
An Improved Approach to Passive Testing of FSM-based Systems

Hasan Ural, Zhi Xu and Fan Zhang
SITE, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

{ural, zxu061, fzhang}@site.uottawa.ca

Abstract

Fault detection is a fundamental part of passive

testing which determines whether a system under test
(SUT) is faulty by observing the input/output behavior
of the SUT without interfering its normal operations.
In this paper, we propose a new approach to Finite
State Machine (FSM)-based passive fault detection
which improves the performance of the approach in [4]
and gathers more information during testing
compared with the approach in [4]. The results of
theoretical and experimental evaluations are reported.

1. Introduction

Passive fault detection is a testing technique used in
fault management of a system under test by observing
its input/output behaviors without interfering its
normal operations [5]. In Finite State Machine (FSM)-
based passive fault detection, the specification of the
system under test (SUT) is modeled as an FSM M,
SUT N is treated as a black-box FSM, and the tester
wishes to determine whether N is faulty with respect to
M by observing a sequence Q of I/O pairs from N
where the starting state (when Q starts) of N is
unknown. Such a decision can be based on the number
of states that are compatible with Q. A state s of M is
compatible with Q if Q is a trace of M starting at s. If
the number of states compatible with Q is zero then Q
is sufficient to determine that N is faulty. Otherwise, Q
is insufficient to determine whether N is faulty. That is
there are one or more states compatible with Q and Q
needs to be augmented by an additional I/O sequence
of N to continue with the fault detection.

Lee et al developed algorithms for FSM-based
passive fault detection [4]. Their approach can be
summarized as follows: suppose that the starting state
of N is any state of M, check the observed sequence Q
of I/O pairs one-by-one from the beginning, reduce the
size of the set S' of possible current states by
eliminating impossible states until either S' is empty
(N is faulty) or there is at least one state in S' (no fault
is detected by Q). This approach has been applied to

FSM-based systems [10, 11, 12] and has been
extended to systems specified in the Extended FSM
model by [1, 2, 5, 6, 10] and to systems specified in
the Communicating FSM model by [7, 8].

The algorithm in [4] is comprehensive but not
efficient enough. In this algorithm, every state of M
needs to be checked. However, the number of states
compatible with Q is usually comparatively small and
checking every state of M would be unnecessary.
Further, this algorithm only determines the set of
possible current states when it terminates. The
information about possible starting state and possible
trace corresponding to Q is not provided unless a post-
processing is performed. Clearly, the approaches
derived from [4] also have these two shortcomings. To
improve the efficiency of FSM-based passive fault
detection and gather more information during testing,
we propose a new approach to FSM-based passive
fault detection which is based on the following
approach: randomly pick a state s in subset S0 of the
set of states of M and determine whether Q is the trace
of M at s. If s is compatible with Q, stop and declare
that Q is not sufficient to determine whether N is faulty.
In this case, Q is a trace of M at s and the current state
of M can be determined readily. Otherwise, continue
to check other states in S0. After checking all the states
in S0, if no state is found to be compatible with Q, then
N is declared to be faulty. Note that we took S0 to be
equal to the set of states of M when we perform
analytical and experimental comparisons of the
approach we propose with the approach in [4] in an
effort not to put the approach in [4] at a disadvantage.

The rest of the paper is organized as follows:
Section 2 defines the terms and notations used in the
paper. Section 3 describes algorithms for the proposed
approach for the FSM-based passive fault detection,
and compares the computational complexities of these
algorithms. Section 4 presents the results of an
experimental evaluation. Section 5 concludes the paper.

2. Preliminaries

An FSM M is a quintuple = (S, X, Y, δ, λ), where S

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

= {s1, s2, ..., sn} is a finite set of states with n = |S| and
s1 ∈ S as the initial state, X is a nonempty finite set of
inputs, Y is a nonempty finite set of outputs, δ is a
state transition function that maps S×X to S, and λ is
an output function that maps S×X to Y. These two
functions are extended to input sequences I ∈ X* in
the standard manner. The FSM M defined above is
deterministic, i.e., if for each input x ∈ X, there is at
most one transition defined at each state of M.

