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Abstract 

 
Fault detection is a fundamental part of passive 

testing which determines whether a system under test 
(SUT) is faulty by observing the input/output behavior 
of the SUT without interfering its normal operations. 
In this paper, we propose a new approach to Finite 
State Machine (FSM)-based passive fault detection 
which improves the performance of the approach in [4] 
and gathers more information during testing 
compared with the approach in [4]. The results of 
theoretical and experimental evaluations are reported. 

 
1.  Introduction 
 

Passive fault detection is a testing technique used in 
fault management of a system under test by observing 
its input/output behaviors without interfering its 
normal operations [5]. In Finite State Machine (FSM)-
based passive fault detection, the specification of the 
system under test (SUT) is modeled as an FSM M, 
SUT N is treated as a black-box FSM, and the tester 
wishes to determine whether N is faulty with respect to 
M by observing a sequence Q of I/O pairs from N 
where the starting state (when Q starts) of N is 
unknown. Such a decision can be based on the number 
of states that are compatible with Q. A state s of M is 
compatible with Q if Q is a trace of M starting at s. If 
the number of states compatible with Q is zero then Q 
is sufficient to determine that N is faulty. Otherwise, Q 
is insufficient to determine whether N is faulty. That is 
there are one or more states compatible with Q and Q 
needs to be augmented by an additional I/O sequence 
of N to continue with the fault detection. 

Lee et al developed algorithms for FSM-based 
passive fault detection [4]. Their approach can be 
summarized as follows: suppose that the starting state 
of N is any state of M, check the observed sequence Q 
of I/O pairs one-by-one from the beginning, reduce the 
size of the set S' of possible current states by 
eliminating impossible states until either S' is empty 
(N is faulty) or there is at least one state in S' (no fault 
is detected by Q). This approach has been applied to 

FSM-based systems [10, 11, 12] and has been 
extended to systems specified in the Extended FSM 
model by [1, 2, 5, 6, 10] and to systems specified in 
the Communicating FSM model by [7, 8].  

The algorithm in [4] is comprehensive but not 
efficient enough. In this algorithm, every state of M 
needs to be checked. However, the number of states 
compatible with Q is usually comparatively small and 
checking every state of M would be unnecessary. 
Further, this algorithm only determines the set of 
possible current states when it terminates. The 
information about possible starting state and possible 
trace corresponding to Q is not provided unless a post-
processing is performed. Clearly, the approaches 
derived from [4] also have these two shortcomings. To 
improve the efficiency of FSM-based passive fault 
detection and gather more information during testing, 
we propose a new approach to FSM-based passive 
fault detection which is based on the following 
approach: randomly pick a state s in subset S0 of the 
set of states of M and determine whether Q is the trace 
of M at s. If s is compatible with Q, stop and declare 
that Q is not sufficient to determine whether N is faulty. 
In this case, Q is a trace of M at s and the current state 
of M can be determined readily. Otherwise, continue 
to check other states in S0. After checking all the states 
in S0, if no state is found to be compatible with Q, then 
N is declared to be faulty. Note that we took S0 to be 
equal to the set of states of M when we perform 
analytical and experimental comparisons of the 
approach we propose with the approach in [4] in an 
effort not to put the approach in [4] at a disadvantage. 

The rest of the paper is organized as follows: 
Section 2 defines the terms and notations used in the 
paper. Section 3 describes algorithms for the proposed 
approach for the FSM-based passive fault detection, 
and compares the computational complexities of these 
algorithms. Section 4 presents the results of an 
experimental evaluation. Section 5 concludes the paper. 

 
2.  Preliminaries 
 

An FSM M is a quintuple = (S, X, Y, δ, λ), where S 
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= {s1, s2, ..., sn} is a finite set of states with n = |S| and 
s1 ∈ S as the initial state, X is a nonempty finite set of 
inputs, Y is a nonempty finite set of outputs, δ is a 
state transition function that maps S×X to S, and λ is 
an output function that maps S×X to Y. These two 
functions are extended to input sequences I ∈ X* in 
the standard manner. The FSM M defined above is 
deterministic, i.e., if for each input x ∈ X, there is at 
most one transition defined at each state of M.   

