
Abstract—The Robotic Process Automation (RPA) paradigm
has received increasing attention in recent years. It enables
task automation by software components which interact with
user interfaces in a similar way to that of humans. An RPA
project follows a similar lifecycle as a software project. However,
in certain contexts (e.g., business process outsourcing, BPO),
a testing environment is not always available. Thus, deploying
the robots in the production environment entails high risk.
To mitigate this risk, an innovative approach to automatically
generate a testing environment and a test case for an RPA project
are described. The activities of the humans whose processes are
to be robotized are monitorized and an UI log (i.e., a sequence
of screen captures, mouse and key actions) is confirmed. On the
one hand, the test environment is generated as a fake application,
which mimics the real enviroment by leveraging the UI log
information. To this end, the control flow of the application is
governed by an invisible control layer which decides which image
to show depending on the interface actions that it receives. On the
other hand, the test case checks whether the robot can reproduce
the behaviour of the UI log. A prototype has been constructed
and tested in a controlled scenario. Promising results have been
obtained and a number of limitations to be addressed have been
identified such that it may be applied in more realistic domains.

Index Terms—automated testing, robotic process automation

I. INTRODUCTION

Robotic Process Automation (RPA) is a software solution
for the creation of programs that mimic the behaviour of hu-
man workers when performing repetitive and structured tasks
with information systems (ISs) [6], [21], [24]. This solution
has been applied in many industries and contexts. However,
several authors have acknowledged that the best candidates to
conduct a successful RPA project are the processes within the
back offices of a company [7], [20] since they (1) are highly
frequent, (2) lack excessive exception control, (3) require
limited cognitive effort, and (4) are prone to human errors
[6].

There are many vendors who offer out-of-the-box solutions
to deal with RPA, such as BluePrism [5], UIPath [22], and
WorkFusion [25]. In general, such tools share a common RPA
lifecycle although each tool provides different support to each
phase. The lifecycle starts with the analysis of the candidate
process for automation. The processes are then designed
to contain the actions, data-flow, etc. that must be coded.
Subsequently, robots are constructed in accordance with to
the design. They are then deployed in individual environments

(e.g., virtual machines) to perform their tasks. During their
deployment, the robots are controlled and monitored in their
operation (e.g., to start new robots, stop them in case of
serious errors, etc). Finally, the performance and error cases
of the robots are evaluated to enable a new analysis for the
enhancement of the robots. It is important to bear in mind that
the testing phase is missing since it heavily depends on each
RPA project.

In the traditional software lifecycle, testing is performed
in a testing environment before deployment in the production
environment. Unlike traditional software, such a testing en-
vironment is seldom available in RPA, which entails a high
risk for deployment. In these situations, companies about to
adopt RPA start performing the processes with human workers
rather than robots. For this reason, such employees receive
training to learn how to manage cases, and they also learn
through solving the exceptions that occur on a daily basis.
In a parallel way, the RPA project starts by automating the
simplest cases by leveraging the knowledge that the human
workers have generated. In this paper, we propose leveraging
such information to automatically test the constructed robots.

To this end, a method to automatically generate a testing
environment and a test case for RPA projects is proposed. The
first step that must be executed involves controlling the input
data that the user needs to work (e.g., a list of emails with a
specific subject, and a spreadsheet file with client information).
The computers of the human workers who are performing the
processes to robotize and gather this behaviour in the form
of a UI log [13] are monitored. This log contains the user
interactions with screen captures for each case of the input
data. The test environment can then be generated as a fake
application, which mimics the real IS, that consists of a set
of images and an invisible control layer over such images.
This invisible control layer is in charge of capturing robot
inputs (i.e., mouse clicks and keystrokes) and deciding the
next image to show depending on said inputs. In addition, this
layer controls the state of the test, i.e., pass or fail.

Once the generated testing environment is ready, the robots
that are constructed are deployed therein and stimulated with
the input data of the test case (this step lies outside the scope
of this paper). Finally, a test report is generated by the control
layer.

