseudo-whispered speech and achieve
an 18.2% relative reduction in word error rate for whispered
speech compared to the baseline. Results for the individual
speaker groups in the wTIMIT database show the best results
for US English. Further investigation showed that the lack of
glottal information in whispered speech has the largest impact
on whispered speech ASR performance.

Index Terms— Whispered speech, pseudo-whisper, end-
to-end speech recognition, wTIMIT, signal processing

1. INTRODUCTION

Whispered speech differs substantially from normally phonated
speech. In whispered speech, vocal fold vibrations are absent,
resulting in voicelessness [1], which leads to reduced en-
ergy and intensity [2]. Additionally, the airflow in whispered
speech is often greater than in normal speech, which leads
to breathy speech [3]. Whispering is often used in private
conversations or in libraries or meetings. Whispered speech
also occurs in pathological speech contexts: Speech from in-
dividuals who face vocal system challenges such as diseases
affecting the vocal folds or post-larynx surgery [4, 5] is of-
ten whisper-like. Moreover, whispering has been found to be
beneficial in reducing or avoiding stuttering [6].

While human listeners can largely comprehend the lin-
guistic information in whispered speech [7], automatic speech
recognition (ASR) systems face significant challenges in ac-
curately transcribing whispered speech compared to normal
speech [2]. The poorer performance of ASR systems on whis-
pered speech is due to the large acoustic differences between
whispered and normal speech, e.g., pitch differences due to
reduced vocal fold vibrations [8], up-shifted formant frequen-

cies [9, 10], wider formant bandwidth [9], reduced phonetic
cues, and a lower signal-to-noise ratio [2], and most impor-
tantly the limited amount of training data, which makes it
challenging to develop robust ASR models tailored to whis-
pered speech.

Several approaches have been proposed in the litera-
ture to improve whispered speech ASR. For hybrid ASR
systems, these include using Teager Energy Cepstral Co-
efficients instead of traditional Mel-frequency cepstral co-
efficients (MFCC) [11], showing large improvements for
Serbian whispered speech. In [9] the authors proposed a
method to generate pseudo-whispered speech segments using
denoising autoencoders showing considerable performance
improvements on their own dataset. For End-to-End (E2E)
systems, Chang et al. [12] showed that a system trained with
a frequency-weighted SpecAugment, a frequency-divided
Convolutional Neural Network extractor, a layer-wise transfer
learning approach, and pre-training outperformed their base-
line with about 44% relative improvement in character error
rate on whispered speech from wTIMIT [8]. The work in [13]
generated whispered speech from normal speech using Gen-
erative Adversarial Networks-based voice conversion (VC)
techniques for training data augmentation obtaining the cur-
rent best results on wTIMIT: 29.4% word error rate (WER).
Other methods used multimodal data including articulatory
cues from motion data [14, 15] and visual information [16].
Although these techniques show that it is possible to im-
prove the recognition of whispered speech, there is still a
performance gap with respect to normal speech.

In this paper, we aim to 1) understand the (detrimental)
effects of the specific acoustic characteristics of whispered
speech on whispered speech ASR performance 2) and deal
with the data scarcity problem by generating artificial whis-
pered speech to augment the training data for improved E2E
whispered speech ASR. To that end, we propose a hand-
crafted signal-processing method to convert normal speech
to pseudo-whispered speech in two independent steps. These
steps allow us to create “intermediate forms” of normal-to-
whispered speech, which in turn allow us to investigate the
effect of the specific acoustic characteristics of whispered
speech on whispered speech ASR.

For our experiments, we use the whispered TIMIT speech
dataset [8], which has two speaker groups with different ac-
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cents, North American English and Singaporean English. [8]
showed that the whispered speech recognition performance
was dependent on the accent group, with worse results for
the Singaporean English speech. Here we, to the best of our
knowledge, for the first time, investigate the effect of different
accents (speaker groups) in E2E whispered speech ASR.

2. METHODOLOGY

Section 2.1 describes the three datasets that were used for test-
ing, training, and for generating the pseudo-whispered speech
in the experiments. Section 2.2 provides a brief comparison
of normal versus whispered speech. Section 2.3 describes our
approach to the conversion from normal to pseudo-whispered
speech. Section 2.4 explains the experimental setup.