M can be represented by a directed graph G = (V, E) 
(Figure 1) where a set of vertices V = {v1, v2, ..., vn} 
represents the set of states of M and a set of edges E = 
{(vj,vk;x/y): vj,vk∈V} represents all specified transitions 
of M, i.e., edge e = (vj, vk; x/y) represents a state transi-
tion from state sj to sk with input x ∈ X and output y 
∈ Y, and the I/O pair x/y is the label of e. The label of 
a path e1e2…er, ei ∈ E, 1 ≤ i ≤ r, is the concatenation 
of the labels of ei and is called an I/O sequence. The 
I/O sequence I/λ(si, I) is called the trace of M at si.  

In this paper, we assume that both M and N are 
deterministic FSMs, an I/O sequence Q is observed 
from N, and a set of possible starting states S0 of M is 
given. We wish to determine whether there is no state 
s in S0 such that Q is a trace of M at s.  
Example 1. Let M be as in Figure 1 and S0={s1, s2}. 
Q  = “(a/0)(b/0)(a/0)(b/0)(a/0)(b/0)(b/1)” 
 = “abababb/0000001”. Since “0000001” = λ(s1, 
abababb), Q is the trace of M at s1. Thus, Q is declared 
to be insufficient to determine whether N is faulty. If Q 
= “(a/0)(b/0)(a/0)(b/0)(a/0)(b/0)(a/1)” = “abababa/ 
0000001”, Q is not a trace of M at any state, thus N 
can be reported to be faulty. 

Q = (x1/y1)(x2/y2)…(xk/yk) denotes an I/O sequence 
of length k. p

jQ is the prefix of Q of length j, s
jQ is the 

suffix of Q of length k-j, 1≤ j≤ k. 
 

3.  Algorithms for Passive Fault Detection 
 

We first present the algorithm proposed by Lee et al 
[4], then propose three new algorithms for FSM-based 
passive fault detection. In order to make the analysis 
and further comparisons of the algorithms, we 
consider the number of comparisons between the 
actual output yj and the expected output λ(s, xj) as the 
measure of computational complexity, 1 ≤ j ≤ k, s ∈ S. 

 
3.1 The Approach of Lee et al in [4] 
 

In order to facilitate comparisons, we have 
rewritten the algorithm given in [4] as Algorithm 0 
without changing its computational complexity. 

1
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Figure 1. An FSM M 

Algorithm 0  
Given: FSM M = (S, X, Y, δ, λ), S0 = S, 
     I/O sequence Q = (x1/y1)(x2/y2)…(xk/yk)  
Begin:  
 j ← 1;  /* j is the counter for I/O pairs */ 
 S' ← S0;  
 while (j ≤ k)  
 if (S' ≠ ∅) { 

 S" ← ∅;  
     for (each s ∈ S' ) /* check each state in S'*/ 
 if (yj = λ(s, xj)) S" ← S" ∪ δ(s, xj);  
 /*redundant states in S" are removed*/ 
 endfor 
     S' ← S",  j ← j+1; 
 }  
 else  /* S' = ∅ */ 
 return (“N is faulty”); 
endwhile 
return (“No fault is detected by Q and  
  the set of possible current states is S'”); 

End 
If the while loop terminates before the entire Q is 

checked, N is declared to be faulty. Otherwise, Q is 
declared to be insufficient to determine whether N is 
faulty. In this case, the possible current states are 
determined but the possible starting states (where Q 
starts) are unknown. In order to find the set of possible 
starting states, a post-processing will be needed. 
Theorem 1 (Lee et al [4]) Let Sj denote the set of 
possible current states right after the first j I/O pairs of 
Q, i.e., Sj = δ(S0, x1x2…xj). The computational 
complexity of Algorithm 0 is C1 =∑ = −

k
j jS1 1 || .  