M can be represented by a directed graph G = (V, E)
(Figure 1) where a set of vertices V = {v1, v2, ..., vn}
represents the set of states of M and a set of edges E =
{(vj,vk;x/y): vj,vk∈V} represents all specified transitions
of M, i.e., edge e = (vj, vk; x/y) represents a state transi-
tion from state sj to sk with input x ∈ X and output y
∈ Y, and the I/O pair x/y is the label of e. The label of
a path e1e2…er, ei ∈ E, 1 ≤ i ≤ r, is the concatenation
of the labels of ei and is called an I/O sequence. The
I/O sequence I/λ(si, I) is called the trace of M at si.

In this paper, we assume that both M and N are
deterministic FSMs, an I/O sequence Q is observed
from N, and a set of possible starting states S0 of M is
given. We wish to determine whether there is no state
s in S0 such that Q is a trace of M at s.
Example 1. Let M be as in Figure 1 and S0={s1, s2}.
Q = “(a/0)(b/0)(a/0)(b/0)(a/0)(b/0)(b/1)”
 = “abababb/0000001”. Since “0000001” = λ(s1,
abababb), Q is the trace of M at s1. Thus, Q is declared
to be insufficient to determine whether N is faulty. If Q
= “(a/0)(b/0)(a/0)(b/0)(a/0)(b/0)(a/1)” = “abababa/
0000001”, Q is not a trace of M at any state, thus N
can be reported to be faulty.

Q = (x1/y1)(x2/y2)…(xk/yk) denotes an I/O sequence
of length k. p

jQ is the prefix of Q of length j, s
jQ is the

suffix of Q of length k-j, 1≤ j≤ k.

3. Algorithms for Passive Fault Detection

We first present the algorithm proposed by Lee et al
[4], then propose three new algorithms for FSM-based
passive fault detection. In order to make the analysis
and further comparisons of the algorithms, we
consider the number of comparisons between the
actual output yj and the expected output λ(s, xj) as the
measure of computational complexity, 1 ≤ j ≤ k, s ∈ S.

3.1 The Approach of Lee et al in [4]

In order to facilitate comparisons, we have
rewritten the algorithm given in [4] as Algorithm 0
without changing its computational complexity.

1

3

2

a/0

a/0

a/1

b/0

b/1 b/0

Figure 1. An FSM M

Algorithm 0
Given: FSM M = (S, X, Y, δ, λ), S0 = S,
 I/O sequence Q = (x1/y1)(x2/y2)…(xk/yk)
Begin:
 j ← 1; /* j is the counter for I/O pairs */
 S' ← S0;
 while (j ≤ k)
 if (S' ≠ ∅) {

 S" ← ∅;
 for (each s ∈ S') /* check each state in S'*/
 if (yj = λ(s, xj)) S" ← S" ∪ δ(s, xj);
 /*redundant states in S" are removed*/
 endfor
 S' ← S", j ← j+1;
 }
 else /* S' = ∅ */
 return (“N is faulty”);
endwhile
return (“No fault is detected by Q and
 the set of possible current states is S'”);

End
If the while loop terminates before the entire Q is

checked, N is declared to be faulty. Otherwise, Q is
declared to be insufficient to determine whether N is
faulty. In this case, the possible current states are
determined but the possible starting states (where Q
starts) are unknown. In order to find the set of possible
starting states, a post-processing will be needed.
Theorem 1 (Lee et al [4]) Let Sj denote the set of
possible current states right after the first j I/O pairs of
Q, i.e., Sj = δ(S0, x1x2…xj). The computational
complexity of Algorithm 0 is C1 =∑ = −

k
j jS1 1 || .

Proof: In Algorithm 0, every state in the set of
possible current states will be checked to compare its
related I/O pair with the current I/O pair in Q, i.e., for
a state s in Sj, there will be one comparison between
yj+1 and the expected output λ(s, xj+1), and | Sj |
comparisons are needed to check the set Sj. Thus, the
total number of comparisons is∑ = −

k
j jS1 1 || .

