
Optimizing Testing Efficiency with Error-Prone Path Identification and

Genetic Algorithms

James R. Birt Renate Sitte

Griffith University, School of Information Technology

Gold Coast Campus PBM 50 Gold Coast Mail Centre,

Gold Coast 9726, Queensland, Australia

j.birt@griffith.edu.au r.sitte@griffith.edu.au

Abstract

This paper presents a method for optimizing

software testing efficiency by identifying the most error
prone path clusters in a program. We do this by

developing variable length Genetic Algorithms that

optimize and select the software path clusters which
are weighted with sources of error indexes. Although

various methods have been applied to detecting and

reducing errors in a whole system, there is little
research into partitioning a system into smaller error

prone domains for testing. Exhaustive software testing

is rarely possible because it becomes intractable for
even medium sized software. Typically only parts of a

program can be tested, but these parts are not

necessarily the most error prone. Therefore, we are
developing a more selective approach to testing by

focusing on those parts that are most likely to contain
faults, so that the most error prone paths can be tested

first. By identifying the most error prone paths, the

testing efficiency can be increased.

Keywords – Genetic Algorithms, optimization, testing

efficiency, software reliability

1. Introduction

The purpose of this paper is to use Genetic

Algorithms to study the optimization of error

proneness in software, with the aim to increase testing

efficiency.

The past 30 years have seen a huge growth in the

size, complexity and criticality of software code

development. Consequently, software reliability and its

associated costs for achieving better reliability have

greatly increased. Several methods for measuring

software reliability are commonly used. They include

software reliability models [1], automated oracles [2]

and fault detection [3]. Malaiya et al. [4], proposed a

link between the levels of testing coverage (that is, the

expectation to detect as many errors as possible with a

test case) and the reliability of software.

Testing coverage techniques have one major

drawback which is they look at the entire program.

Even with reduction methods there can be many test

cases in a large program and it can become intractable

for testing [5].

Testing comes at a high price and typically requires

more than half of the project resources to produce a

working program [6]. However, a working program

does not always guarantee a defect free program.

Depending on the criticality of the program, different

percentages of testing coverage are required. Therefore

a more effective way to approach coverage and testing

in general is to focus on the paths most likely to reveal

faults [7] or the most error prone paths [8].

To overcome this weakness, we propose a method

to attribute weights to the paths using a framework for

assessing quantitatively the error proneness of software

modules proposed by Sitte [8]. It achieves an

assessment of error proneness by analyzing the

potential sources of errors (SOE) in a software

construct, that is, the code instructions in software

modules. The advantage of using our technique is that

it can be automated and optimized. By representing the

software as a flow graph
1 and subsequently a

SOE-weighted connectivity sparse matrix, a search

algorithm can be applied to the weighed environment

to detect those paths that are the most error prone, or

those paths that contribute most to the overall amount

of potential errors. It should be noted that our method

is not an automated test case generator. The design of

the test cases still needs to be addressed. Our method

focuses on the potential errors in the code instructions

for selecting error prone clusters for later testing and

not on the flow of control where more testing should

be done. Problems such as potentially infeasible paths

1 Despite their morphological similarity, a flow graph is not a control

flow diagram.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

1

2

3

4

1. no precondition to enter the loop

2. no condition to advance in the

loop

3. no end condition

4. bound exceeded

associated with data-flow analysis are examined in the

later stages.

Various searching algorithms have been developed

for different purposes and finding a path in a directed

graph is a combinatorial problem that can quickly get

out of hand even for medium sized software.

Therefore, we have to optimize our search, and we do

this with variable length Genetic Algorithms (GA).

GA were developed and formalized by Holland [9].

They were further developed and shown to have wide

applicability by Goldberg et al. [10], [11]. More

recently GA have been used for generating test data

and other software engineering applications as shown

by Jones, Sthamer and Eyres [12]. Other methods

based on local search techniques such as greedy

approaches or simulated annealing [13] could possibly

be applied. However, due to the lack of a global

sampling capability, local search methods run greater

risk of being trapped in local minima. In our case this

would be unsuitable in our aim of finding the most

error prone paths and given the nature of the search

space with many local minima. Therefore, the

motivation for choosing the variable length GA

approach was based on its heuristics for optimizing

large and complex search environments which is

indicative of software code. Also, the paths in a

software program are not all the same length, therefore

variable length GA were applied rather than traditional

fixed length GA.