Proof: In Algorithm 0, every state in the set of 
possible current states will be checked to compare its 
related I/O pair with the current I/O pair in Q, i.e., for 
a state s in Sj, there will be one comparison between 
yj+1 and the expected output λ(s, xj+1), and | Sj | 
comparisons are needed to check the set Sj. Thus, the 
total number of comparisons is∑ = −

k
j jS1 1 || . 

Example 2. Applying Algorithm 0 to M (Figure 1) and 
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Q = “abababb/0000001”, the number of comparisons 
is ∑ = −

k
j jS1 1 || =3 + 2 +2 + 2 + 2 +2 + 2 = 15. 

 
3.2 The Proposed Approach 
 

Algorithm 1 is based on our proposed approach 
which checks, for each state s ∈ S0 ⊆ S, whether Q is a 
trace of M at s. It terminates when Q is verified to be a 
trace of M at a state s ∈ S0 or when all states in S0 are 
checked and no state is found compatible with Q.  
Algorithm 1  
Given:  FSM M = (S, X, Y, δ, λ), S0 ⊆ S, 
 I/O sequence Q = (x1/y1) (x2/y2)…(xk/yk) 
Begin:  
    i  ← 1;  /* i is the state counter */ 
 while (i ≤ n)  
 j ← 1; /* j is the counter for I/O pairs */ 
      s ← si;   
 /* s  will represent δ(si, x1… xj-1) when j > 1 */ 
 while (j < k AND yj = λ(s, xj))    
 s ← δ(s, xj); j ← j+1;   
 /*s is updated as the current state*/ 
 endwhile  
 if (j = k AND yj = λ(s, xj))  
 return (“Q is a trace of M at state si and  
  the possible current state is s”);   
           else  
 i  ← i +1;  
      endwhile       
      return (“N is faulty”);        
End 

Algorithm 1 either declares N to be faulty or yields 
both the possible current state (s) and possible starting 
state (si) once a state compatible with Q is found. 
Theorem 2 For the given state si of M and I/O 
sequence Q = x1…xk/y1…yk, let ci(Q) denote the largest 
number j (1≤ j ≤ k) such that y1…yj-1 = λ(si, x1…xj-1) 
and λ(δ(si, x1…xj-1), xj) ≠ yj. Let C2worst (M, S0, Q) 
=∑ =

n
i i Qc1 )( . Let C2(M, S0, Q) denote the computa-

tional complexity of Algorithm 1. If sr is the first state 
of M such that Q is a trace of M at sr, then C2(M, S0, Q) 
= )(1 Qcr

i i∑ = ; if N is faulty, then C2(M, S0, Q) = 

C2worst(M, S0, Q) =∑ =
n
i i Qc1 )( .  

Proof: In Algorithm 1, each state in S0 is checked to 
determine whether it is compatible with Q. The 
checking procedure for a state si will not stop until it 
confronts a mismatch (then the next state si+1 will be 
selected to check); or the entire sequence Q has been 
checked and no mismatch found (then si is reported to 
be compatible with Q). The whole checking procedure 
will terminate when a state compatible with Q is found 

or when all the states have been checked and no state 
is found to be compatible with Q. Assume y1…yj-1 = 
λ(si, x1…xj-1) but yj ≠ λ(δ(si, x1…xj-1), xj), it means j 
comparisons (denoted by ci(Q)) are needed to 
determine that Q is not a trace of M at si. If sr ∈ S0 is 
the first state of M such that Q is the trace of M at sr, 
Algorithm 1 will detect mismatch in checking s1...sr-1 
and stop after checking sr. Thus, the total number of 
comparisons needed is )(1 Qcr

i i∑ = . 
Example 3. Applying Algorithm 1 to M (Figure 1) and 
Q = “abababb/0000001”, with r = 1, the number of 
comparisons is C2(M, S0, Q)= ∑ =

r
i i Qc1 )( = c1(Q) = 7.  