A preliminary prototype has been evaluated in controlled

 Towards a Method for Automated Testing in
Robotic Process Automation Projects

J. Chacón-Montero, A. Jiménez-Ramı́rez, J.G. Enrı́quez
Departmento de Lenguajes y Sistemas Informáticos

Universidad de Sevilla
Seville, Spain

jesus.chacon@iwt2.org, ajramirez@us.es, jgenriquez@us.es

X��������	
���	

Tari Tavarez

contact

Grades PersonalMember

Total � �

X�����������
����	
���	

Name

Mario Machuca

Burton Bertram

Tari Tavarez

Francoise Farrior

��������
��

������
������
����

Warning
Are you sure you want to
consolidate this student?

No Yes

������� 	�
��������

�����
���
��

�����

��
��������
�

������
����
���� �����
�������	�
� ��
���
 ������� ���
������	������� ���
� �

�	
����
���� �	
������� ��������

Fig. 1. Running example

scenarios and the results seem promising. This innovative idea
opens several research lines regarding the current limitations.

The rest of the paper is organized as follows: Section
II describes a running example that will be used to guide
and illustrate the various points of this proposal. Section III
contextualizes the proposal, and provides the details of the
RPA paradigm and focuses on how it affects the aforemen-
tioned BPO context. Section IV presents the studies most
closely related to the proposal of this paper found in the
literature. Section V details the approach by taking the running
example described in Section II as reference. Finally, Section
VI summarizes the conclusions obtained after developing this
approach and proposes several new research lines.

II. RUNNING EXAMPLE

To contextualize the approach, this section describes a
simplification of the process a teacher has to perform on her
institution website for the consolidation of the results of the
exams that she has marked. To this end, a set of student marks
are needed (such as the spreadsheet in Figure 1a), which can
be considered as the input data. Each student is dealt with
as a different case. For each estudent, the teacher behaves
as follows (Figure 1 b.). First, she looks for the student in
the Student Profiles window. She then has to open the student
profile and check whether this student already has a mark (e.g.,
other teacher did it before). If it is not the case, the mark has to
be entered and then consolidated. A warning window is shown
to confirm the action. In the case that the student already has
a mark, the teacher simply closes the window. In both cases,
the application returns to the student profile window.

�� ��������� ������ ������
�� ����������������� �� �	!���
 �������" #��$��� %��&
'�
�� ���������������� (�&�)'
)* �� +���,��- #��$��� %��&
'�
�� ���������������� (�&�)'
)* �� +��,	���- #��$���
� ��������������� �� �	!������ �������" #��$��� %��&
'�
�� ���������������. (�&�)'
)* �� +��,���- #��$��� %��&
'�
� � � �

Fig. 2. An example interaction with the system

Figure 2 shows an excerpt of the interaction of the teacher
with the system. As can be observed, in the interactions 12 -
14, the teacher is dealing with the case of the student “Tari
Tavarez”. She first enters the student name, then left-clicks on
the coordinates 120, 205 (i.e., the “Open Profile” button), and

finally closes the Student window (i.e., clicks on 10, 240) after
having seen that this student already has a mark. The teacher
then proceeds with the subsequent student case.

This simplified process is repetitive and is therefore a perfect
candidate for robotization since the interactions with the user
interface can be performed by a software robot. Following
the construction of such a robot (which lies outside the scope
of this paper), its behaviour has to be tested. However, the
only platform available for said testing is the real-life system,
and, testing in this environment therefore entails a high risk.
For this reason, our approach shows how to generate a testing
platform for the robotic projects.

III. BACKGROUND

A. RPA

The ever-expanding RPA concept is built upon three main
ideas: Robot, process, and automation [2]. While robot means
whatever software machine can be programmed to execute a
specific job, process is about a succession of steps to reach
a particular objective or result. Lastly, automation means a
transformation of a manual operation with the purpose of
enabling it to be performed in an autonomous way.