2.1. Datasets

2.1.1. wTIMIT

The Whispered TIMIT (wTIMIT) corpus [8] consists of 450
phonetically balanced sentences in both normal (wTIMIT-
n) and whispered (wTIMIT-w) speech from speakers from
two accent groups: US and Singaporean English with 28 (12
male and 16 female) and 20 (12 male and 8 female) speakers,
respectively. wTIMIT thus consists of four speaker groups:
NUS: Normal speech with US accent; NSG: Normal speech
with SG accent; WUS: Whispered speech with US accent;
WSG: Whispered speech with SG accent.

wTIMIT was originally partitioned into a training and
test set [8]. To prevent overfitting our E2E models, a re-
partitioning of wTIMIT into training, development, and test
sets is needed. Preliminary experiments performed in [12]
showed that a partitioning of the training and test data where
there was no speaker overlap in the training and test set,
degraded performance by approximately 10% relatively com-
pared to a partitioning of the training and test data where
the same speaker could occur in both. This relatively small
difference in performance was attributed to the pitch being
mostly absent in whispered speech. Also given the fact that
partitioning by speakers can lead to less data that can be
used as training data, [12] suggested that prohibiting speaker
overlap between the training and test sets is unnecessary.
Following [12], we re-partitioned wTIMIT into a training,
development, and test set allowing speaker overlap. Each data
set consisted of 400/25/25 sentences, respectively, split from
the 450 sentences.

2.1.2. TIMIT

The 450 prompts of wTIMIT were obtained from the pho-
netically balanced section (SX) of the TIMIT corpus [17],
which makes TIMIT a good option as additional training data
for normal speech and to generate pseudo-whispered speech.

TIMIT contains US English read speech. To validate the train-
ing process, we also evaluate our models on TIMIT test set.

2.1.3. LibriSpeech

The LibriSpeech corpus [18] consists of English read speech
from audiobooks. LibriSpeech has recently been used as an
additional (pre)training dataset in the recent E2E whispered
speech studies [12, 13]. We therefore used its 100 hours subset
to generate pseudo-whispered speech and augment the train-
ing data.

2.2. Differences between normal and whispered speech

Figure 1 shows the spectrograms of a female speaker from
the wTIMIT corpus speaking the same utterance in a normal
voice (top panel) and while whispering (bottom panel). Com-
parison of the spectrograms shows that whispered speech ap-
pears to have no formant information, less energy in partic-
ularly the lower frequency bands, and altogether a different
acoustic profile compared to normal speech (see also [12, 19,
20]). These differences are primarily due to the altered vocal
production mechanism and reduced vocal fold activity during
whispering [8]. Since in whispered speech voicing is signif-
icantly reduced or even absent, whispered speech clearly has
less distinct harmonic patterns, which makes it challenging to
identify individual formants in the spectrogram.
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Fig. 1. Spectrograms of the sentence “I gave them several
choices and let them set the priorities.” produced by the same
speaker in a normal and whispered voice. Example is taken
from the wTIMIT corpus.

2.3. Proposed pseudo-whispered speech conversion

Our proposed method to convert normal to pseudo-whispered
speech is based on that of Cotescu et al. [21] who proposed
a handcrafted digital signal processing (DSP) recipe that
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Fig. 2. The proposed pipeline for pseudo-whispered speech conversion, where GFM-IAIF-GC is GFM-IAIF-based glottal can-
cellation and MAF is moving average filtering. Input is normal speech and the output is pseudo-whispered speech (PW).

converts normal speech into whispered speech in three steps
by making acoustic modifications to the normal speech: 1)
remove the glottal contribution using spectral subtraction;
2) shift the first formant using frequency warping; 3) in-
crease the formant bandwidth using moving average filtering.
The WORLD vocoder [22] is used to extract features for
re-synthesizing high-quality speech.

In step 1, instead of using spectral subtraction as in [21],
we implemented a glottal cancellation method, which does
not require parameters for modelling glottal flow but re-
moves the glottal information directly from a given nor-
mal speech signal. Moreover, preliminary experiments using
the method from [21] showed that moving average filtering
not only widens the formant bandwidth but also up-shifts
the formant frequencies. Hence, our proposed method for
pseudo-whispered speech conversion is implemented in 2
steps, which is also shown in Figure 2:

1. Removing the glottal source using GFM-IAIF-based
Glottal Inverse Filtering (see section 2.3.1),

2. Increasing the formant bandwidth and up-shifting the
formant frequencies using moving average filtering (see
section 2.3.2).