Algorithm 1 is simple and straightforward, however, 
it encounters the redundant checking problem which is: 
two traces starting from different states converge to 
the same state after applying p

jQ . In Algorithm 1, the 

common part s
jQ  will be rechecked redundantly. In 

contrast, Algorithm 0 avoids the redundant checking 
problem by removing redundant states in the set of 
possible current states. 

Algorithm 2 below attempts to combine the merits 
of both Algorithm 0 and Algorithm 1. Let Sj denote the 
set of possible current states right after the first j I/O 
pairs of Q, i.e., Sj = δ(S0, x1x2…xj). In Algorithm 2, 
Algorithm 0 is used first to reduce the size of Sj and 
then Algorithm 1 is used on the current Sj with the 
remaining portion of the I/O sequence Q. 
Algorithm 2 
Given:  FSM M = (S, X, Y, δ, λ), S0 ⊆ S, q ≤ k, 
 I/O sequence Q = (x1/y1)(x2/y2)…(xk/yk)  
Begin:  
 j ← 1;  /* j is the counter for I/O pairs */ 
 S' ← S0;  
 while (j ≤ q)  /* Algorithm 0 up to p

qQ  */ 
 if (S' ≠ ∅) { 
 S" ← ∅;  
 for (every s ∈ S' )  
 if (yj = λ(s, xj))  S" ← S" ∪ δ(s, xj);  
 /*redundant states in S" are removed*/ 
 endfor 

 S' ← S"; j ← j+1; 
 }  

 else  /* S' = ∅ */ 
 return (“N is faulty”);  
 endwhile   
 while (S' ≠ ∅)   
 /* Algorithm 1 starting from Sq = S' */ 
 randomly choose a state s from S';  
 S' ← S'\{s};  j ← q +1;   
  /* j is the counter for I/O pairs */ 
  while (j < k AND yj = λ(s, xj))    
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 s ← δ(s, xj); j ← j+1;  
 /* s is updated as the current state */ 
 endwhile  
 if ((j = k AND yk = λ(s, xk))  
 return (“No fault is detected by Q and 
 the possible current state is s”);  
       endwhile       
      return (“N is faulty”);        
End 

The computational complexity of Algorithm 2 is 
obtained by combining the results in Theorem 1 and 
Theorem 2 and it is affected by the selection of a value 
for variable q. Suppose that, in Algorithm 0 part of 
Algorithm 2, j1 is the minimum number of I/O pairs 
needed to eliminate the redundant checking problem 
and j2 is the minimum number of I/O pairs needed to 
reduce the size of possible current states to be one or 
zero. Obviously, j1 is smaller than j2. Clearly,  
 if q < j1, the redundant checking problem remains;  
 if q > j2, Algorithm 2 is the same as Algorithm 0; 
 if j1 ≤ q < j2, Algorithm 2’s performance is at least 
equal to that of Algorithm 0. However, since j1 and j2 
are both determined by Q and M, it is difficult to 
determine a proper value for q. Also, Algorithm 0 part 
makes Algorithm 2 unable to determine the possible 
starting state unless a post-processing is performed. 

Algorithm 0 is not efficient enough as it has to 
check all the states in S0 and doesn’t provide 
information about possible starting states. Algorithm 
1’s efficiency is influenced by the redundant checking 
problem. Algorithm 2 attempts to eliminate the 
redundant checking problem by combining the merits 
of both Algorithm 0 and Algorithm 1 but the effort is 
limited as it introduces a variable q for which it is 
difficult to find an appropriate value. Also, Algorithm 
2 cannot determine the possible starting state. 
Algorithm 3 presented below overcomes the 
drawbacks of these three algorithms: 
Algorithm 3  
Given:  FSM M = (S, X, Y, δ, λ), S0 ⊆ S, 
 I/O sequence Q = (x1/y1) (x2/y2)…(xk/yk) 
Begin:  
 F1…k-1  ← ∅;  i  ← 1; 
 while (i ≤ n)  
 j ← 1;  /* j is the counter for I/O pairs */ 