The implications and benefits of determining the

most error prone paths are many. Its main purpose is to

increase testing efficiency by focusing on the most

error prone parts first. This in turn aids in refining the

effort and cost estimation that will be required in the

testing phase.

In this paper, we present the results of our research

into the application of the variable GA search

approach, to identify the most error prone paths in a

software construct. The paper is structured in the

following way: the next section provides an overview

of the sources of errors framework, which are the

groundwork for quantifying error prone paths. Section

3 deals with our experiment for selecting the error

prone paths and the details of the GA implementation.

This is followed by the results and discussions in

section 4 and finally the conclusions in section 5.

2. Quantifying error proneness

This section explains briefly the SOE framework as

proposed by Sitte [8] for calculating the error

proneness in software modules and how it collaborates

with the GA.

There are several problems with the current

methods of testing coverage; they are (i) testing covers

only a portion of the software for the level of reliability

required; (ii) exponential time to test or testing all

paths and (iii) cost effectiveness, that is, the process

might not justify the time taken to test. At first glance

the first mentioned disadvantage does not appear to be

a problem. However, the main issue is, how do we

know that what we are testing is the best portion, that

is, the most error prone? If we have a coverage level of

80%, does this really mean the most error prone 80%

has been covered or is it just any 80% overall (with the

most error prone possibly remaining in the untested

20%)?

The answer is that we do not know, unless we have

quantitative information about the contents of errors.

We do know that some software is easier to write than

others, and is less error prone, while more difficult and

complex software is more prone to error. A range of

complexity measures have been designed, but they do

not provide a quantitative answer that translates on

which parts of the software the testing efforts should be

concentrated. To be able to find the most error prone

portions in a quantitative way, it is necessary to assess

the chances that a programmer can introduce an error

in an instruction. This can be done by applying a

simple analysis. Figure 1 illustrates this with an

example of a simple loop.

Figure 1. SOE analysis of simple loop [8]

This construct has at least four SOE (if those were

the only possible sources of error). For simplicity an

equal probability for each error is given. All other

programming constructs can be analyzed in a similar

way, yielding SOE values that are specific to an

instruction [8]. The method provides the framework for

SOE quantification; it is simple, but powerful and can

quickly be obtained from the code in an automated

way. While this method provides the minimum

theoretical SOE, additional information from test

design strategies, risk analysis and historical data (if

available) can be used to calibrate and fine tune the

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

model by adding weights to the theoretical SOE

values.

By summing the SOE values (weighted or

theoretical) for each instruction of a software module,

it is possible to quantify the SOE for the different paths

that the software could step through in its execution.

The software structure is then represented as a directed,

weighted graph whose heaviest paths can be identified.

We do this by applying the GA. Test cases can then be

designed to give priority in testing to the SOE-heavier

paths with maximum coverage. The testing priority of

paths can be chosen strategically from the most error

prone paths first to the less error prone ones to

whatever required extent e.g. as a percentage, and to

the satisfaction of the reliability requirements of the

software.

3. Finding error prone paths experiment

In this section we explain the experiment set up and

data preparation for the GA in determining the most

error prone paths.

3.1. Search environment

The first step involves translating the source code

into an environment to apply a searching algorithm.

This is achieved by creating a sparse connectivity

matrix from the directed graph that represents the

software code. For simplicity a tree structure is used to

represent the flow of possible executing sequences in

the software [6]. To generate the tree structure the

source code is first parsed through a software parser to

analyze and generate the directed graph. The most

complicated step of the parser is function evaluation.

Functions at this stage are treated as another node with

their functionality attached to the graph at the point of

the function call. Each possible end of the function is

then attached to the node of the next LOC after the

function call. This directed graph is then further

transformed into a binary tree which is obtained in

three steps.

Firstly, the loops within the graph need to be

removed both for reducing the combinations of paths

and generating a binary tree structure. Loops refer to

both looping source statements such as “while” and

recursive program calls. This is achieved by applying

rules from basis path testing or Beizer’s Loop Tests

[14]. Beizer proposes a number of loop iteration

categories. In the case of removing loops we apply two

of the categories namely “Bypass” (zero times through

the loop) and “Once” (single execution of the loop).

