
Automatically Assessing and Extending Code
Coverage for NPM Packages

Haiyang Sun∗, Andrea Rosà∗, Daniele Bonetta†, and Walter Binder∗
∗Università della Svizzera Italiana, Faculty of Informatics, Lugano, Switzerland

Email: {haiyang.sun, andrea.rosa, walter.binder}@usi.ch
†Oracle Labs, Netherlands

Email: daniele.bonetta@oracle.com

Abstract—Typical Node.js applications extensively rely on
packages hosted in the npm registry. As such packages may
be used by thousands of other packages or applications, it is
important to assess their code coverage. Moreover, increasing
code coverage may help detect previously unknown issues. In
this paper, we introduce TESA, a new tool that automatically
assembles a test suite for any package in the npm registry. The
test suite includes 1) tests written for the target package and
usually hosted in its development repository, and 2) tests selected
from dependent packages. The former tests allow assessing the
code coverage of the target package, while the latter ones can
increase code coverage by exploiting third-party tests that also
exercise code in the target package. We use TESA to assess
the code coverage of 500 popular npm packages. Then, we
demonstrate that TESA can significantly increase code coverage
by including tests from dependent packages. Finally, we show
that the test suites assembled by TESA increase the effectiveness
of existing dynamic program analyses to identify performance
issues that are not detectable when only executing the developer’s
tests.

Index Terms—npm, javascript, test automation, code coverage

I. INTRODUCTION

Node.js [1] has become one of the most popular runtimes
for executing server-side JavaScript programs. Node.js appli-
cations typically resort to hundreds of publicly available third-
party packages hosted in the Node package manager (npm)
registry [2], a large repository containing over a million of
ready-to-use publicly available third-party libraries. While the
availability of a large number of packages is appealing and
eases the development of complex software, it is fundamental
that such packages have high quality, to reduce the chances
that a buggy package affects potentially many other packages
and applications [3], [4]. Unfortunately, the lack of uniform
code-quality standards exposes the npm ecosystem to bugs
and vulnerabilities, whose negative impact increases with the
popularity of the affected package [5]–[11].

As testing is important to ensure the quality of a program
and one important aspect of the test quality is code coverage,
having a test suite with good code coverage is fundamental.
A recent study by Fard et al. [12] investigates the tests of 86
packages from the npm registry and finds that many of them
suffer from broken test configuration or poor coverage. Due
to the lack of an automatic tool to test and measure the code

coverage, their study was done manually. Such an approach
does not scale to the large number of available npm packages.

While the availability of a fully automated tool for testing
and evaluating the code coverage of popular npm packages is
crucial, developing such a tool is challenging. An automatic
approach needs to identify configuration failures in building
and running the existing tests, which are very common [12].
In addition, measuring the coverage of the tests shipped in a
package’s release in the npm registry is insufficient in general.
Many packages (more than 90% of those analyzed in this
paper) are intentionally deployed in the npm registry without
any testing code, so as to decrease the release size. Hence,
to find tests of a package of a specific version, one needs to
consider also the package’s development repository. Moreover,
as the repository may hold thousands of revisions (in terms
of commits, tags, or releases), each of them often containing
significantly different package code as well as different tests,
an automatic approach needs to choose the revisions with
testing code compatible with the version of the package in
the npm registry.

In this paper, we tackle these issues with TESA, a novel tool
that enables automatic testing and coverage measurement for
npm packages. TESA can not only run and measure the code
coverage for the original tests for the target package located
in the package’s development repository, but also compose
an additional test suite of dependent tests from third-party
packages, treating the tests of third-party packages that rely on
the target package (called dependent packages in this paper,
or dependents for short) as tests for the target package itself.
While the former tests (written by the maintainers of the
target package) allow testing implementation details of the
target package, the latter (written by the dependent packages’
developers) serve as black-box tests for testing (parts of) the
public functionalities of the target package. To the best of our
knowledge, TESA is the first framework for the automatic
assembly of test suites fully leveraging the abundance of
code available in the npm registry. TESA also provides a
compaction algorithm that produces an optimal compacted test
suite, i.e., containing only those tests necessary to maximize
code coverage while minimizing the total test execution time.
Our evaluation results show that TESA can increase the num-
ber of successful tests by fixing common misconfigurations
automatically, and that the test suite assembled by TESA

ar
X

iv
:2

10
5.

06
83

8v
1

 [
cs

.S
E

]
 1

4
M

ay
 2

02
1

can significantly improve the code coverage for many npm
packages.

Moreover, in addition to extending code coverage, TESA
enables the automatic execution of arbitrary dynamic program
analyses (DPAs) on the testing code (including both original
and dependent tests) of any set of npm packages, allowing
the automated execution of large-scale DPAs “in the wild”.
Thanks to TESA, we run a state-of-the-art DPA for identifying
performance problems in npm packages. Our results demon-
strate that dependent tests allow finding performance problems
that cannot be detected with the original tests of a package,
further confirming the benefits of extending code coverage by
exploiting tests written for dependent packages.

To summarize, our work makes the following contributions.
We present TESA, a novel tool for the automatic assembly
of test suites for any package in the npm registry, including
original tests from a package’s development repository and
dependent tests written for dependent packages (Section II).
We use TESA to assess the code coverage of 500 popular
packages, and we show that TESA can significantly increase
code coverage by including tests from dependent packages.
Moreover, we demonstrate that executing DPAs on the test
suites assembled by TESA enables the identification of per-
formance issues that are not detectable when only executing
the original tests (Section III). We complement the paper
with a discussion on the lessons learned while developing
TESA and conducting the evaluation (Section IV), an outline
on important aspects of our approach (Section V), and an
overview of related work (Section VI). Finally, we draw our
conclusions in Section VII.

II. TESA

In this section, we introduce the approach used by TESA
to assemble a test suite for a given npm package.