Example 2. Applying Algorithm 0 to M (Figure 1) and

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

Q = “abababb/0000001”, the number of comparisons
is ∑ = −

k
j jS1 1 || =3 + 2 +2 + 2 + 2 +2 + 2 = 15.

3.2 The Proposed Approach

Algorithm 1 is based on our proposed approach
which checks, for each state s ∈ S0 ⊆ S, whether Q is a
trace of M at s. It terminates when Q is verified to be a
trace of M at a state s ∈ S0 or when all states in S0 are
checked and no state is found compatible with Q.
Algorithm 1
Given: FSM M = (S, X, Y, δ, λ), S0 ⊆ S,
 I/O sequence Q = (x1/y1) (x2/y2)…(xk/yk)
Begin:
 i ← 1; /* i is the state counter */
 while (i ≤ n)
 j ← 1; /* j is the counter for I/O pairs */
 s ← si;
 /* s will represent δ(si, x1… xj-1) when j > 1 */
 while (j < k AND yj = λ(s, xj))
 s ← δ(s, xj); j ← j+1;
 /*s is updated as the current state*/
 endwhile
 if (j = k AND yj = λ(s, xj))
 return (“Q is a trace of M at state si and
 the possible current state is s”);
 else
 i ← i +1;
 endwhile
 return (“N is faulty”);
End

Algorithm 1 either declares N to be faulty or yields
both the possible current state (s) and possible starting
state (si) once a state compatible with Q is found.
Theorem 2 For the given state si of M and I/O
sequence Q = x1…xk/y1…yk, let ci(Q) denote the largest
number j (1≤ j ≤ k) such that y1…yj-1 = λ(si, x1…xj-1)
and λ(δ(si, x1…xj-1), xj) ≠ yj. Let C2worst (M, S0, Q)
=∑ =

n
i i Qc1)(. Let C2(M, S0, Q) denote the computa-

tional complexity of Algorithm 1. If sr is the first state
of M such that Q is a trace of M at sr, then C2(M, S0, Q)
=)(1 Qcr

i i∑ = ; if N is faulty, then C2(M, S0, Q) =

C2worst(M, S0, Q) =∑ =
n
i i Qc1)(.

Proof: In Algorithm 1, each state in S0 is checked to
determine whether it is compatible with Q. The
checking procedure for a state si will not stop until it
confronts a mismatch (then the next state si+1 will be
selected to check); or the entire sequence Q has been
checked and no mismatch found (then si is reported to
be compatible with Q). The whole checking procedure
will terminate when a state compatible with Q is found

or when all the states have been checked and no state
is found to be compatible with Q. Assume y1…yj-1 =
λ(si, x1…xj-1) but yj ≠ λ(δ(si, x1…xj-1), xj), it means j
comparisons (denoted by ci(Q)) are needed to
determine that Q is not a trace of M at si. If sr ∈ S0 is
the first state of M such that Q is the trace of M at sr,
Algorithm 1 will detect mismatch in checking s1...sr-1
and stop after checking sr. Thus, the total number of
comparisons needed is)(1 Qcr

i i∑ = .
Example 3. Applying Algorithm 1 to M (Figure 1) and
Q = “abababb/0000001”, with r = 1, the number of
comparisons is C2(M, S0, Q)= ∑ =

r
i i Qc1)(= c1(Q) = 7.

Algorithm 1 is simple and straightforward, however,
it encounters the redundant checking problem which is:
two traces starting from different states converge to
the same state after applying p

jQ . In Algorithm 1, the

common part s
jQ will be rechecked redundantly. In

contrast, Algorithm 0 avoids the redundant checking
problem by removing redundant states in the set of
possible current states.