Next, all multiple outdegree nodes, that is nodes

from which several edges emerge (we call these nodes

multiple lead nodes) within the graph need to be

transformed into sets of binary nodes. This is

legitimate in graph theory. The reason for this step is to

create a binary searching space for application of the

searching algorithm. This is accomplished by adding a

small weighted node to the graph.

Finally, the trivial paths need to be removed. This

step is used to reduce the size of the search space and

reduce time spent analyzing equivalent SOE path

structures. It is achieved by collapsing the trivial paths

down into one node. This node then contains a

summed SOE of the previous structure for path

selection with the GA. Figure 2 illustrates this process

with a small example.

In this example the source code is parsed for

structure and the directed graph is derived. An

instruction (now a node) can have the SOE from more

than one construct type. For example, in node 6 the

SOE comes from a “while” and an “assignment”. Next,

the tree building rules are applied to transform the

graph into a binary search tree. Where A = 1,2,3; B =

4,10,11; C = inserted node; D = 5,10,11; E = 6; F =

8,9,10,11; G = 7,8,9,10,11; Next, the tree is

represented as a connectivity matrix and finally the

matrix is converted to a sparse representation to save

on storage as this is an O(N
2) storage space problem.

The environment is now suitable for the GA search.

3.2. GA implementation and experiment

Using the SOE as a basis of fitness, a GA can be

employed to find the most error prone paths that is, the

paths with the highest SOE are best. The advantage of

the SOE framework is that the structure of the

software, or its components, can be represented as a

network, in the form of a connectivity matrix, whose

path is a 0/1 string. For this research variable length

GA were employed as they provide the necessary

advantages for application in this domain (that is,

optimizing a large and variable sized search

environment [10], [11]).

GA are mathematical constructs based on survival

of the fittest which were formalized by Holland [9].

Each generation consists of a population of character

strings, or variables, in terms of an alphabet, that are

analogous to the chromosomes that we see in our

DNA. Each individual character or ‘gene’ represents a

point in a search space and a possible solution. A

fitness score is assigned to each solution representing

the abilities of an individual to ‘compete’. The

individual with the optimal (or more generally the near

optimal) fitness score is sought.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Figure 2. Generating
the search environment

The GA aims to use selective ‘breeding’ of the

solutions to produce ‘offspring’ more fit than the

parents by combining information from the

chromosomes. This is achieved by using crossover

and mutation of the strings. Eventually, when the

population has converged and is not producing

offspring that are noticeably different from those in

previous generations, the algorithm is said to have

converged to a set of solutions to the problem at

hand.

The genomes used for the GA are the paths

constructed through the connectivity matrix by a

string that is made of zeroes and ones. They represent

a right (0) or left (1) direction using the tree structure

of the software system under examination. Using the

matrix from

Figure 2 this would give us chromosomes such as

the paths A-C-D = 01 or A-C-E-F = 001. It is this

sequence of zero-and-one genes that is used to

develop a chromosome for application with the GA

search approach.

Bearing in mind that the nodes are weighted with

the SOE, a path is explored and its corresponding

SOE values read and summed.

 main(){

1 int number = 0;

2 cin >> number;

3 switch(number){

4 case 1: break;

5 case 2: break;

6 default: while(number != 0){

7 cin >> number;

8 }

9 break;

10}

11}

1

2

3

4 5

7

6

8

9

10

11

A

B C

D E

GF

Structure connectivity matrix
 A B C D E F G

A 0 1 1 0 0 0 0

B 0 0 0 0 0 0 0

C 0 0 0 1 1 0 0

D 0 0 0 0 0 0 0

E 0 0 0 0 0 1 1

F 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0

SOE connectivity matrix
 A B C D E F G

A 0 2 1 0 0 0 0

B 0 0 0 0 0 0 0

C 0 0 0 2 8 0 0

D 0 0 0 0 0 0 0

E 0 0 0 0 0 2 1

F 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0

(A,B) 2

(A, C) 1

(C, D) 2

(C, E) 8

(E, F) 2

(E, G) 1

Source Code

Graph Transform

Binary Tree

Sparse SOE representation

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

1

2 3

4 5

6 7

0 1 1

1 2 2

If it is heavy in SOE, that is, if the path is highly

error prone then the GA will "reward" it. It is on these

heavier paths where priority for testing takes place. To

achieve a desired level of reliability paths can be drawn

and tested. When a path is drawn it is removed from

the search space. This can be continued until a desired

level of reliability has been achieved.

