
Optimizing Testing Efficiency with Error-Prone Path Identification and 

Genetic Algorithms 

James R. Birt   Renate Sitte 

Griffith University, School of Information Technology  

Gold Coast Campus PBM 50 Gold Coast Mail Centre, 

Gold Coast 9726, Queensland, Australia 

j.birt@griffith.edu.au  r.sitte@griffith.edu.au 

Abstract

This paper presents a method for optimizing 

software testing efficiency by identifying the most error 
prone path clusters in a program. We do this by 

developing variable length Genetic Algorithms that 

optimize and select the software path clusters which 
are weighted with sources of error indexes. Although 

various methods have been applied to detecting and 

reducing errors in a whole system, there is little 
research into partitioning a system into smaller error 

prone domains for testing. Exhaustive software testing 

is rarely possible because it becomes intractable for 
even medium sized software. Typically only parts of a 

program can be tested, but these parts are not 

necessarily the most error prone. Therefore, we are 
developing a more selective approach to testing by 

focusing on those parts that are most likely to contain 
faults, so that the most error prone paths can be tested 

first. By identifying the most error prone paths, the 

testing efficiency can be increased.  

Keywords – Genetic Algorithms, optimization, testing 

efficiency, software reliability 

1. Introduction 

The purpose of this paper is to use Genetic 

Algorithms to study the optimization of error 

proneness in software, with the aim to increase testing 

efficiency.

The past 30 years have seen a huge growth in the 

size, complexity and criticality of software code 

development. Consequently, software reliability and its 

associated costs for achieving better reliability have 

greatly increased. Several methods for measuring 

software reliability are commonly used. They include 

software reliability models [1], automated oracles [2] 

and fault detection [3]. Malaiya et al. [4], proposed a 

link between the levels of testing coverage (that is, the 

expectation to detect as many errors as possible with a 

test case) and the reliability of software.  

Testing coverage techniques have one major 

drawback which is they look at the entire program. 

Even with reduction methods there can be many test 

cases in a large program and it can become intractable 

for testing [5]. 

Testing comes at a high price and typically requires 

more than half of the project resources to produce a 

working program [6]. However, a working program 

does not always guarantee a defect free program. 

Depending on the criticality of the program, different 

percentages of testing coverage are required. Therefore 

a more effective way to approach coverage and testing 

in general is to focus on the paths most likely to reveal 

faults [7] or the most error prone paths [8]. 

To overcome this weakness, we propose a method 

to attribute weights to the paths using a framework for 

assessing quantitatively the error proneness of software 

modules proposed by Sitte [8]. It achieves an 

assessment of error proneness by analyzing the 

potential sources of errors (SOE) in a software 

construct, that is, the code instructions in software 

modules. The advantage of using our technique is that 

it can be automated and optimized. By representing the 

software as a flow graph
1 and subsequently a 

SOE-weighted connectivity sparse matrix, a search 

algorithm can be applied to the weighed environment 

to detect those paths that are the most error prone, or 

those paths that contribute most to the overall amount 

of potential errors.  It should be noted that our method 

is not an automated test case generator. The design of 

the test cases still needs to be addressed. Our method 

focuses on the potential errors in the code instructions 

for selecting error prone clusters for later testing and 

not on the flow of control where more testing should 

be done. Problems such as potentially infeasible paths 

                                                          
1 Despite their morphological similarity, a flow graph is not a control 

flow diagram. 
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1. no precondition to enter the loop 

2. no condition to advance in the 

loop 

3. no end condition 

4. bound exceeded 

associated with data-flow analysis are examined in the 

later stages. 

Various searching algorithms have been developed 

for different purposes and finding a path in a directed 

graph is a combinatorial problem that can quickly get 

out of hand even for medium sized software. 

Therefore, we have to optimize our search, and we do 

this with variable length Genetic Algorithms (GA). 

GA were developed and formalized by Holland [9]. 