2.3.1. Step 1: Removing glottal information

Under the assumption of the source-filter model [23], a
speech signal is composed of an excitation E, vocal tract
filter V , lip radiation filter L, and glottis component G,
which can be written in the frequency domain as S(f) =
E(f) · G(f) · V (f) · L(f). Glottal Inverse Filtering (GIF)
estimates the source of voiced speech, specifically the glottal
volume velocity waveform. Iterative Adaptive Inverse Filter-
ing (IAIF) [24] is one of the most widely used algorithms
for GIF. IAIF successively models the vocal tract filter V (f),
lip radiation L(f), and glottis G(f) using linear prediction
(LP) analysis, then removes their effect by inverse filtering.
After two iterations, it ultimately removes V (f) and L(f)
to leave an estimate of the glottal flow g(n), where n is the
discrete-time index.

The Iterative Adaptive Inverse Filtering method based on
a Glottal Flow Model (GFM-IAIF) [25] is an improved ver-
sion of IAIF. It constrains glottal flow by a 3rd order spectral
model G(z) =

{(
1− az−1

) (
1− a∗z−1

) (
1− bz−1

)}−1
.

GFM-IAIF performs competitively for normal phonations
[26], which makes it suitable for our case: cancelling glottal
contribution of normally phonated speech. In our method,
we employ GFM-IAIF to extract glottal flow, after which the
effect of the glottis is cancelled by inverse filtering, and the
output is a speech signal without glottal contribution.

Subsequently, F0, the spectral envelope (Sp), and the ape-
riodic spectral envelope (Ap) are extracted from the speech
signal without glottal information using the WORLD vocoder.
To ensure that the pitch is removed entirely, we set the F0 to
zero and Ap values to all units.

2.3.2. Step 2: Changing formant information

To increase the formant bandwidth and up-shift the formant
frequencies, we employ moving average filtering on the spec-
tral envelop Sp extracted by the WORLD vocoder with a 400
Hz-wide triangular window across all frequency axes and get
a new spectrogram Spmaf .

The three adapted features, zero F0, Spmaf and unit Ap
are passed to the WORLD vocoder for re-synthesising the
pseudo-whispered speech PW. Figure 3 shows an example of
the conversion results, it shows a zoomed-in spectrogram of
normal speech (left panel), whispered speech (middle panel)
and pseudo-whispered speech (right panel).
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Fig. 3. Spectrogram of normal (left panel), whispered (mid-
dle panel), and pseudo-whispered speech (right panel) of the
word “priorities” from the same utterance as in Figure 1.

2.4. Experimental setup

All E2E models were trained with the ESPNet toolkit [27].
As speech files in TIMIT and LibriSpeech are recorded with



a sampling rate of 16 kHz, all speech files in wTIMIT were
downsampled from 44.1 kHz to 16 kHz. The front-end fea-
tures are 80 dimensional log-mel filterbank features with 3-
dimensional pitch features used for network training.

2.4.1. Exp. 1: Baseline models

First, we trained a strong baseline by investigating the

1. Training data: TIMIT plus the normal speech from
wTIMIT (TM+wTM-n) vs. TIMIT plus both normal
and whispered speech from wTIMIT (TM+wTM-wn);

2. Data augmentation: none vs. speed perturbation (SP)
[28] at 90% and 110% of the original rate of the train-
ing data and SpecAugment [29] which was used with
a maximum width of each time and frequency mask of
T = 20, F = 10, respectively;

3. Dictionary types and sizes: six models used character-
level dictionaries, and the remaining two used a Byte
Pair Encoding (BPE) token dictionary [30];

4. Model architectures: we compared the Hybrid-CTC
[31] and Conformer [32] architectures (from the Lib-
riSpeech recipe from the ESPNet framework).

In total, eight models were trained. The models were eval-
uated on the TIMIT and wTIMIT-n and wTIMIT-w datasets.
Performance was measured in terms of Word Error Rate
(WER) for both accent groups separately.