There are two main problems facing a variable

length GA. (i) chromosome evaluation and (ii) local

minima. The strategies for resolving local minima are

explained in the next section.

With a standard fixed length GA and balanced tree

structure, the evaluation of the chromosomes can occur

without problem; this is because all gene values

(directions in a tree) are valid. The issue with using a

fixed length GA is that the source code environment is

not fixed in length. This can be seen clearly in

Figure 2 where paths of different lengths can occur.

Therefore, we need to examine variable length GA.

When using variable length GA invalid genes

(directions) can occur. To overcome this, a technique is

used to replace invalid genes with a representation

character. This effectively splits the chromosome into

two parts, one part having the valid genes the other the

invalid. This is similar to the splicing and

recombination techniques outlined in Goldberg et al.

research [11]. Figure 3 outlines an example of the

selection and representation process.

In this example two chromosomes of different

lengths have been selected for crossover (011) and (1)

however, the crossover works only on fixed length

representations. Therefore a representation character

(in this case 2) has been applied to pad the remaining

genes.

Figure 3. Selecting chromosomes

The crossover and mutation phases occur as in fixed

length GA. After these stages an evaluation stage

determines if a chromosome has undergone change.

Continuing the example, after crossover and mutation,

we have two chromosomes (0 2 2) and (1 1 1). The

evaluation process will determine the validity of the

chromosomes. If a gene within the chromosome is

invalid then a split occurs and the remainder of the

chromosome is set to (2). If the gene is valid then a

random (0, 1) gene is assigned.

Using as an example the chromosome (0 2 2) would

be evaluated by checking the validity of the first gene,

second etc. This would result in the first gene passing

as valid the second gene being assigned a random (0,

1) value and the final gene being assigned a value

based on the validity of the previous gene. If the

second gene is assigned (0) the last gene would remain

as 2 if however, the gene was set to 1 then another (0,

1) value would be assigned to the gene which could

result in a chromosome such as (0 1 0). By using this

process the variable path lengths are removed and the

functionality of fixed length GA can be adopted.

A set of experiments was conducted to determine

the potential effectiveness of the variable GA approach

in identifying the most error prone software paths. The

experiments were performed on five field examples

ranging from 764 to 3151 lines of code. Many different

GA strategies were applied to reduce the problems of

local minima and these are outlined in

Table 3. The experiment conducted was to select

top 10% and 25% error prone paths within the search

environments to illustrate the effectiveness of the GA

in selecting top percentage error prone paths. These

experiments were performed using Matlab
TM on the

Griffith University supercomputer. Table 1 shows

information of the environments used in the

experiments. Loops are included in branch according

to the loop rules applied from Beizer [14].

Table 1. Search environments

Environ-

ment

Branch Nested

Branch

Calls Leads LOC

1 30 9 21 9 977

2 8 17 17 0 882

3 18 23 5 0 764

4 38 26 40 9 1870

5 45 198 92 19 3151

Branch - loops and branches in the data;

Nested Branch – nested branches;

Calls - user function calls not library calls;

Leads - Multiple leading nodes e.g. “switch”;

LOC - lines of code

We also compared the GA performance with two

alternative search algorithms; these were Depth First

Search (DFS) and Random Restart Greedy Local

Search (RGLS).

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

1 2 3 4 5

1
0 2
5

0

25

50

75

100

GA Runs

[%]

Se arch Environme nt

Best GA Strategy Results

10

25

Top % Most

Error Prone

Paths

Figure 4. GA path selection efficiency

The DFS approach had a dual purpose: (i) results of

the DFS were used to determine all the possible paths

in the environment, their coinciding fitness and

exhaustive time to search; and (ii) to determine the

effectiveness of the GA in outperforming an exhaustive

search. At this stage we want to judge the effectiveness

of the GA in selecting top 10% and 25% error prone

paths.