They were further developed and shown to have wide 

applicability by Goldberg et al. [10], [11]. More 

recently GA have been used for generating test data 

and other software engineering applications as shown 

by Jones, Sthamer and Eyres [12]. Other methods 

based on local search techniques such as greedy 

approaches or simulated annealing [13] could possibly 

be applied. However, due to the lack of a global 

sampling capability, local search methods run greater 

risk of being trapped in local minima. In our case this 

would be unsuitable in our aim of finding the most 

error prone paths and given the nature of the search 

space with many local minima. Therefore, the 

motivation for choosing the variable length GA 

approach was based on its heuristics for optimizing 

large and complex search environments which is 

indicative of software code. Also, the paths in a 

software program are not all the same length, therefore 

variable length GA were applied rather than traditional 

fixed length GA.  

The implications and benefits of determining the 

most error prone paths are many. Its main purpose is to 

increase testing efficiency by focusing on the most 

error prone parts first. This in turn aids in refining the 

effort and cost estimation that will be required in the 

testing phase. 

In this paper, we present the results of our research 

into the application of the variable GA search 

approach, to identify the most error prone paths in a 

software construct. The paper is structured in the 

following way: the next section provides an overview 

of the sources of errors framework, which are the 

groundwork for quantifying error prone paths.  Section 

3 deals with our experiment for selecting the error 

prone paths and the details of the GA implementation. 

This is followed by the results and discussions in 

section 4 and finally the conclusions in section 5. 

2. Quantifying error proneness 

This section explains briefly the SOE framework as 

proposed by Sitte [8] for calculating the error 

proneness in software modules and how it collaborates 

with the GA.  

There are several problems with the current 

methods of testing coverage; they are (i) testing covers 

only a portion of the software for the level of reliability 

required; (ii) exponential time to test or testing all 

paths and (iii) cost effectiveness, that is, the process 

might not justify the time taken to test. At first glance 

the first mentioned disadvantage does not appear to be 

a problem. However, the main issue is, how do we 

know that what we are testing is the best portion, that 

is, the most error prone? If we have a coverage level of 

80%, does this really mean the most error prone 80% 

has been covered or is it just any 80% overall (with the 

most error prone possibly remaining in the untested 

20%)?  

The answer is that we do not know, unless we have 

quantitative information about the contents of errors. 

We do know that some software is easier to write than 

others, and is less error prone, while more difficult and 

complex software is more prone to error. A range of 

complexity measures have been designed, but they do 

not provide a quantitative answer that translates on 

which parts of the software the testing efforts should be 

concentrated. To be able to find the most error prone 

portions in a quantitative way, it is necessary to assess 

the chances that a programmer can introduce an error 

in an instruction. This can be done by applying a 

simple analysis. Figure 1 illustrates this with an 

example of a simple loop.  

Figure 1.  SOE analysis of simple loop [8] 

This construct has at least four SOE (if those were 

the only possible sources of error). For simplicity an 

equal probability for each error is given. All other 

programming constructs can be analyzed in a similar 

way, yielding SOE values that are specific to an 

instruction [8]. The method provides the framework for 

SOE quantification; it is simple, but powerful and can 

quickly be obtained from the code in an automated 

way.  While this method provides the minimum 

theoretical SOE, additional information from test 

design strategies, risk analysis and historical data (if 

available) can be used to calibrate and fine tune the 
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model by adding weights to the theoretical SOE 

values.

By summing the SOE values (weighted or 

theoretical) for each instruction of a software module, 

it is possible to quantify the SOE for the different paths 

that the software could step through in its execution. 

The software structure is then represented as a directed, 

weighted graph whose heaviest paths can be identified. 

We do this by applying the GA. Test cases can then be 

designed to give priority in testing to the SOE-heavier 

paths with maximum coverage. The testing priority of 

paths can be chosen strategically from the most error 

prone paths first to the less error prone ones to 

whatever required extent e.g. as a percentage, and to 

the satisfaction of  the reliability requirements of the 

software.  

3. Finding error prone paths experiment 

In this section we explain the experiment set up and 

data preparation for the GA in determining the most 

error prone paths. 

3.1. Search environment 

The first step involves translating the source code 

into an environment to apply a searching algorithm. 

This is achieved by creating a sparse connectivity 

matrix from the directed graph that represents the 

software code. For simplicity a tree structure is used to 

represent the flow of possible executing sequences in 

the software [6]. To generate the tree structure the 

source code is first parsed through a software parser to 

analyze and generate the directed graph. The most 

complicated step of the parser is function evaluation. 