Algorithm 2 below attempts to combine the merits
of both Algorithm 0 and Algorithm 1. Let Sj denote the
set of possible current states right after the first j I/O
pairs of Q, i.e., Sj = δ(S0, x1x2…xj). In Algorithm 2,
Algorithm 0 is used first to reduce the size of Sj and
then Algorithm 1 is used on the current Sj with the
remaining portion of the I/O sequence Q.
Algorithm 2
Given: FSM M = (S, X, Y, δ, λ), S0 ⊆ S, q ≤ k,
 I/O sequence Q = (x1/y1)(x2/y2)…(xk/yk)
Begin:
 j ← 1; /* j is the counter for I/O pairs */
 S' ← S0;
 while (j ≤ q) /* Algorithm 0 up to p

qQ */
 if (S' ≠ ∅) {
 S" ← ∅;
 for (every s ∈ S')
 if (yj = λ(s, xj)) S" ← S" ∪ δ(s, xj);
 /*redundant states in S" are removed*/
 endfor

 S' ← S"; j ← j+1;
 }

 else /* S' = ∅ */
 return (“N is faulty”);
 endwhile
 while (S' ≠ ∅)
 /* Algorithm 1 starting from Sq = S' */
 randomly choose a state s from S';
 S' ← S'\{s}; j ← q +1;
 /* j is the counter for I/O pairs */
 while (j < k AND yj = λ(s, xj))

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

 s ← δ(s, xj); j ← j+1;
 /* s is updated as the current state */
 endwhile
 if ((j = k AND yk = λ(s, xk))
 return (“No fault is detected by Q and
 the possible current state is s”);
 endwhile
 return (“N is faulty”);
End

The computational complexity of Algorithm 2 is
obtained by combining the results in Theorem 1 and
Theorem 2 and it is affected by the selection of a value
for variable q. Suppose that, in Algorithm 0 part of
Algorithm 2, j1 is the minimum number of I/O pairs
needed to eliminate the redundant checking problem
and j2 is the minimum number of I/O pairs needed to
reduce the size of possible current states to be one or
zero. Obviously, j1 is smaller than j2. Clearly,
 if q < j1, the redundant checking problem remains;
 if q > j2, Algorithm 2 is the same as Algorithm 0;
 if j1 ≤ q < j2, Algorithm 2’s performance is at least
equal to that of Algorithm 0. However, since j1 and j2
are both determined by Q and M, it is difficult to
determine a proper value for q. Also, Algorithm 0 part
makes Algorithm 2 unable to determine the possible
starting state unless a post-processing is performed.

Algorithm 0 is not efficient enough as it has to
check all the states in S0 and doesn’t provide
information about possible starting states. Algorithm
1’s efficiency is influenced by the redundant checking
problem. Algorithm 2 attempts to eliminate the
redundant checking problem by combining the merits
of both Algorithm 0 and Algorithm 1 but the effort is
limited as it introduces a variable q for which it is
difficult to find an appropriate value. Also, Algorithm
2 cannot determine the possible starting state.
Algorithm 3 presented below overcomes the
drawbacks of these three algorithms:
Algorithm 3
Given: FSM M = (S, X, Y, δ, λ), S0 ⊆ S,
 I/O sequence Q = (x1/y1) (x2/y2)…(xk/yk)
Begin:
 F1…k-1 ← ∅; i ← 1;
 while (i ≤ n)
 j ← 1; /* j is the counter for I/O pairs */

 s ← si;
 /* s will represent δ(si, x1… xj-1) when j > 1 */
 while (j < k AND yj = λ(s, xj))
 s ← δ(s, xj);
 /* s is updated as the current state */
 if (s ∈ Fj) /* to eliminate
 redundant checking problem */
 break; /* state s has already been
 checked. Thus, end this trace */

 else
 j ← j + 1;
 endwhile
 if (j = k AND yj = λ(s, xj))
 return (“Q is a trace of M at state si and
 the possible current state is s”);
 else
 i ← i +1;
 /*record the trace*/
 if (j > 1) add δ(si, x1…xl) to Fl, l=1,…,j-1;
 endwhile
 return (“N is faulty”);
End

