
Automated User Experience Testing through
Multi-Dimensional Performance Impact Analysis

Chidera Biringa, Gökhan Kul
University of Massachusetts Dartmouth

Dartmouth, MA, United States
{cbiringa, gkul}@umassd.edu

Abstract—Although there are many automated software testing
suites, they usually focus on unit, system, and interface testing.
However, especially software updates such as new security
features have the potential to diminish user experience. In this
paper, we propose a novel automated user experience testing
methodology that learns how code changes impact the time unit
and system tests take, and extrapolate user experience changes
based on this information. Such a tool can be integrated into
existing continuous integration pipelines, and it provides software
teams immediate user experience feedback. We construct a
feature set from lexical, layout, and syntactic characteristics of
the code, and using Abstract Syntax Tree-Based Embeddings, we
can calculate the approximate semantic distance to feed into a
machine learning algorithm. In our experiments, we use several
regression methods to estimate the time impact of software
updates. Our open-source tool achieved 3.7% mean absolute
error rate with a random forest regressor.

Index Terms—software testing, user experience, software de-
velopment, security updates, continuous integration

I. INTRODUCTION

Throughout the Software Development Life Cycle (SDLC),
requirements are frequently modified, and modifications are
often required after deployment [1]. Some reasons for
these modifications include optimization requirements, ever-
changing client and user needs, security updates, bug fixes,
and feedback from customers based on user experience.

To keep up with the development, software development
teams usually establish an extensive continuous integration
(CI) and continuous delivery pipeline to automatically test and
verify that the software still functions as expected after devel-
oper updates. Some tests, such as user experience regression
testing, may not be easily automatized. Consequently, it strains
software test teams when the software changes rapidly.

When overlooked, user experience in certain functions may
diminish due to degrading performance, especially if the user
experience testers do not keep track of the changes made
to this functionality. This problem becomes evident when
the updates made are in specific areas, such as software
security which typically requires supplementary computing
resources due to key establishment, encryption, decryption,
and authorization certificates. An effective testing mechanism
must account for the impact of the change in software and
the increase in software complexity. Otherwise, based on their
previous experiences, users stop installing software updates,
which will effectively create a large attack surface on the user’s
device [2].

In this paper, we propose a novel automated user experience
testing methodology as a part of the CI pipeline. Our proposed
model learns the impact of changes made on the software code
and estimates the performance impact when developers at-
tempt to update the codebase. Hence, a software development
team can make decisions about adding new features to the
software by considering an increase in running time leading
to a diminished user experience, which provides them with
concrete information about the time-cost of features to the
user experience.

To achieve this goal, we analyzed the impact of several
versions of software updates in different SDLC phases to
provide insights and decision support for software develop-
ment teams. We created a novel feature set that represents the
programming code stylometric characteristics of the Java pro-
gramming language. We also created an Abstract Syntax Tree-
Based Embedding (ASTBE) encoding structure to leverage
semantic distance provided by the embedding models and to
use the combination of mapped vector features and manually
generated features as primary inputs in our machine learning
model. Our ASTBE and Random Forest methodology were
able to infer the performance impact of security updates in
software, with an average error rate of 3.7% on our dataset,
collected from public Java repositories on GitHub.

Concretely, the contributions of this paper are as follows. (1)
We propose a novel automated user experience testing method,
and (2) We identify challenges to provide ideal conditions for
the testing method.

II. METHODOLOGY

The primary goal of our research is to develop a system
capable of inferring the performance of pending updates in
software as a way of automated user experience testing.
Machine learning (ML) models are apparent techniques used
to approach such problems. However, the performance of
ML-aided systems is heavily dependent on the quality of
the data and how that data is processed for ML algorithmic
experimentation.

Figure 1 lays out the overall methodology of our system.
We assume that the software being developed (repository) is

already deployed to a CI pipeline. To automatically calculate
the time it takes to run the functional test cases available,
we integrate a timer on each test case. The measured times
from the test cases establish our baseline. The source code in

ar
X

iv
:2

10
4.

03
45

3v
1

 [
cs

.S
E

]
 8

 A
pr

 2
02

1

Fig. 1. Overview of methodology

the repository is analyzed using code stylometry methods to
extract programming language-dependent features. Extracted
features and the results of the build and test timeframe of
repositories are used to create a final dataset, containing
extracted features (Section II-A).