 s ← si;   
 /* s  will represent δ(si, x1… xj-1) when j > 1 */ 
 while (j < k AND yj = λ(s, xj))  
 s ← δ(s, xj);   
 /* s is updated as the current state */ 
 if (s ∈ Fj) /* to eliminate 
  redundant checking problem */ 
 break; /* state s has already been  
  checked. Thus, end this trace */  

 else 
 j ← j + 1; 
 endwhile 
 if  (j = k AND yj = λ(s, xj))  
 return (“Q is a trace of M at state si and 
  the possible current state is s”);   
 else 
 i ← i +1;  
 /*record the trace*/ 
 if (j > 1) add δ(si, x1…xl) to Fl, l=1,…,j-1;    
 endwhile  
 return (“N is faulty”);        
End 

The data structure F1... k-1 is used to record the 
tracing history and therefore to avoid the redundant 
checking problem. If δ(si, x1x2…xj) ∈ Fj, 1 ≤ j ≤ k, 
then λ(δ(si, x1x2…xj), xj+1…xk) has already been 
checked and yj+1…yk ≠ λ(δ(si, x1x2…xj), xj+1…xk). So, 

s
jQ will not need to be checked and the checking 

started from state si will stop. After checking a state si, 
if si is not an eligible starting state, Algorithm 3 adds 
the trace history starting from si  into F1…j-1. If si is 
compatible with Q, the possible starting state si and its 
corresponding trace are determined. 
Theorem 3 For a given state si of M and an I/O 
sequence Q = x1…xk/y1…yk, let c′i(Q) denote the 
largest number j (1≤ j ≤ k) such that (1) y1…yj-1 = λ(si, 
x1…xj-1) and λ(δ(si, x1…xj-1), xj) ≠ yj.; (2) for every l (1 
≤ l ≤ j-1), δ(si, x1…xl) ∉ Fl. If the rth state checked, sr, 
is the first state of M such that Q is a trace of M at sr, 
then the computational complexity of Algorithm 3: 
C3(M, S0, Q) = )(1 Qcr

i i∑ =
′ ;  

if N is faulty, then C3worst(M, S0, Q) =∑ =
′n

i i Qc1 )( ; 
if r = 1, C3best(M, S0, Q) = )(1 Qc′ . 
Proof: Compared to Algorithm 1, the checking 
procedure of Algorithm 3 on state si will stop when it 
encounters a mismatch with Q, the whole Q has been 
checked compatible, or δ(si, x1x2…xj) ∈ Fj. Similar to 
Theorem 2, let c′i(Q) denote the largest number j (1 ≤ j 
≤ k) before checking on si terminates. If sr is the first 
state of M such that Q is the trace of M at sr, then the 
total number of comparisons needed is )(1 Qcr

i i∑ =
′ . 

As the states compatible with Q are randomly 
dispersed in S0, the process of sequentially checking 
the states within S0 until a state compatible with Q is 
found can be modeled as the Sampling without 
Replacement Model [3].  
Theorem 4 According to the Sampling without 
Replacement Model, assume that there are m states in 
S0 which are compatible with Q, and r (1 ≤ r ≤ n–m+1) 
states are randomly selected from S0. Then, the 
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probability that the rth state is the first state which is 
checked to be compatible with Q is given by 
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Proof: Each different arrangement of states selected 
from S0 is called a permutation. Suppose that r states 
are selected one at a time and removed from S0 (1 ≤ r 
≤ n–m+1). Then each possible outcome of this 
selection will be a permutation of r states from S0, and 
the total number of these permutations will be Pn,r = 
n(n–1)…(n–r+1) [3]. Pn,r is called the number of 
permutations of n elements taken r at a time. Thus, if r 
=1, the number of permutations is n; if 2 ≤ r ≤ n–m+1, 
the number of permutations, in which the rth state is 
the first state compatible with Q, is mPn-m,r-1 = m(n–
m)(n–m-1)…(n–m–r+2). Then the probability of 
permutation that the rth state is the first state 
compatible with Q is: if r =1, Pr(m)= m/ Pn,r = m/n;  
if 2 ≤ r ≤ n-m+1, Pr(m) = mPn-m,r-1/Pn,r = 