A. Test Inclusion Criteria

TESA treats tests at the granularity of packages; hence-
forth, we consider as a single test all the code that executes
when invoking npm test, after package installation with npm

install. In this paper, we denote a package with name n and
version v as n@v. For a test to be considered for inclusion in
the test suite for n@v, a test (either original or dependent) has
to satisfy two requirements:

• The test has to succeed.
• The test has to cover some code in n@v.
As a successful npm install or npm test command

always terminates with exit code zero, TESA checks the
exit code to determine whether installation or test execu-
tion has succeeded or failed. To determine whether a test
covers some code in n@v, TESA measures code coverage
using three different metrics, i.e., statement, function, and
branch coverage, which are computed by istanbul.js.1 In
principle, our approach is not limited to such test-coverage
metrics and can be extended to use other metrics. The code

1istanbul.js [13] is a popular tool for measuring code coverage in
Node.js applications.

coverage of a set of tests ts for a package n@v is denoted
as Covkind(n@v, ts) (kind denotes the program elements for
which the code coverage is computed: statement, function, or
branch) and is defined as follows:

Totalkind(n@v)←
{ id = (f, loc) | ∃ a kind-element at loc in file f of n@v }

Coveredkind(n@v, t ∈ ts)←
{ id ∈ Totalkind(n@v) | t covers id }

Covkind(n@v, ts)←
|
⋃

t∈ts
Coveredkind(n@v, t)|

|Totalkind(n@v)|

(1)

As defined in Formula 1, every program element of interest
(statement, function, branch) is identified with a unique ID
consisting of the enclosing source-code file (distinguished by
the relative path of the file in the package) and the location
of the program element in the file (i.e., the starting position
of the element in the file).

When assembling the test suite TS(n@v) for a package
n@v, discovered tests t are included as follows:

TS(n@v)←
{ t | t succeeds ∧ ∃ kind with Covkind(n@v, {t}) > 0 }

(2)

B. Finding Original Tests

Here, we describe how TESA locates original tests for n@v,
provided by the developers of package n in its development
repository.2 The development repository may contain thou-
sands of revisions (i.e., commits, tags, and releases). While
in general, there is a mapping between the code of n@v
released in the npm registry and a revision in the development
repository containing the same code, the corresponding revi-
sion may not contain suitable tests. To locate suitable tests,
a simple approach would be to run all tests from all the
revisions in the development repository and to measure code
coverage wrt. n@v. However, such an approach would be too
costly, particularly when assembling test suites for a large set
of packages.

TESA employs an automatic procedure to locate tests com-
patible with n@v in the development repository. In particular,
TESA considers only the revisions that closely match the code
of n@v. Our approach is based on the following empirical
observation on development repositories: most development
repositories have one or more releases corresponding to
package n@v as published in the npm registry. Moreover,
especially in well-maintained packages, the release ID contains
the version number of the package as released in the npm
registry.

Motivated by this observation, TESA selects those releases
whose ID textually contains version v. With high probability,
most of the source-code files in the selected revisions are the
same as those of n@v in the npm registry. If there are tests in
such revisions, they are more likely to have higher coverage
for n@v compared to other revisions.

2The URL of the development repository is specified in the
package.json file of the package.

Unfortunately, some packages do not follow this naming
practice, or the selected revisions may contain no tests. To
handle such cases, TESA also looks for tests in the revision
corresponding to the last commit before the release date of
n@v in the npm registry, which is likely to contain code
matching n@v.

However, the selected revisions may still contain code files
that are different in content wrt. those in the npm registry
for n@v. Statements, branches, or functions covered in these
different files will not be counted in the coverage measure-
ment. TESA attempts to fix such differences automatically,
by replacing the different files with the corresponding ones
from the npm registry.

To summarize, TESA looks for original tests from the
development repository by selecting the revisions that best
match n@v, attempting to automatically fix minor differences
found between the selected revisions and the package code in
the npm registry.

C. Finding Dependent Tests

Here, we detail the approach used by TESA to look
for dependent tests. Such tests are important because they
represent how n@v is used by dependent packages. The
portions of n@v covered by dependent tests can significantly
differ from those covered by the original tests. As a result,
including dependent tests can increase the coverage of the test
suite. Moreover, dependent tests can be useful for a package
developer to check whether a new update to his package may
break its dependent packages. However, finding high-quality
dependents that contain tests for n@v is not trivial. While
a popular package can have tens of thousands of dependents,
many of them may not contain tests, or may only contain tests
that do not cover n@v.

In a first step, TESA filters and sorts the available set
of dependent packages. Our tool identifies and filters out
dependents that are not compatible with the version v of
n@v. For example, if v is 3.0.0 and a dependent package
explicitly requires a version that is newer (e.g., 4.0.0) or
older (e.g., 2.0.0) than 3.0.0, such dependent cannot work
with n@v and is therefore filtered out. In addition, TESA sorts
the dependents according to their average daily downloads and
evaluates them in descending order (starting with the most
frequently downloaded dependent). The search stops when a
given maximum number of dependents is reached.

In a second step, TESA measures the coverage of the tests
of the remaining dependents to determine whether they cover
n@v. The original tests of dependents can be located in the
same way as the original tests of the target package (see
Section II-B). In case a range version is specified, TESA
forces the dependent test to download the exact version of
n@v from the npm registry. Without such an approach, a newer
version than v in the range (if any) would be automatically
installed, resulting in code files that do not match n@v, hence
leading to lower code coverage.

D. Compacting the Test Suite

The test suite TS(n@v) resulting from the previous steps
(including both original and dependent tests) may be large and
require a long time to run. Moreover, not all tests in TS(n@v)
are fundamental to improve the code coverage of n@v, as a test
may cover only code portions that are already covered by other
tests. For these reasons, TESA uses a compaction algorithm
to reduce the size of TS(n@v). Such a compacted test suite
is particularly necessary in scenarios where developers are
concerned about the time to run tests.

The compaction algorithm employed by TESA can be
described as an optimization problem to find a subset
OPT (n@v) ⊆ TS(n@v) with the same code coverage,
but requiring the shortest estimated execution time among
all candidate solutions. The specification of the optimization
problem is given in Formula 3, where P(TS(n@v)) is the
power set of the test suite TS(n@v), CND(n@v) is the set
of candidate solutions, and OPT (n@v) is an optimal solution
to the problem.