The data is used as input in an ML model for predictions –
in our case, a random forest regressor algorithm (Section II-B).
Although we explain our methodology using random forest
regressor for conciseness, in Section III, we compare several
other alternatives.

The code for our methodology is available for anyone to
reproduce our results 1.

A. Features

Feature engineering is an important step in building the
predictive components of intelligent systems [3]. The perfor-
mance of our system is heavily dependent on the influence
of extracted features. Hence, it is imperative to attentively
select and augment features that accurately represent our prob-
lem [4]. Performance analysis of software updates in SDLC is
unattainable without the careful representation of source code
that denotes the programming preference of contributors to a
repository. This problem can be solved by adopting stylometry
analysis techniques and recommendations.

Following Caliskan et al.’s [5] and Abbasi et al.’s [6]
research, we extracted code features by applying statistical
methods, regular expression, and a tool used to parse Java
code. We combined lexical, layout, and syntactic features to
obtain a robust stylometry feature set. We also created a unique
Abstract Syntax Tree-Based Embedding (ASTBE) that will be
the primary input data in creating a deep neural network model
in our future work.

1) Layout and Lexical Features: Layout features represent
the organizational structure of the code such as an author’s
preference for space over tabs. Lexical features are the se-
mantic representation of the programming language; they
represent the context and preferential formal adoptions of
code syntax. We began by applying statistical analysis and
regular expression to extract Lexical and Layout features. A
Regular Expression is the concatenation of characters
that represents a regular language search pattern [7]. We wrote
patterns that matched the features. For example, consider the
regular expression pattern shown in Figure 2. The search
pattern contains a collection of characters that matches Java
Comments in a source code. After the successful pattern

1https://github.com/PADLab/MPSS Basic

matching of a feature, we extracted the matched features by
applying the equation shown in 1.

"/*(.|[\r\n])*?*/|//.*"

Fig. 2. Regular Expression Listing

FeatureExtractor(FE) = log10


n∑

i=0

ai

|x|

 (1)

n∑
i=0

ai represents the summation of feature occurrences in a

single file. For example, we parse a single file and generate an
AST. Next, loop statements features are extracted by counting
the number of times a For, ForEach and While loops occur. We
divided the feature by |x| (character length of a file). Finally,
we reduce the skew of feature distribution by taking the log
of the result.

Features Count
Imports 1
Comments 3
Keywords 2
Methods 3
Unigrams *ngram dependent

TABLE I
LEXICAL FEATURES

Features Count
CodeLines(AVG) 2
CodeLines(SD) 1
EmptyLines 2
WhiteSpace 1
Tabs 0

TABLE II
LAYOUT FEATURES

2) Syntactic Features: Syntactic features are programming
language dependent and provide context on a programmer’s
style-based preferential characteristics present in a source code
file. Syntactic features are Context-Free Language-specific
and are derived using Context-Free Grammar(CFG). CFG
expresses specific characteristics of a source code, For ex-
ample, the recursive structure of a code snippet. A CFG is
a principle of formal language, it denotes the collection of
possible languages given a grammar. A CFG comprises of 4
tuples: (V,Σ,R, S) [8]. V is a finite set of variables. Σ is a
finite set of terminals disconnected from V . R is a finite set
of production rules. A→ X where A ∈ V , X ∈ (V ∪ Σ)
and S ∈ V is the beginning variable.

Extracting syntactic features is a decidable task contingent
on the generation and analysis of a parse tree. Hence, we used
a parser capable of generating an Abstract Syntax Tree (AST).
An AST is a tree data structure of a programming language [9]
and is the highest syntactic component of a single source code
file. We used JavaParser [10] to parse source code files and
analyze its ASTs. The Count column in Table III represents
the influence of a feature in the source code.

Figure 3 displays an example of a simple code snippet
to check whether an integer is positive or negative with its

public boolean checkPositive(int integer) {
if (integer > 0) return true;
else return false;
} y

root(CompilationUnit)

MethodDeclaration

VariableDeclaration(kind=’int’) checkPositive(VariableDeclarator)

MethodExpression

BlockStatement

IfStatement

BinaryExpression(Operator=’>’)

Identifier(name=’integer’)

Literal(value=’integer’)

ReturnStatement

Literal(value=’true’)

ReturnStatement

Literal(value=’false’)

Fig. 3. Sample code listing and its equivalent Abstract Syntax Tree (AST)

corresponding AST. The method contains language-dependent
variable declarations, expressions, and statements. Individual
code lines and language constructs are equivalent node rep-
resentations decoded using an AST. The analysis of ASTs
can obtain characteristics common in programming habits and
preferences from source code.