)1)...(1(
)2)...(1)((

+−−
+−−+−−

rnnn
rmnmnmnm . 

Theorem 5 Suppose there are m (0 ≤ m ≤ n) states in 
S0 which are compatible with Q. Let Pr(m) denote the 
probability that the rth state is the first state which is 
compatible with Q. The average computational 
complexity of Algorithm 3 is A3 = 

∑ +−
=

1
1 03 ) , ,()(mn

r r QSMCmP =∑ ∑+−
= =

′1mn
1r 1 ))()(( r

i ir QcmP . 

Proof: The average computational complexity of 
Algorithm 3 is the sum of the number of comparisons 
multiplied by its corresponding probability [9]. 
Example 4. Assume n = 4, m = 1, when r = 1, C3 = 4; 
when r = 2, C3 = 5; when r = 3, C3 = 7; when r = 4, C3 
= 9 where C3 stands for C3(M, S0, Q); Then,  
A3 =1 + 5/4 + 7/4 + 9/4 = 25/4 (see Table 1). 

Table 1. Average computational complexity analysis 

r C3 Pr (m=1) Pr (m=1) C3 
1 4 1/4 1 
2 5 1∗3 / 4∗3 = 1/4 5/4 
3 7 1∗3∗2 / 4∗3∗2 = 1/4 7/4 
4 9 1∗3∗2*1 / 4∗3∗2*1 = 1/4 9/4 

In general, the number of states compatible with Q 
may be zero, or more. If it is zero, it means that none 
of the states in S0 is compatible with Q and N is faulty; 
if it is one or more than one, it means that the given Q 
is insufficient to determine whether N is faulty. 

The general case can be simplified to the case in 
which the number of states which are compatible with 
Q is either one or zero. This stems from the fact that 
the essence of passive fault detection is to detect the 

existence of faults in N. If there is one or more states 
compatible with Q, it implies that the given Q is 
insufficient to come to a conclusion. Additional I/O 
sequence ∆Q is needed to continue with the fault 
detection. Thus, let Q′ = Q +∆Q denote the I/O 
sequence concatenating Q to ∆Q. Thus, the new set (M, 
S0, Q′) contains at most one state that is compatible 
with Q′. Let Pr(m = 1) denote the probability that there 
is one compatible state in S0 and it appears at the rth (1 
≤ r ≤ n) selection. So, Pr(m = 1) = 1/n. 
Theorem 6: If there is only one state in S0 that is 
compatible with Q, the average computational 
complexity of Algorithm 3 is  

A3= ) , ,(1
01 3 QSMC

n
n
r∑ =

= ∑ ∑= =
′n

1r 1 ))((1 r
i i Qc

n
. 

Proof: The average computational complexity of 
Algorithm 3 is the sum of the number of comparisons 
multiplied by its corresponding probability. 
 
3.3 Comparison of the Algorithms 
 

The computational complexities of the three 
algorithms given in the previous subsections are 
summarized in Table 2. 