CND(n@v)← { ts ∈ P(TS(n@v)) |
∀ kind : Covkind(n@v, ts) = Covkind(n@v, TS(n@v)) }

∀ ts ∈ P(TS(n@v)) : time(ts)←
∑
t∈ts

time(t)

OPT (n@v)←
X ∈ CND(n@v) | ∀ ts ∈ CND(n@v) : time(X) ≤ time(ts)

(3)

In Formula 3, time(t) represents the time to execute a test
t. TESA measures time as the median of N runs (user-defined
value) of t without any coverage measurement, to avoid any
measurement perturbations caused by istanbul.js. TESA
uses a general branch-and-bound [14] algorithm to find the
optimal solution for the problem defined in Formula 3. The
compaction rate of our algorithm for TS(n@v) (i.e., the
estimated speedup of running the tests in OPT (n@v) vs. the
tests in TS(n@v)) can be computed as follows:

CompactionRate(TS(n@v))←
time(TS(n@v))

time(OPT (n@v))
(4)

III. EVALUATION

In this section, we evaluate the test suites assembled by
TESA. Our experiments target test suites assembled by our
tool for an evaluation set including 500 very popular and
influential packages. For each package, we consider its last
released version before January 1, 2020. The packages are cho-
sen according to several popularity criteria, i.e., the number of
downloads, GitHub stars, and the number of direct dependent
packages. More concretely, packages in the evaluation set must
have at least 10K daily downloads on average in 2019 and
more than 100 GitHub stars in their development repository.
Moreover, the considered version of each package must have
at least 20 other dependent packages. Overall, packages in the
evaluation set have 673K daily downloads, 12K GitHub stars,
and 611 dependents on average.

 0

 10

 20

 30

 40

 50

>020406080100

Pa
ck

ag
es

 [%
]

(a) Statement Coverage [%]

original

242
225

165

dev. (selected)

218
203

154

dev. (latest)

163

139

101

npm

3330
21

 0

 10

 20

 30

 40

 50

>020406080100

Pa
ck

ag
es

 [%
]

(b) Function Coverage [%]

original

237
220

166

dev. (selected)

214
199

154

dev. (latest)

156

136

104

npm

3230
20

 0

 10

 20

 30

 40

 50

>020406080100

Pa
ck

ag
es

 [%
]

(c) Branch Coverage [%]

original

237
218

142

dev. (selected)

214
196

134

dev. (latest)

158

133

92

npm

3130
19

Fig. 1. Code coverage of the original tests found by TESA. Points in the curve represent the number of packages with coverage ≥ 80%, ≥ 20%, and >
0%, respectively. The evaluation set is composed of 500 packages.

A. Original Tests

Here, we evaluate the coverage of the original tests for
the packages in the evaluation set, automatically measured
by TESA. We show the results in Figure 1, where each
subfigure represents one of the coverage metrics used by
TESA, i.e., statement (Figure 1a), function (Figure 1b), and
branch coverage (Figure 1c). Each graph shows 4 curves, each
reporting the percentage of packages of the evaluation set (y-
axis) whose tests satisfy a coverage threshold (x-axis). Each
curve considers different tests, as follows:

• npm – considers only the tests found in the package
release in the npm registry.

• dev. (latest) – considers only the tests located in the
latest commit of the master branch of the development
repository. Such revision represents the first place where
developers usually search for tests.

• dev. (selected) – considers not only the latest revision, but
also the ones that TESA determines to be related to the
package version (i.e., releases matching the version v of
the target module and the last commit before the release
date of the package in the npm registry).

• original – considers all original tests as specified in
Section II-B (i.e., after fixing files that are different from
the module release).

The number of packages that have coverage ≥ 80%, ≥ 20%,
and > 0% is shown nearby the respective points in the curves.

As the trends for the three coverage metrics are similar,
we explain our results focusing only on statement coverage
(Figure 1a). The discussion below can be generalized also
to function and branch coverage. From the npm curve, we
observe that only 4.2% of the packages in the evaluation set
have statement coverage ≥ 80%, only 6.0% of the packages
have coverage ≥ 20%, and only 6.6% of the packages contain
tests with non-zero coverage. This result confirms that most
packages do not have tests in their releases in the npm registry,
or have only a limited portion of them.

When looking at the dev. (latest) curve, the trend shows that
looking for suitable tests considering only the latest commit in
the development repository can already greatly improve code
coverage. For example, the number of packages with coverage

≥ 80% increases by a factor of 4.8x, the number of packages
with coverage ≥ 20% increases by a factor of 4.6x, while the
number of packages with coverage > 0% increases by a factor
of 4.9x. However, as indicated by the dev. (selected) curve,
the approach used by TESA to select revisions matching the
package version can provide significantly higher coverage,
i.e., an extra 50% improvement compared to tests in the
latest commit. In particular, the number of packages with
coverage ≥ 80%, ≥ 20%, and > 0% increases from 101
to 154, from 139 to 203, and from 163 to 218, respectively.
Finally, curve original shows that the strategy used by TESA
to resolve differences between releases in the npm registry
and the selected revisions leads to 6.5%, 10.8%, and 11%
more packages with coverage ≥ 80%, ≥ 20%, and > 0%,
respectively.

Overall, our evaluation shows that TESA can locate original
tests and automatically measure code coverage for about half
of the packages in the evaluation set without any manual
intervention. Unfortunately, no original tests can be found for
the other half of the evaluation set. We discuss the reasons in
Section V.

B. Dependent Tests

In this section, we evaluate the coverage resulting from
dependent packages. First, we show how TESA discovers
dependent tests focusing on one very popular package called
lodash. Then, we show the overall code-coverage improve-
ment for the whole evaluation set when including dependent
tests.

1) Discovering Dependent Tests for lodash: lodash is one
of the most popular Node.js packages. The package has 44.6K
GitHub stars, and it was downloaded more than 1.18 billion
times in 2019. This subsection focuses on the discovery of
dependent tests for lodash. In particular, we consider version
4.17.15 of the package (last release in 2019).

Figure 2 shows the gradual code coverage improvement for
lodash in relation to the number of dependent tests found
by TESA, considering the first 1500 dependent packages
tested (selection criteria described in Section II-C). The x-axis
shows the number of dependents that have been tested, while

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

St
at

em
en

t C
ov

er
ag

e
[%

]

Dependents Tested

original + dependent tests
dependent tests

selected dependent test

Fig. 2. Code coverage for lodash. Improvement to statement coverage
wrt. the number of dependents tested by TESA. No compaction of the test
suite is done.

the y-axis represents the statement coverage. The scattered
points (labeled “selected dependent test”) represent individual
dependent tests to be included in the test suite. The curve in the
middle (labeled “dependent tests”) represents the cumulative
coverage of the test suite considering only the dependent tests.
The curve at the top (labeled “original + dependent tests”)
represents the total code coverage achieved considering both
the original tests and the dependent tests. The left end of
this curve has a value of 27.5%, which is the coverage of
the original tests for lodash@4.17.15. Every increase in
the value of the two curves is highlighted with a dot that
corresponds to the dependent test that leads to the increase.
Overall, 388 valid dependent tests (i.e., finishing successfully
with non-zero code coverage) are found for lodash among the
first 1500 dependent packages, as highlighted by the scattered
points.