2.4.2. Exp. 2: Pseudo-whisper data augmentation

The second experiment investigated the effect of adding
pseudo-whispered (PW) data to the training data on whis-
pered speech ASR performance. To that end, the pseudo-
whispered speech was created from TIMIT, wTIMIT-n, and
LibriSpeech-100h and each was successively added to the
training data: first only PW speech from TIMIT (PW(TM)),
then the PW speech from wTIMIT-n (PW(wTM-n)) was
added, and finally also the PW speech from LibriSpeech-
100h (PW(Libri100)). Each set of training data was used
to train both the Hybrid-CTC and Conformer architectures,
yielding six models. The effect of the pseudo-whisper data
augmentation on the two accent groups was also analysed.

2.4.3. Exp. 3: Acoustic characteristics of whispered speech

In the final experiment, the effect of the specific acous-
tic characteristics of whispered speech on whispered speech
ASR performance was investigated by comparing the recogni-
tion results on speech in which either the glottal information
was removed or in which the formant bandwidth had been
widened and the formant frequencies shifted.

To that end, we individually applied each of the two
steps of our proposed pseudo-whispered speech conversion
method on the normal test set in wTIMIT and synthesized the

modified speech. Figure 4 shows the pipelines of generating
speech without glottal contribution (referred to as NG) and
speech with widened formant bandwidth and shifted formant
frequencies (referred to as WB). The pipelines are subsets of
the full pipeline in Figure 2.

The modified speech was subsequently tested using three
models: the Hybrid-CTC architecture trained on only nor-
mal speech (row TM+wTM-n in Table 1); trained on normal
and whispered speech (row TM+wTM-wn in Table 1); and
trained on normal, whispered, and pseudo-whispered speech
(TM+wTM-wn+PW(TM+wTM-n)). SP and SpecAug were
not applied to all three models in this final experiment.
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Fig. 4. The pipeline for generating speech with only glot-
tal cancellation (top panel) and with only a widened formant
bandwidth and shifted formant frequencies (bottom panel).

3. RESULTS

3.1. Exp. 1: Baseline models

Table 1 presents the results of the baseline models on the
TIMIT and wTIMIT test sets for the two accent groups sepa-
rately and averaged over both accent groups. Only training on
normal speech (TM + wTM-n) gave a WER of 40% (Hybrid-
CTC) and 52% (Conformer) on the TM test set, while the
performance on wTIMIT-n averaged over both accent groups
(NAvg) showed a fairly large WER drop of 10-20%. The per-
formance on whispered speech is much lower than that on
normal speech, with WERs of over 100%. Including whis-
pered speech in the training data (TM+wTM-wn) improved
recognition performance for whispered speech substantially,
and reduced the gap with performance on normal speech to
less than 10% for both architectures, but at the cost of a slight
increase in WER for normal speech. This clearly indicates that
using matched training and test sets improves performance.

Applying SP and SpecAug, surprisingly, did not yield
improvements for the Hybrid-CTC model; however, it led to
a substantial (more than 25%) improvement for both normal
and whispered wTIMIT speech for the Conformer model.
This suggests that as the training data size increases, the
Conformer models outperform Hybrid-CTC models.

When using BPE, the Conformer outperformed the Hybrid-
CTC on all three test sets overall and for the individual accent



Table 1. WER (%) of the eight baseline ASR systems on the TIMIT and wTIMIT test sets for the two accent groups separately.
NAvg is normal speech averaged; WAvg is whispered speech averaged.

Details TM wTIMIT

Training Augmentation Hours Architecture Token #Token Test NUS NSG WUS WSG NAvg WAvg

TM+wTM-n None 28.9 Hybrid-CTC Char 29 40.6 45.4 59.1 99.4 105.2 51.2 101.9
Conformer Char 29 52.9 73.4 82.7 102.5 109.6 77.4 105.5

TM+wTM-wn None 55.1 Hybrid-CTC Char 29 41.2 51.5 62.8 55.3 74.4 56.3 63.5
Conformer Char 29 44.7 78.0 86.4 81.4 92.0 81.6 85.9

TM+wTM-wn SP + SpecAug 166.3 Hybrid-CTC Char 29 42.3 52.0 67.3 57.0 77.7 58.5 65.9
Conformer Char 29 38.3 49.6 58.3 53.2 68.3 53.3 59.7

TM+wTM-wn SP + SpecAug 166.3 Hybrid-CTC BPE 100 44.6 41.2 55.8 44.1 65.9 47.4 53.4
Conformer BPE 100 34.1 34.9 41.8 37.7 53.5 37.9 44.4

groups, achieving WERs of 37.9% and 44.4% for normal and
whispered wTIMIT speech, respectively. These models were
selected as our baseline models.