TABLE III
SYNTACTIC FEATURES

Features Count
ASTConditionals 3
ASTLiterals 3
ASTLoops 3
ASTNodes 1
ASTTFIDF *dynamic

B. Abstract Syntax Tree Based Embedding(ASTBE)

We created an ASTBE encoding structure that works for
ASTs. This architecture modifies the Continuous Bag of
words(CBOW) model to contain specific node types derived
from processing our ASTs. There are three reasons why we
created an ASTBE. First, to leverage the semantic distance
provided by embedding models, preserving the relationship
between nodes in vector space. Second, to leverage the trans-
ferability and extraction of Deep learning features, mapped
vector features and manually generated features served as
independent or co-dependent primary inputs for our model.
Third, to ascertain the applicability of ASTBE in the problem
domain of impact analysis of code updates on software. We
used the JavaParser library to parse and generate ASTs. Next,
we traversed the trees using a Preorder traversal algorithm and
selected representative nodes. We adopted node selection and
encoding techniques designed by Zhang et al. [11]. Finally,
we converted selected nodes to vectors.
Random Forest Regressor. There are many regression
models. Random Forest Regressor is an ensemble learning

method built from a collection of decision trees, also called
an estimator [12]. These estimators were built using randomly
sampled features of data. We used 100 decision trees for
our forest and handled over-fitting by setting the tree depth
not to grow beyond two levels. It ensures generalization and
maintains the performance stability of the test set.

III. EVALUATION

Travis CI is an open-source continuous integration ser-
vice used to build and test software hosted on GitHub and
other source code management and distributed version control
platforms [13]. We linked our repositories to Travis CI. We
created and deployed build and test scripts into our CI pipeline
using a .travis.yml file. The file was tasked with compiling
and executing unit test cases present in each repository. We
started with a single repository containing five git branches.
Individual branches of the repository contained a total of 42
Java files. The files were concatenated with the results of
repository build and test time derived from our CI pipeline
to create our full primary dataset. We left out files in the
repository containing text other than Java code. We recognize
that there might exist a significant code homogeneity between
branches. However, our focus is on the increase or decrease
in repository performance time.
Data collection. The primary source of raw data used in
this research comes from public Java repositories on GitHub.
We applied four filters to in the identification and selection
of candidate repositories. First, the repository must be written
using the Java programming language. Second, the repository
must contain complete code files, i.e., contain compilable
code. Third, the repository must have existing unit and system
test cases. Fourth, the repository must contain a considerable
number of commits, stars, and contributors. These selected
thresholds ensure that we achieve a representative collection
of candidate repositories used in creating a dataset. Selected
repositories were forked and cloned. Given the commits
hashes, we used git reset and git log commands to
browse and restore repository histories at update checkpoints.
Finally, git branches were created using the above-stated
checkpoints and deployed to a CI pipeline to be built and
tested. We share the repository we used in our evaluation
for reproducibility purposes 2, although our evaluation can be
performed on any repository that satisfies the selection criteria.
Data preparation. We used CI pipeline as a data preparation
tool to automatically build and test multiple branches of
our repositories. CI is an agile software development tool
used in rapidly integrating programming code into distributed
and shared repositories [14]. This integration facilitates the
automatic building and testing of code updates made to the
software. We extracted time data in different states of the
repository, such as the build and test time of current code
states (CCS).
Experimentation Setup. We created a pipeline of various
regression models. Extracted features and timeframe data from

2https://github.com/se-edu/addressbook-level2

Fig. 4. MAE of regression models (lower is better)

the CI pipeline are primary inputs in the models. Our dataset
comprises of 13 predictor variables, Test(sec) target variable,
and 210 observations. We used a k-fold cross-validation resam-
pling method [15] and split the data into training and testing set
representing equal folds. The splits are stratified by the testing
sets(Test time feature). Hence, the size of k is dependent on
the dataset. With a different fold, the data is cross-validated
for 10 iterations. The average cross-validated error is applied
to estimate out-of-sample mean absolute error.
Evaluation. We use Mean Absolute Error (MAE), given in
Equation 2, to test the performance of a given regression
model. It calculates the mean size of errors in a collection
of predictions. MAE does not consider the directional rela-
tionship between predicted and actual observations. It is only
concern with the absolute difference. Hence, individual values
have equivalent significance [16]. MAE has the advantage of
punishing smaller errors, which is particularly significant in
the problem domain, because we are predicting time intervals
with minuscule differences. We used MAE to evaluate the
performance of our cross-validated predictions.