Table 2. Computational complexity  

Type of algorithm Computational complexity 

Algorithm 0 C1 =∑ = −
k
j jS1 1 ||  

Algorithm 1 C2(M, S0, Q) = )(1 Qcr
i i∑ =  

Algorithm 3 C3(M, S0, Q) = )(1 Qcr
i i∑ =

′  

- k is the length of Q, |Sj| is the number of states in the 
set of possible current states,  

- r is the number of states checked before a state 
compatible with Q is found,  

- ci(Q) is the largest number j (1≤ j ≤ k) such that 
y1…yj-1 = λ(si, x1…xj-1) and λ(δ(si, x1…xj-1), xj) ≠ yj 

- c′i(Q) is the largest number j (1≤ j ≤ k) such that 
y1…yj-1 = λ(si, x1…xj-1) and λ(δ(si, x1…xj-1), xj) ≠ yj 
after eliminating the redundant checking problem 

Below, we compare the computational complexities of 
Algorithm 0 and Algorithm 3 when the number of 
states in S0 which are compatible with Q is one or zero. 
In Algorithm 0, once the set (M, S0, Q) is fixed, the 
number of comparisons needed is determined and does 
not change during its application. On the other hand, 
the performance of Algorithm 3 is affected by the 
number of states in S0 which are compatible with Q 
(see Theorem 4).  Algorithm 0 and Algorithm 3 
represent different perspectives on tracing order in 
passive fault detection. Algorithm 0 checks all the 
states in the set of possible current states with one I/O 
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pair in Q at a time whereas Algorithm 3 selects one 
starting state from S0 and exhausts all the possible 
transitions starting from this state according to the I/O 
sequence Q. If there is no state in S0 which is 
compatible with Q, both Algorithm 0 and Algorithm 3 
need to check the entire trace from every state in S0 
and thus they perform equally. That is 

∑ =
′n

i i Qc1 )( =∑ = −
k
j jS1 1 || . If there is only one state s in 

S0 which is compatible with Q, then the total number 
of comparisons made by Algorithm 0 is ∑ = −

k
j jS1 1 ||  

whereas the total number of comparisons made by 
Algorithm 3 is )(1 Qcr

i i∑ =
′ (r ≤ n). Clearly, )(1 Qcr

i i∑ =
′  ≤ 

∑ =
′n

i i Qc1 )(  = ∑ = −
k
j jS1 1 || , (r ≤ n) where the rth state 

checked is the state compatible with Q.  
Thus, Algorithm 3 always performs at least as well 

as Algorithm 0. The equality in their computational 
complexities occurs when r = n.  

Based on the computational complexities of the 
algorithms presented above, several assertions can be 
made on their performance in different conditions.  
When N is not determined to be faulty: 
i) if there is no redundant checking problem,  
 the performance of Algorithm 1 will be the same as 

that Algorithm 3 and be at least equal to that of 
Algorithm 0; and the performance of Algorithm 2 
will be between those of Algorithms 0 and 1. 

ii) if there is redundant checking problem,  
 the performance of Algorithm 3 will be at least 

equal to those of Algorithms 0 and 1; and 
 it is not possible to compare the performances of 

Algorithm 0, Algorithm 1, and Algorithm 2 
analytically due to the redundant checking problem. 

When N is determined to be faulty: 
i) if there is no redundant checking problem, the 

performances of all the algorithms will be the same. 
ii) if there is redundant checking problem,  
 the performance of Algorithm 3 will be equal to 

that of Algorithm 0; the performances of 
Algorithms 1 and 2 will at most be equal to that of 
Algorithm 0; and it is not possible to compare the 
performances of Algorithms 0 and 2 analytically. 

 
4. Experimental Evaluation 
 

An experimental evaluation is made to compare the 
average computational complexity of the algorithms 
and to verify the validity of the assertions drawn above 
when m = 0 or 1. In the experiment, we use a set of 
randomly generated FSMs.  This set consists of FSMs 
with different number of states (|S0| = |S|), set X of 
inputs and set Y of outputs. We select 5 configurations 

in the form of (|S0|, |X|, |Y|), namely (5, 3, 3), (10, 4, 4), 
(15, 4, 4), (20, 5, 5), (30, 10, 10). For each 
configuration, we generate 5 FSMs correspondingly. 
For each FSM M, two cases are considered.  