Broadly speaking, a robot neither needs to be autonomous
nor to follow a process (e.g., it could be commanded by a
human). When those three elements join together, then RPA
arises. Therefore, in this context, a robot is a software product
created to perform a specific task. This task is a process
that can be performed autonomously by the robot. The main
objective is to minimize costs, provide agility, and improve
the quality [3] of processes that have hitherto been performed
by a human team [17].

For the construction of such robots, an RPA project must be
conducted following a lifecycle which involves six main steps
(cf. Figure 3): (i) analysis, (ii) design, (iii) development, (iv)
deployment, (v) testing, and (vi) maintenance and operation. In
the analysis step, various techniques are applied to successfully
understand the business process to be robotized. In the design
and development steps, the developers must define the process
in order to then translate it and build the robot. This robot
would carry out the process that has been formalized in the
analysis step. Although a test environment is desirable for
testing purposes and may be available in certain contexts, it
should be borne in mind that general RPA contexts (e.g., the
BPO context) are characterized as lacking a test environment

and only the production environment is available for such
purposes [9]. Therefore, when the robot is implemented,
it is deployed in production and then tested to determine
whether it is behaving correctly. Once checked, the robot is
the maintained and operated. In this phase, its performance is
measured and the robot can be stored, started, and/or replicated
depending on its state and/or on the current demand. Once
checked, the robot is maintained and it operates to measure
its performance and to start, stop or replicate it in base of its
state or the demand.

As the reader may have noticed, this lifecycle presents one
main drawback: the testing phase is executed directly in the
production environment which places production at high risk.

Fig. 3. Typical RPA lifecycle

B. RPA in the BPO Context

Several authors, through practical experience, acknowledge
that the best process candidates to guarantee a successful RPA
project are processes within the back office of a company [7],
[20] since they are highly repeatable, with a clear workflow,
require low cognitive effort, and prone to errors [6](e.g., the
running example stated in Section II).

Robotic Process Automation becomes particularly challeng-
ing in BPO scenarios since processes are outsourced, in
that, the back office and the ISs to interact with may be
geographically dispersed. An outsourced process implies that
the company remains unaware of how the process will be exe-
cuted. The BPO company is responsible for deciding whether a
robot should be developed for any particular process. However,
when a robot is to be implemented, there are some cases
where the robot development team have no access to a test
environment.

In this context, a partnership with the Servinform S.A.1

company has been established to improve the current RPA
lifecycle. In Servinform, and any BPO setting in general, the
back office consists of both human and robot teams. They

1Servinform is a Spanish BPO company with an IT consulting area.

TABLE I
EVENT ATTRIBUTES CAPTURED IN THE UI LOG

Name Description
app name This attribute refers to the name of the application that is being

used.
focus This attribute indicates whether the application has just gained

the focus.
event type This attribute refers to the kind of events that can be produced

{click, keystroke}.
keystrokes This attribute refers to the sequence of keystrokes pressed when

event type is a keystroke.
click type This attribute refers to the kind of click that has been produced

{left, right,middle} when event type is click.
click coords This attribute refers to the coordinates of the click when

event type is click.
start ts This attribute refers to the start timestamp.
end ts This attribute refers to the end timestamp.
img name This attribute refers to the name of the file that contains the

screen capture.

typically perform the following process when an outsourced
process is to be managed (cf. Figure 4 (a)). First, the human
workers are trained (cf. Figure 4 (b)) to perform such a
process. These workers then start to deal with the real ISs
according to their training (cf. Figure 4 (c)). It is at this
moment when the RPA lifecycle starts. In order to leverage
the knowledge that the human workers have acquired, their
computers are monitored to obtain a log of the interactions
with the user interfaces (i.e., a UI log) [13] (cf. Figure 4 (d)).
Such a UI log consists of a stream of events, which con-
tains clicks, keystrokes, screen captures and further relevant
information (see Table I) for the UI log information proposed
by Servinform. This log provides invaluable information for
the analysis of the underlying outsourced process and the
enhancement of a successful RPA lifecycle (cf. Figure 4 (f)).
As a result, a robotic team is deployed to interact with the
same ISs in parallel with the human team.