The second comparison used a RGLS (A greedy

search extension that can randomly restart at any point

in the local neighborhood to reduce local minima) to

determine the effectiveness of the GA in outperforming

a local search technique. We compared by taking the

average GA search time and setting the RGLS to run

for this time or exiting if it out performs the GA.

4. Experimental results and discussion

We found the variable GA performed reasonably

well at both the 10% and 25% top error prone paths

selections. Figure 4 summarizes the best GA results for

each environment from the experiments and Table 2

the strategies used to achieve those results.

The search environments are based on the

environments detailed in Table 1. The graph shows the

average percentage of GA runs out of 50 trials on the

y–axis for the five different matrices. The results are

plotted for the top 10% and 25% of most error prone

paths within the search environment. The results

indicate that the variable GA approach performs

consistently across all environments with top 10%

error prone path selection efficiency at an average of

79.6% and 91.2% for the top 25% error prone paths.

Next, we compared the GA with two alternative

search algorithms these were DFS and RGLS. Figure 5

and Figure 6 illustrate the results from the comparison

between the three search techniques. These results are

based on an average from 50 trials of each search

algorithm on each environment. The figures show that

the complexity of the search environment causes

varying results with the GA and RGLS technique.

In particular the local search technique performs

quite erratically over the different populations. This

can be seen if we examine Figure 5.

Table 2. GA path selection criteria

Enviro

nment

X

(%)

M

(%)

Select

(type)

Pop

(size)

X

(type)

1 80 1/L Roulette 20 Single

2 80 1/L Roulette 20 Single

3 70 1/L Roulette 25 Uni.

4 70 1/L Roulette 30 Uni.

5 70 1/L Roulette 35 Uni.

X (%) – Crossover probability;

 M (%) – Mutation probability – 1/pathLength;

 Select (type) – Selection type;

 Pop (size) – Population size;

 X (type) – Crossover type

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Search Comparison Top 10% Selection

0

25

50

75

100

1 2 3 4 5
Se arch Environm e nt

T
o
p
 1

0
%

 E
r
r
o
r
 P

r
o
n
e

P
a
th

 E
ff

e
c
ti

v
e
n
e
ss

 [
%

]
DFS

GA

RGLS

Se arch

Algori thm s

Time Comparison Top 10% Selection

1

10

100

1000

10000

100000

1000000

1 2 3 4 5
Se arch Environme nt

T
im

e
 [

lo
g
 s

] DFS

GA

RGLS

Se arch

Algori thm s

Figure 5. Search comparison top 10% selection

Figure 6. Time comparison top 10% selection

The result of the RGLS technique at search

environment (1) is 100% probability of selecting the

top 10% error prone paths compared with 21%

probability at search environment (4). This is to be

expected as the local search technique suffers for a lack

of global sampling and quickly gets stuck in local

minima. The GA techniques do suffer from the local

minima problem however, the results are more

consistent across the environments and overall

outperform the RGLS technique. Figure 6 shows the

time comparison between the techniques.

In the smaller less complex environments (1 and 2)

the GA performance was rather slow in comparison

with the other algorithms with times of 49.78 seconds

and 61.42 seconds. This compared with 2.13 seconds

and 13.31 seconds for DFS, and 1.75 seconds and 3.32

seconds for RGLS. It was concluded that these results

were due to the size of the population used for the GA.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Figure 7. Average fitness trend over strategies

A smaller population had the potential to improve

convergence time but a higher probability for lower

selection results. The major point to notice was the

average search time for the DFS approach increased

from a smaller time on the smaller search domains to

greater than 350 times for the larger environments.

These results are not unexpected, as DFS is based on

an exhaustive search approach, implying that if the size

of the search space increases, so does the time to

search it.

The major problem encountered with the GA was

local minima or sub optimal solutions, which are a well

known problem, reported by Holland [9] and Goldberg

[10]. To achieve better results, a range of different

strategies was experimented with ensuring to maintain

diversity in the GA.

These strategies are listed in

Table 3. Some variables were selected based on

work by Jones, Sthamer and Eyres [12]. The strategy

changes included increasing the crossover probability,

increasing the mutation probability, using different

selection methodologies and changing the size of the

population being examined. Therefore by examining

strategy 1, the crossover probability will be 70%; the

mutation probability will be the reciprocal of the

pathlength; the crossover type used will be single point

crossover; the selection strategy will be roulette wheel

and the population size will be 20.