In Case I, called correct implementation, there is 
exactly only one state in S0 that is compatible with Q 
(m = 1). In Case II, called faulty implementation, there 
is no state in S0 that is compatible with Q (m = 0) and 
“faulty” is expected to be reported. We create a faulty 
specification M′ from M by altering either the output 
or next state of a (randomly) selected transition. In 
Case I (Case II), for every state s of M (M′), we 
generate three random I/O sequences of length 
|S0|∗|X|∗2, |S0|∗|X|∗4, |S0|∗|X|∗10 respectively, starting 
from s; and when generating each I/O sequence Q, we 
randomly select a transition of the current state of M 
(M′) and repeat this at the next state. 

Then, we apply all four algorithms to the FSMs in 
these two cases and record the results. Table 3 shows 
the number of comparisons (between the actual output 
yj and the expected output λ(s, xj)), 1 ≤ j ≤ k, s ∈ S, for 
each of the four algorithms. We see from Table 3 that, 
• Algorithm 1, in Case I, has better performance than 

Algorithm 0 in average case and best case, but not 
in worst case. Also, in Case II, Algorithm 1 cannot 
beat Algorithm 0; 

• Algorithm 2 performs the same as the Algorithm 0 
because the number of states in the set of possible 
current states shrinks to one or zero in the 
“Algorithm 0” part of Algorithm 2. 

• Algorithm 3, in Case I, needs fewer comparisons to 
find the compatible state and performs better than 
Algorithm 0; while in Case II, these two algorithms 
perform the same. 
Experimental results confirm the assertions we 

present in Section 3 and show that Algorithm 3 
performs best among these four algorithms when there 
is one state in S0 compatible with Q (Case I). 

  
5. Conclusions 
  

In this paper, we proposed a new approach to Finite 
State Machine-based passive fault detection. 
Compared with the former approach in [4], the 
proposed approach (Algorithm 3) has better 
performance and provides more information during 
testing. Specifically, Algorithm 3 provides more 
information about possible starting state and possible 
trace compatible with the observed sequence Q and 
performs better in situations where there is only one 
state  in  S0  that  is  compatible  with Q. The results of 
both theoretical and experimental evaluations confirm 
this improvement over the approach in [4].
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Table 3. Experimental results 
      Case I : m = 1 Case II : m = 0 
Algorithm 0  |Q| |S0| best worst average best worst average 
 60 5 64 74 65.5  6 58 17.8  
 160 10 169 175 171.3  11 162 31.7  
 240 15 254 262 258.0  16 252 42.8  
 400 20 419 429 423.0  21 399 44.7  
 1200 30 1229 1236 1231.9  31 1122 73.0  
Algorithm 1  |Q| |S0| best worst average best worst average 
 60 5 60 74 62.3  7 58 18.7  
 160 10 160 172 165.5  11 202 36.9  
 240 15 240 263 247.7  16 252 46.1  
 400 20 400 432 409.3  21 744 52.9  
 1200 30 1200 1235 1215.0  31 1531 83.7  
Algorithm 2  |Q| |S0| Best worst average best worst average 
q = 5 (q is  60 5 64 74 65.5  6 58 17.8  
defined in 160 10 169 175 171.3  11 162 31.7  
Algorithm 2) 240 15 254 262 258.0  16 252 42.8  
 400 20 419 429 423.0  21 399 44.7  
 1200 30 1229 1236 1231.9  31 1122 73.0  
Algorithm 3  |Q| |S0| Best worst average best worst average 
 60 5 60 65 61.9  6 58 17.8  
 160 10 160 171 164.3  11 162 31.7  
 240 15 240 262 247.9  16 252 42.8  
 400 20 400 427 409.6  21 399 44.7  
 1200 30 1200 1234 1215.3  31 1122 73.0  
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