3.2. Exp. 2: Pseudo-whisper data augmentation

Table 2 presents the results of the pseudo-whispered speech
experiments. For ease of comparison, the results of the base-
line Hybrid-CTC and Conformer models are added (iden-
tical to those reported in Table 1. Adding only 3 hours of
pseudo-whispered data from TIMIT (with speed perturbation
yielding 9 hours; see rows PW(TM)) improved the aver-
age WER of whispered speech compared to the baseline
for both models, with the largest relative improvement for
the Conformer model (18.2%). Interestingly, adding pseudo-
whispered speech also improved the WER on the normal
wTIMIT speech was reduced for both models.

Adding the pseudo-whispered speech of the wTIMIT-n
training set (PW(TM+wTM-n)) further improved recog-
nition performance for the Hybrid-CTC model but perfor-
mance for the Conformer model deteriorated for the normal
and whispered speech. Recognition performance on the TM
test set was again similar to the baseline models. Further
adding the PW speech from LibriSpeech (PW(TM +wTM-
n+Libri100)) gave the best recognition performance for nor-
mal wTIMIT speech, but it deteriorated the performance for
the whispered speech. The best whispered speech results were
obtained with the Conformer model trained with (only) the
pseudo-whispered TIMIT speech added.

3.3. Analysis on different speaker groups

Comparing the recognition performance on normal and whis-
pered speech for the two accent groups in the wTIMIT test
set showed that Singaporean English normal and whispered
speech is consistently worse recognised than US English. This
performance gap is the largest for whispered speech.

Adding pseudo-whispered speech always improved the
recognition performance of normal and whispered US and
Singaporean English, even if the pseudo-whispered speech
was based on US English only (PW(TM)). In fact, adding
only the US English pseudo-whispered speech from TM gave
the best result for NSG and WSG and reduced the perfor-
mance gap with US English to 3.1% for normal speech and
7% for whispered speech for the Conformer, i.e., the smallest
performance gap for whispered speech for the Conformer.

Interestingly, adding pseudo-whispered speech from Sin-
gaporean English did not further improve recognition perfor-
mance for NSG and WSG for the Conformer, although it did
further improve performance for the Hybrid-CTC model, giv-
ing the best results for normal and whispered Singaporean En-
glish for the Hybrid-CTC model.

When adding the pseudo-whispered US English from
LibriSpeech (PW(Libri-100)) as additional training data, the
performance on whispered US English (WUS) improved to
30.7%, the best result, but it adversely affected the perfor-
mance on WSG, widening the gap between US and Singa-
porean English to almost 20% for the Conformer model and
even more for the Hybrid-CTC model. Thus, adding a large
amount of pseudo-whispered speech based on US English
negatively impacted the recognition of Singaporean English
normal and whispered speech.

3.4. Exp. 3: Acoustic characteristics of whispered speech

Table 3 presents the results of the experiments on normal
speech, real whispered speech, pseudo-whispered (PW)
speech and the intermediate forms of whispered speech (see
section 2.4), i.e., normal speech without glottal contributions
(NG) and normal speech with widened formant bandwidth
and shifted formant frequencies (WB). Note that to create
PW, both NG and WB are applied.

When the model is trained on only normal speech, the gap
between Normal and NG (>25%) is larger than the one be-



Table 2. WER (%) on the TIMIT and wTIMIT test sets when using pseudo-whispered training data generated from TIMIT,
wTIMIT-n, and LibriSpeech-100h. Relative improvement (%) of the proposed method compared to the baseline is also reported.
Results of the chosen baseline Hybrid-CTC and Conformer models are added (identical to those reported in Table 1.

Details TM wTIMIT Relative Imp.