The graph in Figure 7 displays the average fitness

trends for all these GA strategies under test and shows

the increase and decrease in average GA fitness as the

algorithm strategies are changed. This is calculated by

averaging the results for each strategy over the 50 trials

and graphing this result. The search environments are

based on the details from Table 1.

A number of interesting results emerged from these

experiments. Firstly, the major feature noticed in

Figure 7 is the dip in average fitness due to the binary

tournament selection strategy. This strategy selects two

chromosomes randomly and presents the one with the

highest fitness for crossover and mutation.

Table 3. GA strategies

Strategy Variable Type

1-6, 10-24 crossover probability = 0.7

7-9 crossover probability = 0.8

1-9, 13-24 mutation probability = 1/pathlength

10-12 mutation probability = 1/pathlength +6

1-3, 7-24 selection type = roulette wheel

4-6 selection type = binary tournament

1,4,7,10,13,

16, 19,22

crossover type = single point

2,5,8,11,14,

17, 20,23

crossover type = two point

3,6,9,12,15,

18, 21,24

crossover type = uniform

1-12 population = 20

13-15 population = 25

16-18 population = 30

19-21 population = 35

22-24 population = 40

Fitness Trend with Stratergy Change

0

500

1000

1500

0 5 10 15 20 25

Test S tratergy

A
v

er
a

g
e

F
it

n
es

s
1

0
%

E
ff

ec
ti

v
en

es
s

1

2

3

4

5

Se arch

Environm e nt[S
O
E
]

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

It was found that the average effectiveness of

selecting a top 10% error prone path for the roulette

wheel strategies (1, 2 and 3) was 56.47%.

In contrast, when using a binary tournament

selection strategy (4, 5 and 6) the selection

effectiveness dropped to an average of 5.67%. The

conclusion raised from this experiment was the

population diversity was not kept with the binary

tournament selection and convergence occurred too

quickly.

Secondly, in this current domain using higher levels

of crossover resulted in a more effective selection

strategy. It was found that the average effectiveness of

the GA increased from 56.47% (1, 2 and 3) to 58.33%

(7, 8 and 9). This was predicted as an increase in

crossover rate increased the probability of getting the

fittest solution. However, the main increase came in

the smaller search domains which were more

influenced by the increase. In environment (5) the

opposite was experienced with a decrease in selection

effectiveness. It was concluded that it was caused by

decrease in the overall diversity of the population.

Thirdly, it was found that increasing the mutation

rate from the reciprocal of the path length (genome

length) to the reciprocal of the path length + 6

increased overall effectiveness of the GA. However,

the time to find a fitter solution also increased. While

this might seem paradox at first, it is consistent with

the results found by Jones, Sthamer and Eyres [12],

that is, as the diversity of the population increases a

fitter solution is achieved and it takes longer for the

population to converge on this fitter solution.

Finally, based on work by Spears and Anand [15],

we conducted experiments with different population

sizes. Spears and Anand found that the size of the

population was crucial to the performance of the GA.

In general, small populations find good solutions

quickly, but are often stuck on local optima. Larger

populations are less likely to be caught by local

optima, but generally take longer to find good

solutions. This theory was corroborated by finding,

that while the increase in population increased the

effectiveness of the selection the time to find the more

fit solution also increased. This is reflected in our

results where an increase in population has increased

the average effectiveness from 56.47% (1, 2 and 3) to

78.45% (22, 23 and 24) and the times from 352.45

seconds to 1235.78 seconds.

From these experimental results it can be seen that

many factors cause varying rates of success with the

variable GA approach. For the smaller search spaces,

the GA does not perform as well as it does on the

larger search areas. This is to be expected based on

research by Spears and Anand [15]. However, it can

also be seen that the GA performs well in selecting the

higher SOE paths from the larger search spaces, which

is more representative of a program (as illustrated by

our examples). The variable GA approach also

out-performs the DFS and RGLS techniques as shown

in Figure 5 and Figure 6.

The path clusters selected using the GA technique

can then be drawn for testing using traditional testing

means like structural, dataflow and functional testing.