Functions at this stage are treated as another node with 

their functionality attached to the graph at the point of 

the function call. Each possible end of the function is 

then attached to the node of the next LOC after the 

function call. This directed graph is then further 

transformed into a binary tree which is obtained in 

three steps.  

Firstly, the loops within the graph need to be 

removed both for reducing the combinations of paths 

and generating a binary tree structure. Loops refer to 

both looping source statements such as “while” and 

recursive program calls. This is achieved by applying 

rules from basis path testing or Beizer’s Loop Tests 

[14]. Beizer proposes a number of loop iteration 

categories. In the case of removing loops we apply two 

of the categories namely “Bypass” (zero times through 

the loop) and “Once” (single execution of the loop). 

Next, all multiple outdegree nodes, that is nodes 

from which several edges emerge (we call these nodes 

multiple lead nodes) within the graph need to be 

transformed into sets of binary nodes. This is 

legitimate in graph theory. The reason for this step is to 

create a binary searching space for application of the 

searching algorithm. This is accomplished by adding a 

small weighted node to the graph.  

Finally, the trivial paths need to be removed. This 

step is used to reduce the size of the search space and 

reduce time spent analyzing equivalent SOE path 

structures. It is achieved by collapsing the trivial paths 

down into one node. This node then contains a 

summed SOE of the previous structure for path 

selection with the GA. Figure 2 illustrates this process 

with a small example. 

In this example the source code is parsed for 

structure and the directed graph is derived. An 

instruction (now a node) can have the SOE from more 

than one construct type. For example, in node 6 the 

SOE comes from a “while” and an “assignment”. Next, 

the tree building rules are applied to transform the 

graph into a binary search tree. Where A = 1,2,3; B = 

4,10,11; C = inserted node; D = 5,10,11; E = 6; F = 

8,9,10,11; G = 7,8,9,10,11; Next, the tree is 

represented as a connectivity matrix and finally the 

matrix is converted to a sparse representation to save 

on storage as this is an O(N
2) storage space problem. 

The environment is now suitable for the GA search. 

3.2. GA implementation and experiment 

Using the SOE as a basis of fitness, a GA can be 

employed to find the most error prone paths that is, the 

paths with the highest SOE are best. The advantage of 

the SOE framework is that the structure of the 

software, or its components, can be represented as a 

network, in the form of a connectivity matrix, whose 

path is a 0/1 string. For this research variable length 

GA were employed as they provide the necessary 

advantages for application in this domain (that is, 

optimizing a large and variable sized search 

environment [10], [11]).  

GA are mathematical constructs based on survival 

of the fittest which were formalized by Holland [9]. 

Each generation consists of a population of character 

strings, or variables, in terms of an alphabet, that are 

analogous to the chromosomes that we see in our 

DNA. Each individual character or ‘gene’ represents a 

point in a search space and a possible solution. A 

fitness score is assigned to each solution representing 

the abilities of an individual to ‘compete’. The 

individual with the optimal (or more generally the near 

optimal) fitness score is sought.  
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Figure 2. Generating 
the search environment 

The GA aims to use selective ‘breeding’ of the 

solutions to produce ‘offspring’ more fit than the 

parents by combining information from the 

chromosomes. This is achieved by using crossover 

and mutation of the strings. Eventually, when the 

population has converged and is not producing 

offspring that are noticeably different from those in 

previous generations, the algorithm is said to have 

converged to a set of solutions to the problem at 

hand. 

The genomes used for the GA are the paths 

constructed through the connectivity matrix by a 

string that is made of zeroes and ones. They represent 

a right (0) or left (1) direction using the tree structure 

of the software system under examination. Using the 

matrix from  

Figure 2 this would give us chromosomes such as 

the paths A-C-D = 01 or A-C-E-F = 001. It is this 

sequence of zero-and-one genes that is used to 

develop a chromosome for application with the GA 

search approach.  