In the figure, we observe that the final coverage of the
dependent tests (the right end of the “dependent tests” curve)
is 55.4%, which is significantly higher than the coverage of
the original tests (27.5%, i.e., the starting value of the top
curve). This shows that for lodash, the dependent tests found
by TESA feature an even higher statement coverage than the
original tests. At the same time, we observe that there is a
10.6% difference between the right ends of the two curves.
This gap represents the presence of a portion of code that is
only covered by the original tests of lodash.

By inspecting the differences in the coverage reports gener-
ated by TESA, we find that the main reason why lodash has a
lower coverage for original tests in comparison to dependent
tests is that the original tests focus only on the main code
file of the package (lodash.js) without testing many other
small utility files (there are overall 1046 JavaScript source-
code files in lodash@4.17.15). However, such files are used
by the dependents and covered by some dependent tests. On
the other hand, the original tests of lodash still cover some
code that is not used by any of the 1500 dependent tests.

To narrow the difference, more dependents have to be tested.
While doing so is time-consuming, such a search process has
a one-time cost—once the test suite has been assembled, we
do not need to repeat the search.

In summary, our evaluation shows that both sources of tests
(original and dependent) complement each other, leading to a
test suite with higher code coverage.

2) Code Coverage Including Dependent Tests: Figure 3
compares the coverage resulting from dependent tests (“depen-
dent” curve) with the one resulting from the tests included in
the npm registry (“npm” curve), from original tests (“original”
curve), as well as with the total coverage of the test suite
assembled by TESA (“total” curve). Similarly to Figure 1,
each of the three subfigures focuses on a different code-
coverage metric. Again, we explain our results focusing only
on statement coverage, shown in Figure 3a.

By looking at the right end of the curves, we can observe
that more packages are found with dependent tests (350) than
with original tests (242). This can be explained by the fact that
the possibility of finding original tests significantly depends on
the existence of correctly configured and runnable tests in the
development repository of the target module. The presence of
many dependents increases the chances of locating correctly
configured tests, and hence valid dependent tests for a module.

We observe that 165 out of the 242 packages with valid
original tests have at least 80% code coverage, while only
87 out of 350 packages with valid dependent tests have a
code coverage ≥ 80%. This shows that original tests from
the maintainers alone tend to have better coverage compared
to only dependent tests. This can be explained as some
functionalities or corner cases (such as exception handling) of
the target package are rarely or never exercises by dependents,
but are nonetheless tested by the package maintainers. When
including dependent tests in the suite assembled by TESA, the
number of packages with at least 20% coverage is increased
by 50% (from 225 to 349), while the number of packages
with 80% or more coverage is increased by almost 20% (from
165 to 195). This indicates that the dependent tests are not
subsumed by the original tests, and highlights the fundamental
role of dependent tests in increasing code coverage.

Overall, the test suite assembled by TESA includes both
original and dependent tests, written by different groups of
developers (i.e., the maintainers of a package and the devel-
opers using it). Each kind of test can cover code portions that
are not covered by the other, thus complementing each other.
TESA leverages this synergy and exploits both sources of
tests, which results in a more complete test suite with increased
code coverage.

C. Test-suite Compaction

Here, we evaluate the algorithm used by TESA to compact
the final test suite (see Section II-D). This evaluation has been
conducted on a machine running Ubuntu Server version 18.04
(kernel version 4.15.0-66), equipped with 128 GB of RAM
and 8 CPU cores (2.7 GHz). Table I compares the test suite
before and after compaction. The first row shows results for the

 0

 10

 20

 30

 40

 50

 60

 70

 80

>020406080100

Pa
ck

ag
es

 [%
]

(a) Statement Coverage [%]

total 393

349

195

dependent 350

294

87

original

242
225

165

npm

333021

 0

 10

 20

 30

 40

 50

 60

 70

 80

>020406080100

Pa
ck

ag
es

 [%
]

(b) Function Coverage [%]

total 384

330

207

dependent
337

270

110

original

237
220

166

npm

323020

 0

 10

 20

 30

 40

 50

 60

 70

 80

>020406080100

Pa
ck

ag
es

 [%
]

(c) Branch Coverage [%]

total 382

323

157

dependent
337

257

41

original

237
218

142

npm

3130
19

Fig. 3. Code coverage of the test suite generated by TESA. Original vs. dependent tests. Points in the curve represent the number of packages with coverage
≥ 80%, ≥ 20%, and > 0%, respectively. The evaluation set is composed of 500 packages.

Package(s) # Tests Included Execution Time Comp.
Rate

Comp.
TimeBefore After Before After

lodash
1 original 1 original 1h28m 19m29s 4.5 40s388 dependent 39 dependent

all 9.82 1.70 2m10s 22s 6.0 0.13s(average)

TABLE I
EVALUATION OF THE TEST-SUITE COMPACTION ALGORITHM APPLIED BY TESA. COLUMNS “BEFORE” AND “AFTER” REPORT METRICS MEASURED ON

THE TEST SUITE BEFORE AND AFTER RUNNING THE COMPACTION ALGORITHM, RESPECTIVELY. THE EVALUATION SET IS COMPOSED OF 500 PACKAGES.

lodash package, while the second row reports the average-
per-package results for running the algorithm on the entire
evaluation set.

The table compares the number of tests included in the
suite and the total test execution time, before and after the
compaction. The last two columns report the compaction rate
and the time spent running the compaction algorithm.

The compaction algorithm chooses for lodash the single
original test and 39 additional dependent tests, out of the
388 valid dependent tests for this package, which reduces the
time needed to execute all tests from 1 hour and 28 minutes
to 19 minutes and 29 seconds, with a compaction rate of
4.5. The execution time of the compaction algorithm itself
is 40 seconds, including reading and processing the coverage
reports collected by TESA. When considering all the test
suites generated by TESA, the last row shows that, on average,
our compaction algorithm takes very little time (0.13s) to finish
and yields a compaction rate of 6.0.