The data structure F1... k-1 is used to record the
tracing history and therefore to avoid the redundant
checking problem. If δ(si, x1x2…xj) ∈ Fj, 1 ≤ j ≤ k,
then λ(δ(si, x1x2…xj), xj+1…xk) has already been
checked and yj+1…yk ≠ λ(δ(si, x1x2…xj), xj+1…xk). So,

s
jQ will not need to be checked and the checking

started from state si will stop. After checking a state si,
if si is not an eligible starting state, Algorithm 3 adds
the trace history starting from si into F1…j-1. If si is
compatible with Q, the possible starting state si and its
corresponding trace are determined.
Theorem 3 For a given state si of M and an I/O
sequence Q = x1…xk/y1…yk, let c′i(Q) denote the
largest number j (1≤ j ≤ k) such that (1) y1…yj-1 = λ(si,
x1…xj-1) and λ(δ(si, x1…xj-1), xj) ≠ yj.; (2) for every l (1
≤ l ≤ j-1), δ(si, x1…xl) ∉ Fl. If the rth state checked, sr,
is the first state of M such that Q is a trace of M at sr,
then the computational complexity of Algorithm 3:
C3(M, S0, Q) =)(1 Qcr

i i∑ =
′ ;

if N is faulty, then C3worst(M, S0, Q) =∑ =
′n

i i Qc1)(;
if r = 1, C3best(M, S0, Q) =)(1 Qc′ .
Proof: Compared to Algorithm 1, the checking
procedure of Algorithm 3 on state si will stop when it
encounters a mismatch with Q, the whole Q has been
checked compatible, or δ(si, x1x2…xj) ∈ Fj. Similar to
Theorem 2, let c′i(Q) denote the largest number j (1 ≤ j
≤ k) before checking on si terminates. If sr is the first
state of M such that Q is the trace of M at sr, then the
total number of comparisons needed is)(1 Qcr

i i∑ =
′ .

As the states compatible with Q are randomly
dispersed in S0, the process of sequentially checking
the states within S0 until a state compatible with Q is
found can be modeled as the Sampling without
Replacement Model [3].
Theorem 4 According to the Sampling without
Replacement Model, assume that there are m states in
S0 which are compatible with Q, and r (1 ≤ r ≤ n–m+1)
states are randomly selected from S0. Then, the

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

probability that the rth state is the first state which is
checked to be compatible with Q is given by

+−≤≤
+−−

+−−+−−

=
=

).12(
)1)...(1(

)2)...(1)((

);1(
)(

mnr
rnnn

rmnmnmnm

r
n
m

mPr

Proof: Each different arrangement of states selected
from S0 is called a permutation. Suppose that r states
are selected one at a time and removed from S0 (1 ≤ r
≤ n–m+1). Then each possible outcome of this
selection will be a permutation of r states from S0, and
the total number of these permutations will be Pn,r =
n(n–1)…(n–r+1) [3]. Pn,r is called the number of
permutations of n elements taken r at a time. Thus, if r
=1, the number of permutations is n; if 2 ≤ r ≤ n–m+1,
the number of permutations, in which the rth state is
the first state compatible with Q, is mPn-m,r-1 = m(n–
m)(n–m-1)…(n–m–r+2). Then the probability of
permutation that the rth state is the first state
compatible with Q is: if r =1, Pr(m)= m/ Pn,r = m/n;
if 2 ≤ r ≤ n-m+1, Pr(m) = mPn-m,r-1/Pn,r =

)1)...(1(
)2)...(1)((

+−−
+−−+−−

rnnn
rmnmnmnm .

Theorem 5 Suppose there are m (0 ≤ m ≤ n) states in
S0 which are compatible with Q. Let Pr(m) denote the
probability that the rth state is the first state which is
compatible with Q. The average computational
complexity of Algorithm 3 is A3 =

∑ +−
=

1
1 03) , ,()(mn

r r QSMCmP =∑ ∑+−
= =

′1mn
1r 1))()((r

i ir QcmP .

Proof: The average computational complexity of
Algorithm 3 is the sum of the number of comparisons
multiplied by its corresponding probability [9].
Example 4. Assume n = 4, m = 1, when r = 1, C3 = 4;
when r = 2, C3 = 5; when r = 3, C3 = 7; when r = 4, C3
= 9 where C3 stands for C3(M, S0, Q); Then,
A3 =1 + 5/4 + 7/4 + 9/4 = 25/4 (see Table 1).