Therefore if – say - 80% path coverage was required,

one could run the GA iteratively to draw paths in a

relatively sound order from the higher error prone,

down to the lower error prone. The time taken to run

the GA many times on a large search environment

might be a constraining factor, but this can be easily

overcome with a more powerful computer.

An important result is that the GA approach does

perform better than exhaustive DFS time. If several

iterations are done, then most likely the best strategy

becomes part of the resulting set of path clusters that

cover a minimum desired percentage of SOE to be

detected in testing. The GA technique performs

quickly with reasonable results, even if it does not find

the global optimum at first run.

While the GA perform better on larger examples,

the time to run the GA also grow with the larger

examples.

5. Conclusions

In this paper we have demonstrated that it is

possible to apply variable length Genetic Algorithm

techniques for finding the most error prone paths for

improving software testing efficiency. This was

achieved with Genetic Algorithms performing well

across all the environments tested by finding on

average up to 80% of the paths within the 10% most

error prone paths, and expanding to 90% within the

25% most error prone paths. The Genetic Algorithms

also outperformed the exhaustive search and local

search techniques.

In conclusion, by examining the most error prone

paths first, we obtain a more effective way to approach

testing which in turn helps to refine effort and cost

estimation in the testing phase. Our experiments

conducted so far are based on relatively small

examples and more research needs to be conducted

with larger commercial examples. At this stage we

want to judge the effectiveness of the GA in selecting

top 10% and 25% error prone paths. Future research

will involve comparing GA selected paths in larger test

data and further refining the method presented.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

6. References

[1] M.R. Lyu, “Handbook of Software Reliability

Engineering”, McGraw-Hill Publishing Company and

IEEE Computer Society Press, New York, 1995.

[2] J.M. Bieman & H.Yin, “Designing for software

testability using automated oracles”, Proc. International

Test Conf., Sep 1992, pp 900-907.

[3] W.E. Wong, J. R. Horgan, A. P. Mathur & A. Pasquini,

“Test Set Size Minimization and Fault Detection

Effectiveness: A Case Study in a Space Application”,

Journal of Systems and Software, Vol. 48, No. 2,

October 1999, pp 79-89.

[4] Y.K. Malaiya, N. Li, J. Bieman, R. Karcich & B.

Skibbe, “The relationship between test coverage and

reliability”, Proc. of the International Symposium on

Software Reliability Engineering, Nov 1994, pp

186-195.

[5] T. J. McCabe & C. W. Butler, “Design Complexity

Measurement and Testing”, Communications of the

ACM, Vol 32, No. 12, December 1989, pp 1415-1425.

[6] B. Beizer, “Software Testing Techniques”, 2nd edition,

New York: Van Nostrand Reinhold, 1990.

[7] T. Ball & J.R. Larus, “Programs follow paths”,

Technical Report MSR-TR-99-01 Microsoft Research,

Microsoft Research, Redmond, WA, January 1999.

[8] R. Sitte, “A Framework for Quantifying Error Proneness

in Software”, Proceedings of the first Asia-Pacific

Conference on Quality Software, Hong Kong, October

30-31 1999, pp 63-68.

[9] J. H. Holland, “Adaptation in Natural and Artificial

Systems”, The University of Michigan Press, 1975.

[10] D.E. Goldberg, “Genetic Algorithms in Search,

Optimisation and Machine Learning”, Addison Wesley,

Reading, 1989.

[11] D.E. Goldberg, K. Deb & B. Korb “Messy Genetic

Algorithms: Motivation, analysis, and first results”,

Complex Systems, Vol. 3, 1989, pp. 493-530.

[12] B. F. Jones, H. Sthamer & D.E. Eyres, “A strategy for

using genetic algorithms to automate branch and fault-

based testing”, Computer Journal, Vol. 41, No. 2, 1998,

pp 98-107.

[13] S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi.

“Optimization by simulated annealing”, Science, Vol.

220, pp. 671-680.

[14] B. Beizer, “Black-box Testing: techniques for functional

testing of software and systems”, Wiley, New York,

1995.

[15] W. M. Spears & V. Anand, “A study of crossover

operators in genetic programming”, 6th International

Symposium on Methodologies for Intelligent Systems,

Charlotte, N.C., USA, 16. - 19. October 1991, pp

409-418

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