D. Case Study: Running DPA with Extended Code Coverage

As the JavaScript language is highly dynamic, developers
often rely on DPA tools to better understand the runtime
properties of a JavaScript application. To be effective, it is
crucial that DPA is applied to workloads covering a significant
portion of application code, as DPA cannot provide any
information on code that it is not executed. Previous work
has shown [15], [16] that unit tests are a viable source of
workloads for discovering runtime properties with DPA. In
this section, we show that the test suite provided by TESA
can also be used to extend the effectiveness of DPA tools.
In particular, we show that existing DPAs can provide more
information and locate more performance problems if executed

on the test suite provided by TESA than simply relying on the
tests included in the npm registry or on the original tests of a
package.

To run DPA tools, TESA integrates NodeProf [17], a DPA
framework for Node.js, which offers support for the latest
ECMAScript features. Thanks to this integration, any existing
or new DPA developed with NodeProf can be automatically
applied to the test suite assembled by TESA.

In this section, we focus on two existing DPAs
(non-contiguous-array and typed-array) included in
JITprof [18], a collection of DPAs that can run on NodeProf
to identify a variety of code patterns that may jeopardize
optimizations performed by the just-in-time (JIT) compiler of
the JavaScript engine. As output, both analyses produce a set
of source-code locations, each representing one finding. We
provide more details on the two DPAs below.

• non-contiguous-array detects array writes at indices
that are outside the array boundaries. In such cases, the
array will be automatically extended, and the gap between
the old array boundary and the write index will be filled
with undefined objects. Such a pattern can degrade
performance, as the JIT compiler may not be able to
treat the array as a primitive one that can be stored as
a sequential memory buffer.

• typed-array locates arrays that store only primitive
types (such as integer or byte) and are accessed
frequently (the threshold used in the analysis is 1000
array accesses). These arrays could be replaced by
specific typed array-like objects in JavaScript (such as
Int32Array or Uint8Array), allowing faster read and
write accesses.

DPA # Findings # Packages
npm original final npm original final

non-contiguous-
array

5 8 20 3 6 11

typed-array 36 97 201 6 21 40

TABLE II
APPLYING DPAS TO THE TEST SUITE GENERATED BY TESA. NUMBER OF
FINDINGS AND NUMBER OF PACKAGES WHERE AT LEAST ONE FINDING IS

REPORTED.

We apply the two DPAs on the following test suites,
obtained by TESA from the 500 packages in the evaluation
set: 1) tests contained in the package release on the npm
registry, 2) original tests, 3) the final test suite including both
original and dependent tests. We report the findings (only for
the code within the target package) reported by the two DPAs
in Table II. The left part of the table shows the number of
findings reported by the DPAs executed on the different test
suites, while the right part of the table reports the number of
packages with at least one finding.

From the table, we can observe that with the inclusion
of more tests, running the analyses results in more reported
findings. Compared to simply running the tests found in
the npm registry for the evaluation set, by executing the
DPAs on the original tests from the development repository
the number of findings for non-contiguous-array and
typed-array increases from 5 to 8 and from 36 to 97,
respectively, while the number of packages with at least
one such finding increases from 3 to 6, and from 6 to 21,
respectively. Executing the DPAs on the complete test suite
generated by TESA (including both original and dependent
tests) further increases the number of findings reported by the
two analyses, from 8 to 20 (non-contiguous-array),
and from 97 to 201 (typed-array). Moreover, the number
of packages where a performance problem is found increases
from 6 to 11 (non-contiguous-array) and from 21 to
40 (typed-array).

Overall, our evaluation results show that the test suite
generated by TESA can help DPA tools yield additional im-
portant results, thanks to the extended test-coverage provided
by dependent tests.

IV. LESSONS LEARNED

In this section, we discuss the lessons learned during the
development and evaluation of TESA.

a) Dependent tests are useful. Dependent tests are a
very valuable source of tests besides the original tests. First,
dependent tests alone can cover a good portion of the code
of a package (e.g., for about 35% of the packages considered
in our evaluation, dependent tests can achieve more than 60%
statement coverage). Second, dependent tests represent a valid
alternative to original tests to assess package quality, espe-
cially for packages that do not include correctly configured
and runnable tests (i.e., more than half of the packages in
our evaluation). In addition, dependent tests can be used to
study the impact of newly found bugs [3] and the backward

compatibility [19] of the target package. Finally, dependent
tests can significantly increase the effectiveness of DPA tools,
which can analyze a higher portion of code when compared
with running only the original tests. Overall, original and
dependent tests can cover code portions that are not covered
by the other, thus complementing each other. This remarks the
importance of considering both kinds of tests when evaluating
package quality, as done by TESA.

b) Package releases in the npm registry often exclude
tests that can only be found in their development reposi-
tory. As a result, testing a specific package release in the npm
registry without knowledge about how versions and tests are
organized in the development repository is difficult.

TESA simplifies this task by automatically selecting the
right tests for a specific package version. This process is
transparent to the user and does not require extra effort in
manually investigating the development repository.

c) Many packages, including popular ones, lack the
necessary configuration for their tests. The npm registry
does not require a package to have valid tests, making it
harder to standardize package testing. In our study, we find
that often packages require the installation of extra packages
(e.g., testing harnesses like mocha), package managers (e.g.,
yarn), or system libraries (e.g., curl) to run their tests.
However, such packages and libraries are neither specified as
dependencies by packages’ developers, nor installed by default
in a standard testing machine. As a result, even after installing
dependencies via the standard npm install command, the
tests will fail. This might be explained by the fact that
package maintainers have these prerequisites configured in
their own testing environment, and thus do not notice that such
dependencies would be missing for other developers. As not
all the missing prerequisites are well-known, it is not possible
to preinstall all the prerequisites that work for all packages.