/����	��)*	�&&
)�

0#10	'�2

��)*��&&
)�	���
�
�2

3��4���)�$
%��)�44

5��'64
4

�����
) ��)*	�&&
)�

�75	
'
&�)6)'�

�	

�	 �	

�	

�	

�	

Fig. 4. RPA in the BPO

IV. RELATED WORK

The scope of application of RPA is diverse, since it can
be applied in environments such as: Front and Back-Office
[8], [10], [19], the aforementioned BPO [1], [4], [10], health
systems [16], [18], eCommerce or facial recognition [16] and
finance [3], [11]. However, to the best of our knowledge, there

are just a few proposals that speak about how to test the robots
implemented.

In the work presented by Kämäräinen [9], the author
explains the complicated structure that currently exists for
the development of RPA. The author points out that, in the
early stages of development, the robots work well on the
development servers; however, the transition to the production
phase becomes overly complicated. This is usually due to the
fact that developers lack permission to access the test servers,
which means they cannot test their implementations in the
pre-production environment and therefore the clients are often
requested to test the implemented robots.

Le Clair [12] summarizes a number of best practices and
provides guidance for the prioritization of processes for the
analysis phase. However, this work lacks any technical support
for said phase. From a more technical point of view, Leopold
et al. [14] propose the use of natural language processing
and machine learning for the detection of candidate activities
from the textual description of processes. In turn, Linn et al.
[15] introduce the concept of desktop-activity mining. In this
work, the authors combine monitoring techniques with process
mining. However, it would not be feasible to apply this in
complex settings, such as the BPO domain, since it requires
access to actual UI elements. Similarly, Leno [13] suggests
that using process mining for the discovery of local process
models (i.e., frequent patterns) from UI logs may be useful in
training robots. Furthermore, Van der Aalst et al. [23] describe
how RPA may leverage techniques from the process-mining
paradigm. However, none of these techniques directly deals
with the testing phase.

V. APPROACH

This section describes our proposal to automatically gener-
ate a testing platform for an RPA project in the early phases
of the RPA lifecycle.

As can be seen in Figure 5, this method changes the original
lifecycle in certain new aspects. Essentially, it considers the
inclusion of two new steps in the lifecycle: the test environ-
ment construction (cf. Section V-A) and the automatic testing
(cf. Section V-B).

A. Test environment construction

The first step of our proposal consists of building a platform
that mimics the behaviour of the real system with which the
robots will interact. To this end, the UI log (cf. Table I), which
is provided in the analysis phase, is used as the basis. As stated
in Section III-B, this log corresponds to the interaction of a
human performing the process that is to be robotized.

Example 1: Considering the running example and the in-
teraction of Figure 2, Figure 6 shows the information of the
corresponding UI log that would be needed to build the test
environment.

Using the details of the actions and the screen captures of
the UI log (cf. Example 1), the test environment is constructed
as a UI controller with two main functionalities:

8��'6	��4�
�2

5��'64
4

9�4
2�

9���'�%����

9�%'�6����

��4�
�2

:��
���
�2

��4� 8��
�������
;��4���)�
��

5������
)
��4�
�2

Fig. 5. Modified RPA lifecycle

�������� ���������� ���������� ���������� ������������ ��������
����������������� *�64���*� !���
 �������"
�2<��
����������������)'
)* (�&� ���,��
�2<��
����������������)'
)* (�&� ��,���
�2<��

��������������� =�64���*� !������ �������"
�2<�
���������������.)'
)* (�&� ��,���
�2<��
� � � �

Fig. 6. Running UI log

1) Showing views: The environment will show a succession
of views (i.e., images) working as the background of the
application. Such views are shown in the same order as
they appear in the UI log.