Bearing in mind that the nodes are weighted with 

the SOE, a path is explored and its corresponding 

SOE values read and summed. 

  main(){ 

1 int number = 0; 

2 cin >> number; 

3 switch(number){ 

4 case 1:  break; 

5 case 2:  break; 

6 default:  while(number != 0){ 

7   cin >> number; 

8  } 

9  break; 

10}

11}
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A

B C

D E

GF

Structure connectivity matrix 
 A B C D E F G 

A 0 1 1 0 0 0 0 

B 0 0 0 0 0 0 0 

C 0 0 0 1 1 0 0 

D 0 0 0 0 0 0 0 

E 0 0 0 0 0 1 1 

F 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 

SOE connectivity matrix 
 A B C D E F G 

A 0 2 1 0 0 0 0 

B 0 0 0 0 0 0 0 

C 0 0 0 2 8 0 0 

D 0 0 0 0 0 0 0 

E 0 0 0 0 0 2 1 

F 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 

(A,B)  2 

(A, C)  1 

(C, D)  2 

(C, E)  8 

(E, F)  2 

(E, G) 1

Source Code 

Graph Transform 

Binary Tree 

Sparse SOE representation 
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If it is heavy in SOE, that is, if the path is highly 

error prone then the GA will "reward" it. It is on these 

heavier paths where priority for testing takes place. To 

achieve a desired level of reliability paths can be drawn 

and tested. When a path is drawn it is removed from 

the search space. This can be continued until a desired 

level of reliability has been achieved.  

There are two main problems facing a variable 

length GA. (i) chromosome evaluation and (ii) local 

minima. The strategies for resolving local minima are 

explained in the next section. 

With a standard fixed length GA and balanced tree 

structure, the evaluation of the chromosomes can occur 

without problem; this is because all gene values 

(directions in a tree) are valid. The issue with using a 

fixed length GA is that the source code environment is 

not fixed in length. This can be seen clearly in  

Figure 2 where paths of different lengths can occur. 

Therefore, we need to examine variable length GA.  

When using variable length GA invalid genes 

(directions) can occur. To overcome this, a technique is 

used to replace invalid genes with a representation 

character. This effectively splits the chromosome into 

two parts, one part having the valid genes the other the 

invalid. This is similar to the splicing and 

recombination techniques outlined in Goldberg et al. 

research [11]. Figure 3 outlines an example of the 

selection and representation process. 

In this example two chromosomes of different 

lengths have been selected for crossover (011) and (1) 

however, the crossover works only on fixed length 

representations. Therefore a representation character 

(in this case 2) has been applied to pad the remaining 

genes.  

Figure 3. Selecting chromosomes 

The crossover and mutation phases occur as in fixed 

length GA. After these stages an evaluation stage 

determines if a chromosome has undergone change. 

Continuing the example, after crossover and mutation, 

we have two chromosomes (0 2 2) and (1 1 1). The 

evaluation process will determine the validity of the 

chromosomes. If a gene within the chromosome is 

invalid then a split occurs and the remainder of the 

chromosome is set to (2). If the gene is valid then a 

random (0, 1) gene is assigned.  

Using as an example the chromosome (0 2 2) would 

be evaluated by checking the validity of the first gene, 

second etc. This would result in the first gene passing 

as valid the second gene being assigned a random (0, 

1) value and the final gene being assigned a value 

based on the validity of the previous gene. If the 

second gene is assigned (0) the last gene would remain 

as 2 if however, the gene was set to 1 then another (0, 

1) value would be assigned to the gene which could 

result in a chromosome such as (0 1 0). By using this 

process the variable path lengths are removed and the 

functionality of fixed length GA can be adopted. 

A set of experiments was conducted to determine 

the potential effectiveness of the variable GA approach 

in identifying the most error prone software paths. The 

experiments were performed on five field examples 

ranging from 764 to 3151 lines of code. Many different 

GA strategies were applied to reduce the problems of 

local minima and these are outlined in  

Table 3. The experiment conducted was to select 

top 10% and 25% error prone paths within the search 

environments to illustrate the effectiveness of the GA 

in selecting top percentage error prone paths. These 

experiments were performed using Matlab
TM on the 

Griffith University supercomputer. Table 1 shows 

information of the environments used in the 

experiments. Loops are included in branch according 

to the loop rules applied from Beizer [14].  