Table 1. Average computational complexity analysis

r C3 Pr (m=1) Pr (m=1) C3
1 4 1/4 1
2 5 1∗3 / 4∗3 = 1/4 5/4
3 7 1∗3∗2 / 4∗3∗2 = 1/4 7/4
4 9 1∗3∗2*1 / 4∗3∗2*1 = 1/4 9/4

In general, the number of states compatible with Q
may be zero, or more. If it is zero, it means that none
of the states in S0 is compatible with Q and N is faulty;
if it is one or more than one, it means that the given Q
is insufficient to determine whether N is faulty.

The general case can be simplified to the case in
which the number of states which are compatible with
Q is either one or zero. This stems from the fact that
the essence of passive fault detection is to detect the

existence of faults in N. If there is one or more states
compatible with Q, it implies that the given Q is
insufficient to come to a conclusion. Additional I/O
sequence ∆Q is needed to continue with the fault
detection. Thus, let Q′ = Q +∆Q denote the I/O
sequence concatenating Q to ∆Q. Thus, the new set (M,
S0, Q′) contains at most one state that is compatible
with Q′. Let Pr(m = 1) denote the probability that there
is one compatible state in S0 and it appears at the rth (1
≤ r ≤ n) selection. So, Pr(m = 1) = 1/n.
Theorem 6: If there is only one state in S0 that is
compatible with Q, the average computational
complexity of Algorithm 3 is

A3=) , ,(1
01 3 QSMC

n
n
r∑ =

= ∑ ∑= =
′n

1r 1))((1 r
i i Qc

n
.

Proof: The average computational complexity of
Algorithm 3 is the sum of the number of comparisons
multiplied by its corresponding probability.

3.3 Comparison of the Algorithms

The computational complexities of the three
algorithms given in the previous subsections are
summarized in Table 2.

Table 2. Computational complexity

Type of algorithm Computational complexity

Algorithm 0 C1 =∑ = −
k
j jS1 1 ||

Algorithm 1 C2(M, S0, Q) =)(1 Qcr
i i∑ =

Algorithm 3 C3(M, S0, Q) =)(1 Qcr
i i∑ =

′

- k is the length of Q, |Sj| is the number of states in the
set of possible current states,

- r is the number of states checked before a state
compatible with Q is found,

- ci(Q) is the largest number j (1≤ j ≤ k) such that
y1…yj-1 = λ(si, x1…xj-1) and λ(δ(si, x1…xj-1), xj) ≠ yj

- c′i(Q) is the largest number j (1≤ j ≤ k) such that
y1…yj-1 = λ(si, x1…xj-1) and λ(δ(si, x1…xj-1), xj) ≠ yj
after eliminating the redundant checking problem

Below, we compare the computational complexities of
Algorithm 0 and Algorithm 3 when the number of
states in S0 which are compatible with Q is one or zero.
In Algorithm 0, once the set (M, S0, Q) is fixed, the
number of comparisons needed is determined and does
not change during its application. On the other hand,
the performance of Algorithm 3 is affected by the
number of states in S0 which are compatible with Q
(see Theorem 4). Algorithm 0 and Algorithm 3
represent different perspectives on tracing order in
passive fault detection. Algorithm 0 checks all the
states in the set of possible current states with one I/O

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

pair in Q at a time whereas Algorithm 3 selects one
starting state from S0 and exhausts all the possible
transitions starting from this state according to the I/O
sequence Q. If there is no state in S0 which is
compatible with Q, both Algorithm 0 and Algorithm 3
need to check the entire trace from every state in S0
and thus they perform equally. That is

∑ =
′n

i i Qc1)(=∑ = −
k
j jS1 1 || . If there is only one state s in

S0 which is compatible with Q, then the total number
of comparisons made by Algorithm 0 is ∑ = −

k
j jS1 1 ||

whereas the total number of comparisons made by
Algorithm 3 is)(1 Qcr

i i∑ =
′ (r ≤ n). Clearly,)(1 Qcr

i i∑ =
′ ≤

∑ =
′n

i i Qc1)(= ∑ = −
k
j jS1 1 || , (r ≤ n) where the rth state

checked is the state compatible with Q.
Thus, Algorithm 3 always performs at least as well

as Algorithm 0. The equality in their computational
complexities occurs when r = n.