2) Capturing events: In front of the views, an invisible layer
captures all the UI events (i.e., clicks and keystrokes).
This layer also acts as a controller in that it checks
whether the captured events are similar and in the same
order as the events which appear in the UI log.

With the background and the invisible layer, the original
application can simulated.. Therefore, this platform can be
used to perform tests in an automatic way.

B. Automatic Testing

When the developer team completes the construction of
robots, our proposal can be used to automatically test these
robots before continuing with the lifecycle. To this end, a
robot must be deployed to interact with the test environment
described above with the same input data as that used while
creating the UI log (cf. Figure 7).

The automatic testing process, which is described in Alg.
1, receives the aforementioned UI log and the UI controller
(i.e,. the test environment). The objective of this algorithm
is to compare the actions stored in the UI log against each
action that a robot performs. The result of such a comparison
produces a test report that collects all existing differences.

10	'�2

10	
)�����''��

��4�	���
������
�����	

��$�� ��4� ��4�	��%���
0�%��
$���

Fig. 7. Automatic testing process

Algorithm 1: Test Execution
input : UILog l, UIController c
output: TestReport

1 succEvents ← ∅
2 foreach expEvent : l do
3 c.showView(expEvent.getImage())
4 recEvent ← c.waitForEvent()
5 if similarEvent(expEvent,recEvent) then
6 succEvents.add(recEvent)
7 else
8 return

createFailReport(succEvents,expEvent,recEvent)

9 return createPassReport(succEvents)

The algorithm star with an empty set of successfully per-
formed events (cf. line 1), and then goes through the events in
the UI log (cf. line 2) and requires the UIController to show
the image corresponding to the current event (cf. line 3).

Example 2: Regarding the UI log of Figure 6, img 12 is
shown first in the automatic testing since it is the image of
the first event.
The algorithm then waits until the robot performs any action2

and, after that, the received event is stored (cf. line 4) and
it is verified whether it is similar to the current event in
the UI log (cf. line 5). In the case when the events are
similar (e.g., clicking on similar regions or introducing the
same keystrokes), the received event is stored in the set of
successful events (cf. line 6) and the algorithm continues with
the subsequent event in the UI log. In turn, if the events
diverge, a fail report is created, which details: (1) which events
have been successfully performed (i.e., succEvents), (2) which
events have failed (i.e., recEvent); and (3) which events were
expected (i.e., expEvent, cf. line 8).

Example 3: Regarding the running example, the first ex-
pected event is a text action containing “Tari Tavarez”. As-
suming correct behaviour of the robot, the test environment
will show the image of the subsequent event (i.e., img 13) and
wait for an event of the robot. Assuming the robot introduces
the text “Burton Bertman, the test will then be completed by
producing the failure report of Figure 8.

The algorithm continues until all the expected events of the
UI log are processed. On completion of the processing, a pass

2The waitForEvent function may stop the algorithm if it waits too long for
a robot interaction (e.g., if the robot freezes).

����
���
 !����
"# $%#"%#& !�������
 "�	 '�����
()�*+!
���)�� ���.������������� ��
����� ����� ��������

���.������������� �������
;��4�� 8 %�)��$ ���������������������

��� ��)�
��$� ��
����� � !���"� �����""

Fig. 8. Example of a test report

report is produced using the data stored in succEvents (cf. line
9).

When the algorithm ends, one of two cases may occur:
1) If all the events are validated, it means that the robot

has done all its work correctly and this fact can be seen
in the pass report. At the same time, it means that the
robot is ready to be deployed in the real environment
and hence, the lifecycle may continue.

2) If any event stops the process because it fails to match
the expected events, then a fail report is returned stating
that the robot is not ready for deployment, and hence the
robot must be repaired before continuing the lifecycle.

VI. CONCLUSIONS AND FUTURE WORK

Throughout this paper, a proposal to automatically test RPA
projects has been presented. To this end, a test environment,
which simulates the behaviour of the real system, is con-
structed based on UI log information. Robots are then tested
against this synthetic system instead of the real system, thus
reducing the risk of damaging a real system. This proposal is
currently being validated in a real R&D project in the company
Servinfom S.A. funded by the Spanish government. Thanks
to this validation, a prototype could be developed and the
preliminary results obtained seem promising.