Table 1. Search environments 

Environ-

ment

Branch Nested 

Branch

Calls Leads LOC 

1 30 9 21 9 977 

2 8 17 17 0 882 

3 18 23 5 0 764 

4 38 26 40 9 1870 

5 45 198 92 19 3151 

Branch - loops and branches in the data; 

Nested Branch – nested branches; 

Calls - user function calls not library calls; 

Leads - Multiple leading nodes e.g. “switch”; 

LOC - lines of code 

We also compared the GA performance with two 

alternative search algorithms; these were Depth First 

Search (DFS) and Random Restart Greedy Local 

Search (RGLS).  
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Figure 4. GA  path selection efficiency 

The DFS approach had a dual purpose: (i) results of 

the DFS were used to determine all the possible paths 

in the environment, their coinciding fitness and 

exhaustive time to search; and (ii) to determine the 

effectiveness of the GA in outperforming an exhaustive 

search. At this stage we want to judge the effectiveness 

of the GA in selecting top 10% and 25% error prone 

paths.  

The second comparison used a RGLS (A greedy 

search extension that can randomly restart at any point 

in the local neighborhood to reduce local minima) to 

determine the effectiveness of the GA in outperforming 

a local search technique. We compared by taking the 

average GA search time and setting the RGLS to run 

for this time or exiting if it out performs the GA. 

4. Experimental results and discussion 

We found the variable GA performed reasonably 

well at both the 10% and 25% top error prone paths 

selections. Figure 4 summarizes the best GA results for 

each environment from the experiments and Table 2 

the strategies used to achieve those results.  

The search environments are based on the 

environments detailed in Table 1. The graph shows the 

average percentage of GA runs out of 50 trials on the 

y–axis for the five different matrices. The results are 

plotted for the top 10% and 25% of most error prone 

paths within the search environment. The results 

indicate that the variable GA approach performs 

consistently across all environments with top 10% 

error prone path selection efficiency at an average of 

79.6% and 91.2% for the top 25% error prone paths.  

Next, we compared the GA with two alternative 

search algorithms these were DFS and RGLS. Figure 5 

and Figure 6 illustrate the results from the comparison 

between the three search techniques. These results are 

based on an average from 50 trials of each search 

algorithm on each environment. The figures show that 

the complexity of the search environment causes 

varying results with the GA and RGLS technique. 

In particular the local search technique performs 

quite erratically over the different populations. This 

can be seen if we examine Figure 5. 

Table 2. GA  path selection criteria 

Enviro

nment 

X

(%) 

M

(%) 

Select 

(type) 

Pop 

(size) 

X

(type) 

1 80 1/L Roulette 20 Single 

2 80 1/L Roulette 20 Single 

3 70 1/L Roulette 25 Uni. 

4 70 1/L Roulette 30 Uni. 

5 70 1/L Roulette 35 Uni. 

X (%) – Crossover probability; 

 M (%) – Mutation probability – 1/pathLength; 

 Select (type) – Selection type; 

 Pop (size) – Population size; 

 X (type) – Crossover type 
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Figure 5. Search comparison top 10% selection 

Figure 6. Time comparison top 10% selection 

The result of the RGLS technique at search 

environment (1) is 100% probability of selecting the 

top 10% error prone paths compared with 21% 

probability at search environment (4). This is to be 

expected as the local search technique suffers for a lack 

of global sampling and quickly gets stuck in local 

minima. The GA techniques do suffer from the local 

minima problem however, the results are more 

consistent across the environments and overall 

outperform the RGLS technique. Figure 6 shows the 

time comparison between the techniques.  

In the smaller less complex environments (1 and 2) 

the GA performance was rather slow in comparison 

with the other algorithms with times of 49.78 seconds 

and 61.42 seconds. This compared with 2.13 seconds 

and 13.31 seconds for DFS, and 1.75 seconds and 3.32 

seconds for RGLS. It was concluded that these results 

were due to the size of the population used for the GA. 
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Figure 7. Average fitness trend over strategies 

A smaller population had the potential to improve 

convergence time but a higher probability for lower 

selection results. The major point to notice was the 

average search time for the DFS approach increased 

from a smaller time on the smaller search domains to 

greater than 350 times for the larger environments. 

These results are not unexpected, as DFS is based on 

an exhaustive search approach, implying that if the size 

of the search space increases, so does the time to 

search it. 

The major problem encountered with the GA was 

local minima or sub optimal solutions, which are a well 

known problem, reported by Holland [9] and Goldberg 

[10]. To achieve better results, a range of different 

strategies was experimented with ensuring to maintain 

diversity in the GA.  