MeanAbsoluteError(MAE) = (
1

n
)

n∑
i=1

|yi − xi| (2)

We have tested our pipeline using several regression models.
The Linear Regression model achieved 6.79%, SGD Regressor
achieved 7.47%, Ridge Regression achieved 6.71%, Lasso
Regression achieved 7.20%, Decision Tree Regressor achieved
5.19%, Random Forest Regressor achieved 3.70% error rate on
the average cross-validated predictions, as shown in Figure 4.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel automated user expe-
rience testing tool that can integrate into existing continuous
integration pipelines to provide immediate feedback to soft-
ware development teams. We tested this method on an existing
GitHub repository and achieved a 3.7% MAE rate.

While our results are promising, our scope for this paper is
limited, and we are planning to expand our work in several
directions. First, we acknowledge that the codebase needs
to have a significant and carefully placed unit, system, and

integration tests for our system to collect timing data from.
We will need to evaluate when performing our estimations is
infeasible and what conditions create the ideal environment.
Second, we plan to expand our raw data by including a wide
variety of repositories from GitHub. Third, we will expand
our work to intelligently estimate its accuracy by applying
our model with each commit and learning from the change in
error rate. Lastly, we will explore deep neural network models
that have the potential to yield higher accuracy.

ACKNOWLEDGMENT

This work has been funded by UMass Dartmouth Cyberse-
curity Center. Usual disclaimers apply.

REFERENCES

[1] S. Jeong, H. Cho, and S. Lee, “Agile requirement traceability matrix.”
Association for Computing Machinery, 2018, p. 187–188. [Online].
Available: https://doi.org/10.1145/3183440.3195089

[2] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive software-
update transparency via collectively signed skipchains and verified
builds,” 2017, pp. 1271–1287.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, p. 1798–1828, Aug. 2013. [Online]. Available:
https://doi.org/10.1109/TPAMI.2013.50

[4] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011,
pp. 215–223.

[5] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th {USENIX} Security Symposium ({USENIX} Secu-
rity 15), 2015, pp. 255–270.

[6] A. Abbasi and H. Chen, “Writeprints: A stylometric approach to
identity-level identification and similarity detection in cyberspace,”
ACM Trans. Inf. Syst., vol. 26, no. 2, Apr. 2008. [Online]. Available:
https://doi.org/10.1145/1344411.1344413

[7] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Ja-
gadish, “Regular expression learning for information extraction,” in
Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, 2008, pp. 21–30.

[8] M. Sipser, “Introduction to the theory of computation,” ACM Sigact
News, vol. 27, no. 1, pp. 27–29, 1996.

[9] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” in Proceedings of the
2005 international workshop on Mining software repositories, 2005, pp.
1–5.

[10] N. Smith, D. van Bruggen, and F. Tomassetti, “Javaparser: visited,”
Leanpub, oct. de, 2017.

[11] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[12] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees
in a random forest?” in Machine Learning and Data Mining in Pat-
tern Recognition, P. Perner, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 154–168.

[13] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An explorative analysis of travis ci with github,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 356–367.

[14] M. Meyer, “Continuous integration and its tools,” IEEE Software,
vol. 31, no. 3, pp. 14–16, 2014.

[15] M. W. Browne, “Cross-validation methods,” Journal of mathematical
psychology, vol. 44, no. 1, pp. 108–132, 2000.

[16] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean
absolute error (mae)?–arguments against avoiding rmse in the literature,”
Geoscientific model development, vol. 7, no. 3, pp. 1247–1250, 2014.

https://doi.org/10.1145/3183440.3195089
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1145/1344411.1344413

	I Introduction
	II Methodology
	II-A Features
	II-A1 Layout and Lexical Features
	II-A2 Syntactic Features

	II-B Abstract Syntax Tree Based Embedding(ASTBE)

	III Evaluation
	IV Conclusion and Future Work
	References