Nonetheless, during the development of this proposal, cer-
tain limitations have been detected that could open new
research lines. First, this paper presents a strict testing method-
ology, in that it depends directly on the behaviour of the user
performed against the IS. It is important to emphasize that
in case that additional environments (i.e. device configuration,
specific software versions, etc.) or test cases want to be gen-
erated, such environments and behaviours must be generated.

Therefore, there is only one way to execute the operation
although, in fact, it can be done in many ways. For instance,
moving down on a component can be done by scrolling over
that component or clicking on the “down arrow” till finding
the desired element, or filling in a form can be carried out
in orders without affecting the result. Second, this proposal
is based on the fact that an UI log exists. What is more, this
log is considered to contain information about the execution
of a set of processes by a human. Although this is a strong
assumption, this kind of logs are not so unusual in the BPO
context. Finally, the generated test environment comprises a
single long test covering the full UI log which is provided.
However, such a log may contain several instances of different
cases, e.g., the running example process presented in this paper

(cf. Figure 1) has two cases: the student already has a grade or
the student has no grade. Despite the fact that the execution of
a test for each case would suffice, our proposal tests the whole
log which may invest unnecessary time. What is more, only
one report is generated, which fails to differentiate between
the cases.

As a consequence of the limitations identified, certain
interesting research lines are opening up.

1) One of the most significant lines is the inference of
the behaviour of the UI components to make the test
more flexible. This can be carried out, for example,
using machine learning techniques. This arrangement
will allow the components of the windows to be treated
as black boxes, by focusing on the result which is
obtained after its execution and not on the behaviour
at a mouse-click level.

2) In order to improve the efficiency of the test execution,
the log needs to be pre-processed and treated so that it
can be separated into separate cases (e.g., in the running
example, one case can be each student). Although it lies
outside the context of this paper, the process-mining
paradigm positions itself as a firm candidate for the
provision of a solution to this problem. Hence, instead
of considering one single long test case, a test suite
can be generated with a reduced number of shorter test
cases which are necessary to cover the possible types of
behaviours of the system to be simulated.

3) It is necessary to perform an empirical validation with a
variety of contexts. Although, as mentioned above, this
proposal is currently being validated in a real project,
on the one hand, its results must be reported and, on
the other hand, other case studies would be necessary in
order to further corroborate the results in a more reliable
way.

ACKNOWLEDGEMENTS

This research has been supported by the Pololas project
(TIN2016-76956-C3-2-R) of the Spanish Ministry of Econ-
omy and Competitiveness and the RAIL project (P114-16/E09)
of the Centre for Industrial Technological Development (Cen-
tro para el Desarrollo Tecnológico Industrial, CDTI) of Spain.

REFERENCES

[1] S. Aguirre and A. Rodriguez, “Automation of a business process
using robotic process automation (rpa): A case study,” in Workshop on
Engineering Applications. Springer, 2017, pp. 65–71.

[2] S. Anagnoste, “Robotic automation process - the next major revolution
in terms of back office operations improvement,” Proceedings of the
International Conference on Business Excellence, vol. 11, 07 2017.

[3] A. Asatiani and E. Penttinen, “Turning robotic process automation into
commercial success–case opuscapita,” Journal of Information Technol-
ogy Teaching Cases, vol. 6, no. 2, pp. 67–74, 2016.

[4] G. Barnett, “Robotic process automation: Adding to the process trans-
formation toolkit,” White paper IT0022-0005, Ovum Consulting, 2015.

[5] Blue Prism, “www.blueprism.com,” [Online; accessed January 2019].
[6] H. P. Fung, “Criteria, use cases and effects of information technology

process automation (itpa),” Advances in Robotic and Automation, no. 3,
pp. 1–11, 2014.