TESA is designed to handle this case. First of all, TESA
preinstalls about 30 popular prerequisites by statically ana-
lyzing the testing scripts of the target packages. In addition,
when a test fails, TESA analyzes the error output to determine
whether the failure is caused by missing dependencies or
runnable commands in the environment and tries to install
them automatically. Only if this fails, TESA notifies the user
and asks for manual inspection. The error handling applied by
TESA can greatly reduce test failures due to misconfigurations
and allows finding more valid original and dependent tests
when assembling the test suite.

d) Always sandbox the tests. As some packages may
include scripts that cause side-effects on the host machine
(e.g., the installation of additional tools or the forced setting
of global configurations) or can even be malicious, it is
fundamental to execute tests in a sandboxed environment.
TESA runs all package tests in Docker containers to prevent
such side-effects.

e) Scalability matters. As a package could have thousands
of dependents (e.g., lodash has more than 120K dependents),
searching for all suitable dependent tests may take a very long
time. It is therefore very important to implement a scalable

strategy that can speed up the assembly of the test suite. In
TESA, the search for dependent tests can run in parallel,
evenly distributing test lookup among workers running in
different Docker containers.

V. DISCUSSION

In this section, we discuss important aspects of our ap-
proach, while also introducing ideas for future work and the
limitations of our technique.

a) Coverage metrics. TESA currently employs three
coverage metrics (i.e., statement, function, and branch cover-
age) to measure test quality, relying on istanbul.js. Such
metrics are widely adopted and have been used in many other
studies on JavaScript applications [12], [20], [21]. Neverthe-
less, we plan to add support for more coverage metrics, such
as modified condition/decision coverage (MC/DC) [21], [22].
As MC/DC is not subsumed by the existing metrics in TESA,
and there is no tool focusing on such a metric for JavaScript,
some original tests with high statement, function, or branch
coverage may fall short in MC/DC coverage, as developers
currently cannot measure such a metric on their tests. The test
suite assembled by TESA may improve such a metric as well,
thanks to the provision of numerous dependent tests.

b) Test oracles. Having a good test oracle [23] can help
better distinguish correct program behaviors from incorrect
ones. Currently, the tests assembled by TESA are based
on a package-level granularity, and whether an original or
dependent test runs successfully is validated by looking at
the exit code of the npm test command, which is the only
general way of telling whether a test for a JavaScript package
succeeds or not. However, such an oracle is rather coarse-
grained, as a package test can contain many individual test
cases. In the future, we plan to recognize individual test cases
for the most popular testing harnesses, and integrate some
oracle-generation techniques [11], [23]–[25] to achieve a more
fine-grained test selection.

c) Failed tests. Although failed tests are not included in
our automatically assembled test suite, it is still worthwhile to
understand the failure causes. First, TESA stores the standard
error output of a test, where some general causes of failure
can be detected, such as missing dependencies. In addition,
TESA measures coverage for the failed tests, which can be
useful to indicate the failure cause. For example, if a test is
found with zero coverage, the test has usually failed in an early
stage before any code of the package is executed. A non-zero
coverage (meaning that a part of the source code has been
executed, but the test still fails) is usually caused by the failure
of at least one test case in the package test. In our evaluation,
original tests of 205 packages in the evaluation set fail with
zero coverage, while original tests of 55 other packages fail
with non-zero coverage. We plan to integrate a more in-depth
analysis to automatically identify more accurate failure causes
of a package.

d) Determinism of the test suite. A deterministic test
should either always pass or always fail for the same code

under testing. Such a property is a demanded feature for soft-
ware testing, especially for regression testing [26]. However,
how to detect and fix tests with non-deterministic outcomes
(often called “flaky tests”) [27] remains an interesting and
challenging research question [26], [28]. In TESA, flaky tests
are detected by running the test (without coverage measure-
ment) multiple times, and are not included in the test suite.

Another important property is deterministic code coverage,
i.e., repeated executions of a test cover the same part of the
package code. We plan to track this property by re-running
the test-coverage measurements multiple times. If the covered
program elements differ in repeated measurements, we can
conservatively measure the code coverage of a package by
taking the intersection of the covered program elements in
different runs, and compute our test-coverage metrics from
the intersection.

e) Node.js version. TESA is developed using Node.js. The
version used in our evaluation is Node 12 (the latest LTS
release at the time of writing). We noticed that some old
packages have compatibility issues with Node 12. Moreover,
some of the most recent packages use the latest Node 14
features (e.g., ES module, which is no longer experimental
from Node 14) that are still not fully supported by Node 12. As
future work, we plan to extend our evaluation to also consider
package compatibility with the latest Node.js version and with
other LTS releases. We also plan to allow users to filter tests
(not) supporting specific Node versions.

f) Code transformations. Some packages are tested to-
gether with code transformation tools that can change the
source code being tested. For example, some packages rely on
linting tools such as eslint for formatting, some others rely
on a code instrumentation framework such as babel to parse
and generate code, and yet other packages are developed using
TypeScript [29] and then compiled into JavaScript code using
a TypeScript transpiler. Using such tools can lead to different
versions for some source-code files, possibly decreasing the
code coverage computed by TESA.

We plan to improve TESA by detecting and disabling
unnecessary code transformations. In cases where this is
impossible, we will ensure that istanbul.js has the highest
priority in code instrumentation compared to other tools, such
that coverage reports can be generated before code transfor-
mations take place.

g) Uniform coverage tools. TESA uses the popular
istanbul.js to measure the code coverage of a package.
When evaluating and comparing the coverage of different
packages in the npm registry, it is important to use the
same version of istanbul.js for all target packages in
order to generate compatible coverage reports. However, many
packages integrate different versions of istanbul.js in their
tests; unfortunately, different versions generate coverage re-
ports that are not compatible with each other. TESA mitigates
this problem by unifying the version of istanbul.js used,
so that all coverage reports obtained on the same code are
compatible and can be compared. TESA currently does not
consider cases where the testing harness itself (such as jest)

has a different version of istanbul.js integrated. We plan
to deal with such cases in the future release of TESA.

VI. RELATED WORK

Code coverage is an important metric for assessing the
quality of code testing [11], [12], [21], [30]. A study [12] on
the code coverage of JavaScript projects highlights that many
of the considered JavaScript applications lack tests or suffer
from limited code coverage. In such a study, the measurement
of code coverage relies on a partially manual workflow. Thus,
such an approach does not scale to a large number of packages,
contrary to our approach. In addition, the study does not
propose any solution to increase code coverage, as we do.