Training Data Hours Architecture #Token Test NUS NSG WUS WSG NAvg WAvg NAvg WAvg

Baseline 166.3 Hybrid-CTC 100 44.6 41.2 55.8 44.1 65.9 47.4 53.4 - -
Conformer 100 34.1 34.9 41.8 37.7 53.5 37.9 44.4 - -

+PW(TM) 175.8 Hybrid-CTC 100 46.5 40.1 52.4 41.2 59.9 45.4 49.2 4.2 7.9
Conformer 100 36.4 32.1 35.2 33.4 40.1 33.4 36.3 11.9 18.2

+PW(TM+wTM-n) 253.6 Hybrid-CTC 100 43.4 36.1 44.3 38.0 51.8 39.6 43.9 16.5 17.8
Conformer 100 34.6 32.4 36.6 33.6 42.1 34.2 37.2 9.8 16.2

+PW(TM+wTM-n+Libri100) 557.6 Hybrid-CTC 300 16.9 35.5 55.0 39.2 63.4 43.8 49.5 7.6 7.3
Conformer 300 11.0 26.8 38.6 30.7 49.2 31.8 38.6 16.1 13.1

tween Normal and WB (5%). This indicates that performance
is worse for speech without glottal contribution and that the
widened formant bandwidth and shifted formant frequencies
in whispered speech are less detrimental to recognition per-
formance. Combining NG and WB into pseudo-whispered
speech only shows a small deterioration compared to NG.
This indicates that the effect of removing both glottal infor-
mation and widening the formant bandwidth and shifting the
formant frequencies is not entirely additive.

Not surprisingly, adding real whispered speech from
wTIMIT-n greatly improves the recognition performance of
real whispered speech. Recognition performance of pseudo-
whispered speech and NG speech also greatly improves, to
the level of that of real whispered speech. Performance on
WB speech slightly deteriorates. This again indicates that the
glottal information is the most important acoustic information
to explain the whispered speech recognition performance.

Adding pseudo-whispered speech improves recognition
performance of real and pseudo-whispered speech, indicat-
ing that the pseudo-whispered speech is close enough to real
whispered speech for real whispered speech to benefit from
the added data. Recognition performance of PW is actually
better than that of real whispered speech which shows the
benefit of adding matched training data. Speech without glot-
tal information is now actually better recognised than WB
speech, which shows that adding speech without glottal infor-
mation is most beneficial for NG speech and that the benefit
for WB speech is less great.

4. DISCUSSION AND CONCLUSION

This paper aims to deal with the data scarcity problem of
whispered speech by generating artificial whispered speech
to augment the training data for improved E2E whispered
speech ASR and understand what acoustic characteristics
of whispered speech have the largest effect on whispered

Table 3. WERs (%) of different test groups when the model
is trained on normal speech (row TM+wTM-n in Table 1);
normal and whispered speech (row TM+wTM-wn in Table
1); and normal, whispered, and pseudo-whispered speech
(TM+wTM-wn+PW(TM+wTM-n)).
Training data Normal Whisper PW NG WB

TM+wTM-n 51.2 101.9 79.7 78.0 56.5

TM+wTM-wn 56.3 63.5 65.5 65.2 59.2

TM+wTM-wn
+PW(TM+wTM-n) 55.9 61.3 59.2 59.4 62.3

speech ASR performance. Our proposed signal processing-
based normal-to-whisper conversion method was used to cre-
ate pseudo-whispered speech from three databases. Adding
pseudo-whisper led to a relative WER improvement of 18%
for whispered speech and only a small WER gap with nor-
mal speech. Performance was best for the US English ac-
cent group. Comparing our results to the state-of-the-art on
wTIMIT shows that our WER on whispered speech is higher
than in [13]; however, [13] does not report which accent
group from wTIMIT they use in their evaluation. Assuming
they only used the US English part of wTIMIT, consider-
ing that they used large amounts of US English data from
LibriSpeech for training, our results are very close to theirs
(29.4% vs. our 30.7%) on the US English whispered speech,
but using far less data. Comparing our results to those of
Chang et al. [12]: both their approach and ours showed rela-
tive improvements (their 44.4% in CER; our 18.2% in WER);
however they only report phone and character error rates,
making a direct comparison not feasible in the present work.

Our final experiment shows that the lack of glottal infor-
mation in whispered speech has the largest impact on whis-
pered speech recognition.
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