[7] J. Geyer-Klingeberg, J. Nakladal, F. Baldauf, and F. Veit, “Process min-
ing and robotic process automation: A perfect match,” in International
Conference on Business Process Management, 2018, pp. 1–8.

[8] J. Hultin, C. Trudell, A. Vashistha, and T. Glover, “Implications of tech-
nology on the future workforce,” Defense Business Board Washington
United States, Tech. Rep., 2017.

[9] T. Kämäräinen et al., “Managing robotic process automation: Oppor-
tunities and challenges associated with a federated governance model,”
Master’s thesis, School of Business, 2018.

[10] M. Lacity and L. Willcocks, “Robotic process automation: the next
transformation lever for shared services,” London School of Economics
Outsourcing Unit Working Papers, vol. 7, 2015.

[11] C. Lamberton, D. Brigo, and D. Hoy, “Impact of robotics, rpa and
ai on the insurance industry: challenges and opportunities,” Journal of
Financial Perspectives: Insurance edition, 2017.

[12] C. Le Clair, A. Cullen, and M. King, “The forrester wave: Robotic
process automation, q1 2017,” 2017.

[13] V. Leno, M. Dumas, F. M. Maggi, and M. La Rosa, “Multi-perspective
process model discovery for robotic process automation,” CEUR Work-
shop Proceedings, vol. 2114, pp. 37–45, 2018.

[14] H. Leopold, H. van der Aa, and H. A. Reijers, “Identifying candidate
tasks for robotic process automation in textual process descriptions,”
in Enterprise, Business-Process and Information Systems Modeling.
Springer, 2018, pp. 67–81.

[15] C. Linn, P. Zimmermann, and D. Werth, “Desktop activity mining-a new
level of detail in mining business processes,” in Workshops der INFOR-
MATIK 2018-Architekturen, Prozesse, Sicherheit und Nachhaltigkeit.
Köllen Druck+ Verlag GmbH, 2018.

[16] H. Lu, Y. Li, M. Chen, H. Kim, and S. Serikawa, “Brain intelligence:
go beyond artificial intelligence,” Mobile Networks and Applications,
vol. 23, no. 2, pp. 368–375, 2018.

[17] S. Madakam, R. M. Holmukhe, and D. K. Jaiswal, “The Future Digital
Work Force: Robotic Process Automation (RPA),” JISTEM - Journal of
Information Systems and Technology Management, vol. 16, 00 2019.

[18] P. Mijović, E. Giagloglou, P. Todorović, I. Mačužić, B. Jeremić, and
I. Gligorijević, “A tool for neuroergonomic study of repetitive oper-
ational tasks,” in Proceedings of the 2014 European Conference on
Cognitive Ergonomics. ACM, 2014, p. 32.

[19] V. K. Naik, P. Garbacki, and A. Mohindra, “Architecture for service
request driven solution delivery using grid systems,” in Services Com-
puting, 2006. SCC’06. IEEE International Conference on. IEEE, 2006,
pp. 414–422.

[20] E. Penttinen, H. Kasslin, and A. Asatiani, “How to choose between
robotic process automation and back-end system automation?” in Euro-
pean Conference on Information Systems, 2018.

[21] J. R. Slaby, “Robotic Automation emerges as a threat to traditional
low-cost outsourcing,” https://www.blueprism.com/wpapers/robotic-
automation-emerges-threat-traditional-low-cost-outsourcing, 2018,
[Online; accessed January 2019].

[22] UiPath, “www.uipath.com,” [Online; accessed January 2019].
[23] W. M. van der Aalst, M. Bichler, and A. Heinzl, “Robotic process

automation,” 2018.
[24] L. Willcocks, M. Lacity, and A. Craig, “Robotic process automation:

strategic transformation lever for global business services?” Journal of
Information Technology Teaching Cases, vol. 7, no. 1, pp. 17–28, 2017.

[25] WorkFusion RPA Express, “www.workfusion.com/rpaexpress,” [Online;
accessed January 2019].