Based on the computational complexities of the
algorithms presented above, several assertions can be
made on their performance in different conditions.
When N is not determined to be faulty:
i) if there is no redundant checking problem,
 the performance of Algorithm 1 will be the same as

that Algorithm 3 and be at least equal to that of
Algorithm 0; and the performance of Algorithm 2
will be between those of Algorithms 0 and 1.

ii) if there is redundant checking problem,
 the performance of Algorithm 3 will be at least

equal to those of Algorithms 0 and 1; and
 it is not possible to compare the performances of

Algorithm 0, Algorithm 1, and Algorithm 2
analytically due to the redundant checking problem.

When N is determined to be faulty:
i) if there is no redundant checking problem, the

performances of all the algorithms will be the same.
ii) if there is redundant checking problem,
 the performance of Algorithm 3 will be equal to

that of Algorithm 0; the performances of
Algorithms 1 and 2 will at most be equal to that of
Algorithm 0; and it is not possible to compare the
performances of Algorithms 0 and 2 analytically.

4. Experimental Evaluation

An experimental evaluation is made to compare the
average computational complexity of the algorithms
and to verify the validity of the assertions drawn above
when m = 0 or 1. In the experiment, we use a set of
randomly generated FSMs. This set consists of FSMs
with different number of states (|S0| = |S|), set X of
inputs and set Y of outputs. We select 5 configurations

in the form of (|S0|, |X|, |Y|), namely (5, 3, 3), (10, 4, 4),
(15, 4, 4), (20, 5, 5), (30, 10, 10). For each
configuration, we generate 5 FSMs correspondingly.
For each FSM M, two cases are considered.

In Case I, called correct implementation, there is
exactly only one state in S0 that is compatible with Q
(m = 1). In Case II, called faulty implementation, there
is no state in S0 that is compatible with Q (m = 0) and
“faulty” is expected to be reported. We create a faulty
specification M′ from M by altering either the output
or next state of a (randomly) selected transition. In
Case I (Case II), for every state s of M (M′), we
generate three random I/O sequences of length
|S0|∗|X|∗2, |S0|∗|X|∗4, |S0|∗|X|∗10 respectively, starting
from s; and when generating each I/O sequence Q, we
randomly select a transition of the current state of M
(M′) and repeat this at the next state.

Then, we apply all four algorithms to the FSMs in
these two cases and record the results. Table 3 shows
the number of comparisons (between the actual output
yj and the expected output λ(s, xj)), 1 ≤ j ≤ k, s ∈ S, for
each of the four algorithms. We see from Table 3 that,
• Algorithm 1, in Case I, has better performance than

Algorithm 0 in average case and best case, but not
in worst case. Also, in Case II, Algorithm 1 cannot
beat Algorithm 0;

• Algorithm 2 performs the same as the Algorithm 0
because the number of states in the set of possible
current states shrinks to one or zero in the
“Algorithm 0” part of Algorithm 2.

• Algorithm 3, in Case I, needs fewer comparisons to
find the compatible state and performs better than
Algorithm 0; while in Case II, these two algorithms
perform the same.
Experimental results confirm the assertions we

present in Section 3 and show that Algorithm 3
performs best among these four algorithms when there
is one state in S0 compatible with Q (Case I).

5. Conclusions

In this paper, we proposed a new approach to Finite
State Machine-based passive fault detection.
Compared with the former approach in [4], the
proposed approach (Algorithm 3) has better
performance and provides more information during
testing. Specifically, Algorithm 3 provides more
information about possible starting state and possible
trace compatible with the observed sequence Q and
performs better in situations where there is only one
state in S0 that is compatible with Q. The results of
both theoretical and experimental evaluations confirm
this improvement over the approach in [4].