There are many studies [5], [6], [20], [30], [31] based
on data mining and static analysis of the npm ecosystem.
A study by Zimmermann et al. [5], based on the analysis
of the packages’ dependencies in the npm registry, shows
that the npm ecosystem faces single-point-of-failure risks, as
problems in individual packages may impair large parts of
the entire ecosystem. Another study by Trockman et al. [30]
analyzes repository badges of npm packages to understand the
quality of the npm ecosystem, finding a positive correlation
between the assignment of a coverage badge and the presence
of more test code. The study from Hejderup et al. [32]
analyzes the dependency among different versions of npm
packages by constructing the call graph at the function level
using static analysis. NpmMiner [20] employs static analysis
on 2000 packages to highlight metrics such as cyclomatic
complexity [33] and lines of code, as well as pinpoint code
linting issues. All these studies are based on information that
can be obtained without executing the test code. However,
despite the easy applicability of such approaches based on
static information, these approaches fall short in understanding
the dynamic behavior of the packages. It is also well known
that it is difficult to achieve sound whole-program static
analysis for JavaScript applications [11], [34]–[36] due to the
dynamic nature of JavaScript.

The literature is rich in work proposing test generation
techniques aiming at generating new tests by exploring the
input space and event space of JavaScript applications to
improve code coverage. Some test-generation tools [37], [38]
mainly focus on client-side web applications, increasing code
coverage by exploring browser states (e.g., DOM changes
related to mouse and keyboard events) and cannot be applied
to server-side packages that typically use dedicated APIs (e.g.,
for performing I/O operations on the network or file system).
Many test generation tools still rely on the input of existing
tests. Artemis [39] uses feedback-directed testing to generate
test inputs by observing the effects of inputs on existing tests.
Testilizer [40] generates tests based on the input data, event
sequences, and assertions learned from the existing tests. Our
approach can be used to provide the valuable initial input seeds
for such techniques, as our tests come from existing valid tests.

Mutation testing [41] is another effective way to evaluate
the quality of existing tests by measuring the percentage of
mutants that they kill. Well-known mutation testing tools for

JavaScript include Mutode [42] and MUTANDIS [43]. In the
future, such tools could be integrated with TESA to further
improve the quality of the assembled test suite.

Fuzzing [44]–[46] is another technique that generates new
test cases by providing new random inputs to a program.
Unfortunately, existing fuzzing tools for JavaScript are limited
due to the dynamic typing used in JavaScript. JSFuzz [45] is
one of the few fuzzing tools available for JavaScript. JSFuzz
takes a fuzz target which calls the function or library to
be tested and then generates new inputs in an infinite loop
using a coverage-guided algorithm. The approach is not fully
automatic as the fuzz target has to be provided manually. In
addition, it does not work for functions that take dynamic
objects as inputs.

In general, due to the dynamic nature and event-driven
programming model of JavaScript, fully exploring the in-
put and event space of JavaScript applications automatically
without application-specific knowledge remains a challenging
topic [11]. Our approach of using original tests as well as tests
from the package’s dependents makes use of meaningful inputs
from the actual package developers and can be complementary
to such automatic test generation techniques.

To deal with the limitations of static analysis for JavaScript
applications, many dynamic analysis frameworks [17], [47]
and tools [16], [18], [48]–[50] have been proposed. One known
issue of dynamic analysis is that it can only analyze the code
that is executed. We have shown that the test suite assembled
by TESA can benefit DPA tools, since an increased code
coverage can expand the scope of DPA tools.

VII. CONCLUSION

In this paper, we introduce TESA, a new framework that
automatically assembles a test suite for packages hosted in
the npm registry. The suite generated for each target package
includes the original tests written for the target package, as
well as dependent tests written for its dependent packages.
TESA uses the original tests to assess the code coverage of
packages in the npm registry, and exploits dependent tests to
increase the code coverage of the target packages. TESA is
fully automatic and can scale to a large number of packages
available in the npm registry. Our evaluation results show
that TESA can assess code coverage for numerous popular
packages, while also extending their code coverage. Moreover,
our results demonstrate that the test suite assembled by TESA
can increase the effectiveness of existing DPAs, allowing them
to locate performance problems that cannot be identified with
the original tests of a package.

ACKNOWLEDGEMENT

This work has been supported by Oracle (ERO
project 1332), by the Hasler Foundation (project 20022)
and by the Swiss National Science Foundation (project
200020 188688).

REFERENCES

[1] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, Nov 2010.

[2] npm, “The node package manager,” https://npmjs.com, accessed: Jan-
uary 2020, 2020.

[3] W. Ma, L. Chen, X. Zhang, Y. Feng, Z. Xu, Z. Chen, Y. Zhou, and
B. Xu, “Impact analysis of cross-project bugs on software ecosystems,”
in ICSE ’20, New York, NY, USA, 2020, p. 100–111.

[4] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C. Cheung,
C. Xu, and Z. Zhu, “Watchman: Monitoring dependency conflicts for
python library ecosystem,” in ICSE ’20, New York, NY, USA, 2020, p.
125–135.

[5] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
28th USENIX Security Symposium, 2019, pp. 995–1010.

[6] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in MSR, 2016, pp. 351–361.

[7] event stream, “Backdoored dependency of flatmap-stream-0.1.1
and flatmap-stream-0.1.2,” https://github.com/dominictarr/event-stream/
issues/115, accessed: January 2020, 2020.

[8] eslint scope, “Virus in eslint-scope,” https://github.com/eslint/
eslint-scope/issues/39, accessed: January 2020, 2020.

[9] request, “Fix remote memory disclosure with multipart attachments,”
https://github.com/request/request/pull/2018, accessed: January 2020,
2020.

[10] A. Ojamaa and K. Düüna, “Assessing the security of node.js platform,”
in 2012 International Conference for Internet Technology and Secured
Transactions, 2012, pp. 348–355.

[11] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen,
and C.-A. Staicu, “A survey of dynamic analysis and test generation for
javascript,” ACM Comput. Surv., vol. 50, pp. 66:1–66:36, 2017.

[12] A. M. Fard and A. Mesbah, “Javascript: The (un)covered parts,” in ICST,
2017, pp. 230–240.

[13] istanbul.js, “Istanbul javascript test coverage made simple.” https://
istanbul.js.org/, accessed: January 2020, 2020.

[14] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations research, vol. 14, no. 4, pp. 699–719, 1966.

[15] Y. Zheng, A. Rosà, L. Salucci, Y. Li, H. Sun, O. Javed, L. Bulej, L. Y.
Chen, Z. Qi, and W. Binder, “Autobench: Finding workloads that you
need using pluggable hybrid analyses,” in SANER, vol. 1, March 2016,
pp. 639–643.

[16] A. Villazón, H. Sun, A. Rosà, E. Rosales, D. Bonetta, I. Defilippis,
S. Oporto, and W. Binder, “Automated Large-Scale Multi-Language
Dynamic Program Analysis in the Wild (Tool Insights Paper),” in
ECOOP, 2019, pp. 20:1–20:27.

[17] H. Sun, D. Bonetta, C. Humer, and W. Binder, “Efficient dynamic
analysis for node.js,” in Compiler Construction (CC). New York, NY,
USA: ACM, 2018, pp. 196–206.

[18] L. Gong, M. Pradel, and K. Sen, “Jitprof: Pinpointing jit-unfriendly
javascript code,” in FSE, 2015, pp. 357–368.

[19] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral
backward incompatibilities via cross-project testing and analysis,” in
ICSE ’20, New York, NY, USA, 2020, p. 112–124.

[20] K. C. Chatzidimitriou, M. D. Papamichail, T. Diamantopoulos,
M. Tsapanos, and A. L. Symeonidis, “Npm-miner: An infrastructure
for measuring the quality of the npm registry,” in MSR, 2018, p. 42–45.

[21] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code coverage at
google,” in FSE, 2019, pp. 955–963.

[22] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/deci-
sion coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193–200, 1994.

[23] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[24] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Pythia: Generating
test cases with oracles for javascript applications,” in ASE, 2013, pp.
610–615.

[25] R. Braga, P. S. Neto, R. Rabêlo, J. Santiago, and M. Souza, “A machine
learning approach to generate test oracles,” in Proceedings of the XXXII
Brazilian Symposium on Software Engineering, ser. SBES ’18, New
York, NY, USA, 2018, p. 142–151.

[26] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE, 2014, pp. 643–653.

[27] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” in ICSE ’20, New York, NY, USA, 2020,
p. 1471–1482.

[28] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in ICSE, 2018, pp. 433–
444.

[29] Microsoft, “TypeScript,” https://github.com/Microsoft/TypeScript, Ac-
cessed: 01-09-2019, 2012.

[30] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle
to social coding: An empirical study of repository badges in the npm
ecosystem,” in ICSE, New York, NY, USA, 2018, pp. 511–522.

[31] J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto,
G. Bavota, and M. D. Penta, “Why developers refactor source code: A
mining-based study,” ACM Trans. Softw. Eng. Methodol., vol. 29, no. 4,
Sep. 2020.

[32] J. Hejderup, A. van Deursen, and G. Gousios, “Software ecosystem
call graph for dependency management,” in Proceedings of the 40th
International Conference on Software Engineering: New Ideas and
Emerging Results, ser. ICSE-NIER ’18, 2018.

[33] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and
software maintenance productivity,” IEEE transactions on software
engineering, vol. 17, no. 12, p. 1284, 1991.

[34] E. Andreasen and A. Møller, “Determinacy in static analysis for jquery,”
in OOPSLA, 2014, pp. 17–31.

[35] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel,
“Extracting taint specifications for javascript libraries,” in ICSE, 2020,
pp. 198–209.

[36] E. S. Andreasen, A. Møller, and B. B. Nielsen, “Systematic approaches
for increasing soundness and precision of static analyzers,” in SOAP
2017, 2017, pp. 31–36.

[37] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-Based
Web Applications Through Dynamic Analysis of User Interface State
Changes,” ACM Trans. Web, vol. 6, no. 1, pp. 3:1–3:30, 2012.

[38] A. M. Fard, A. Mesbah, and E. Wohlstadter, “Generating Fixtures for
JavaScript Unit Testing,” in ASE, 2015, pp. 190–200.

[39] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, “A Framework
for Automated Testing of JavaScript Web Applications,” in ICSE, 2011,
pp. 571–580.

[40] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing
tests in automated test generation for web applications,” in ASE, New
York, NY, USA, 2014, pp. 67–78.

[41] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Mutation testing advances: An analysis and survey,” in Advances in
Computers, 2019, vol. 112, pp. 275 – 378.

[42] D. Rodrı́guez-Baquero and M. Linares-Vásquez, “Mutode: generic
javascript and node.js mutation testing tool,” in ISSTA, 2018, pp. 372–
375.

[43] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient javascript
mutation testing,” in ICST, 2013, pp. 74–83.

[44] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[45] JSFuzz, “Jsfuzz: coverage-guided fuzz testing for Javascript,” https://
github.com/fuzzitdev/jsfuzz, accessed: January 2020, 2020.

[46] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar, “Fuz-
zfactory: Domain-specific fuzzing with waypoints,” OOPSLA, vol. 3,
2019.

[47] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in FSE,
2013, pp. 488–498.

[48] H. Sun, D. Bonetta, F. Schiavio, and W. Binder, “Reasoning about the
node.js event loop using async graphs,” in CGO, 2019, pp. 61–72.

[49] S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra, “Meminsight:
Platform-independent memory debugging for javascript,” in FSE, 2015,
pp. 345–356.

[50] S. Alimadadi, D. Zhong, M. Madsen, and F. Tip, “Finding broken
promises in asynchronous javascript programs,” OOPSLA, vol. 2, 2018.

https://npmjs.com
https://github.com/dominictarr/event-stream/issues/115
https://github.com/dominictarr/event-stream/issues/115
https://github.com/eslint/eslint-scope/issues/39
https://github.com/eslint/eslint-scope/issues/39
https://github.com/request/request/pull/2018
https://istanbul.js.org/
https://istanbul.js.org/
 https://github.com/Microsoft/TypeScript
 https://github.com/fuzzitdev/jsfuzz
 https://github.com/fuzzitdev/jsfuzz

	I Introduction
	II TESA
	II-A Test Inclusion Criteria
	II-B Finding Original Tests
	II-C Finding Dependent Tests
	II-D Compacting the Test Suite

	III Evaluation
	III-A Original Tests
	III-B Dependent Tests
	III-B1 Discovering Dependent Tests for lodash
	III-B2 Code Coverage Including Dependent Tests

	III-C Test-suite Compaction
	III-D Case Study: Running DPA with Extended Code Coverage

	IV Lessons Learned
	V Discussion
	VI Related Work
	VII Conclusion
	References