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

Table 3. Experimental results
 Case I : m = 1 Case II : m = 0
Algorithm 0 |Q| |S0| best worst average best worst average
 60 5 64 74 65.5 6 58 17.8
 160 10 169 175 171.3 11 162 31.7
 240 15 254 262 258.0 16 252 42.8
 400 20 419 429 423.0 21 399 44.7
 1200 30 1229 1236 1231.9 31 1122 73.0
Algorithm 1 |Q| |S0| best worst average best worst average
 60 5 60 74 62.3 7 58 18.7
 160 10 160 172 165.5 11 202 36.9
 240 15 240 263 247.7 16 252 46.1
 400 20 400 432 409.3 21 744 52.9
 1200 30 1200 1235 1215.0 31 1531 83.7
Algorithm 2 |Q| |S0| Best worst average best worst average
q = 5 (q is 60 5 64 74 65.5 6 58 17.8
defined in 160 10 169 175 171.3 11 162 31.7
Algorithm 2) 240 15 254 262 258.0 16 252 42.8
 400 20 419 429 423.0 21 399 44.7
 1200 30 1229 1236 1231.9 31 1122 73.0
Algorithm 3 |Q| |S0| Best worst average best worst average
 60 5 60 65 61.9 6 58 17.8
 160 10 160 171 164.3 11 162 31.7
 240 15 240 262 247.9 16 252 42.8
 400 20 400 427 409.6 21 399 44.7
 1200 30 1200 1234 1215.3 31 1122 73.0

6. Acknowledgments

This work was supported in part by grants from Natural
Sciences and Engineering Research Council of Canada, and
Ontario Centers of Excellence.

References

[1] B. Alcalde, A. Cavalli, D. Chen, D. Khuu and D.

Lee (2004) “Network Protocol System Passive
Testing for Faulty Management - a Backward
Checking Approach,” Proc. of IFIP FORTE’04,
LNCS, vol. 3235, pp.150-166.

[2] D. Chen, J. Wu, and T.L. Chu (2003) “An
Enhanced Passive Testing Tool for Network
Protocols,” Proc. of ICCNMC’03, pp.513-516.

[3] M.H. DeGroot and M.J. Schervish. Probability
and Statistics. Boston: Addison-Wesley, 2002.

[4] D. Lee, A.N. Netravali, K.K. Sabnani, B. Sugla,
and A. John (1997) “Passive Testing and
Applications to Network Management,” Proc. of
ICNP’97, pp.113-122.

[5] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu and
X. Yin (2002) “A Formal Approach for Passive
Testing of Protocol Data Portions,” Proc. of
ICNP’02, pp.122-131.

[6] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu and

X. Yin (2006) “Network Protocol System
Monitoring – A Formal Approach with Passive
Testing,” IEEE/ACM Transactions on Networking,
vol.14, pp.424-437.

[7] R.E. Miller (1998) “Passive Testing of Networks
Using a CFSM Specification,” Proc. of IPCCC’98,
pp.111-116.

[8] R.E. Miller and K.A. Arisha (2001) “Fault
Identification in Networks by Passive Testing,”
Proc. of 34th Annual Simulation Symposium,
pp.277-284.

[9] R. Neapolitan and K. Naimipour. Foundations of
Algorithms Using C++ Pseudocode, 3rd Edition.
Sudbury, Mass.: Jones & Bartlett Publishers, 2003.

[10] M. Tabourier and A. Cavalli (1999) “Passive
testing and application to the GSM-MAP
protocol,” Information and Software Technology,
vol. 41, pp.813-821.

[11] J. Wu, Y. Zhao, and X. Yin (2001) “From Active
to Passive: Progress in Testing of Internet Routing
Protocols,” Proc. of FORTE’ 01, pp.101-118.

[12] Y. Zhao, X. Yin, and J. Wu (2001) “OnLine Test
System, an Application of Passive Testing in
Routing Protocols,” Proc. of ICN’01, pp.190-195.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00 © 2007