These strategies are listed in  

Table 3. Some variables were selected based on 

work by Jones, Sthamer and Eyres [12]. The strategy 

changes included increasing the crossover probability, 

increasing the mutation probability, using different 

selection methodologies and changing the size of the 

population being examined. Therefore by examining 

strategy 1, the crossover probability will be 70%; the 

mutation probability will be the reciprocal of the 

pathlength; the crossover type used will be single point 

crossover; the selection strategy will be roulette wheel 

and the population size will be 20. 

The graph in Figure 7 displays the average fitness 

trends for all these GA strategies under test and shows 

the increase and decrease in average GA fitness as the 

algorithm strategies are changed. This is calculated by 

averaging the results for each strategy over the 50 trials 

and graphing this result. The search environments are 

based on the details from Table 1. 

A number of interesting results emerged from these 

experiments. Firstly, the major feature noticed in 

Figure 7 is the dip in average fitness due to the binary 

tournament selection strategy. This strategy selects two 

chromosomes randomly and presents the one with the 

highest fitness for crossover and mutation.  

Table 3. GA strategies 

Strategy Variable Type 

1-6, 10-24 crossover probability = 0.7 

7-9 crossover probability = 0.8 

1-9, 13-24 mutation probability = 1/pathlength 

10-12 mutation probability = 1/pathlength +6 

1-3, 7-24 selection type = roulette wheel 

4-6 selection type = binary tournament 

1,4,7,10,13, 

16, 19,22 

crossover type = single point 

2,5,8,11,14, 

17, 20,23 

crossover type = two point 

3,6,9,12,15, 

18, 21,24 

crossover type = uniform 

1-12 population = 20 

13-15 population = 25 

16-18 population = 30 

19-21 population = 35 

22-24 population = 40 
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It was found that the average effectiveness of 

selecting a top 10% error prone path for the roulette 

wheel strategies (1, 2 and 3) was 56.47%. 

In contrast, when using a binary tournament 

selection strategy (4, 5 and 6) the selection 

effectiveness dropped to an average of 5.67%. The 

conclusion raised from this experiment was the 

population diversity was not kept with the binary 

tournament selection and convergence occurred too 

quickly. 

Secondly, in this current domain using higher levels 

of crossover resulted in a more effective selection 

strategy. It was found that the average effectiveness of 

the GA increased from 56.47% (1, 2 and 3) to 58.33% 

(7, 8 and 9). This was predicted as an increase in 

crossover rate increased the probability of getting the 

fittest solution. However, the main increase came in 

the smaller search domains which were more 

influenced by the increase. In environment (5) the 

opposite was experienced with a decrease in selection 

effectiveness. It was concluded that it was caused by 

decrease in the overall diversity of the population. 

Thirdly, it was found that increasing the mutation 

rate from the reciprocal of the path length (genome 

length) to the reciprocal of the path length + 6 

increased overall effectiveness of the GA. However, 

the time to find a fitter solution also increased. While 

this might seem paradox at first, it is consistent with 

the results found by Jones, Sthamer and Eyres [12], 

that is, as the diversity of the population increases a 

fitter solution is achieved and it takes longer for the 

population to converge on this fitter solution. 

Finally, based on work by Spears and Anand [15], 

we conducted experiments with different population 

sizes. Spears and Anand found that the size of the 

population was crucial to the performance of the GA. 

In general, small populations find good solutions 

quickly, but are often stuck on local optima. Larger 

populations are less likely to be caught by local 

optima, but generally take longer to find good 

solutions. This theory was corroborated by finding, 

that while the increase in population increased the 

effectiveness of the selection the time to find the more 

fit solution also increased. This is reflected in our 

results where an increase in population has increased 

the average effectiveness from 56.47% (1, 2 and 3) to 

78.45% (22, 23 and 24) and the times from 352.45 

seconds to 1235.78 seconds. 

From these experimental results it can be seen that 

many factors cause varying rates of success with the 

variable GA approach. For the smaller search spaces, 

the GA does not perform as well as it does on the 

larger search areas. This is to be expected based on 

research by Spears and Anand [15]. However, it can 

also be seen that the GA performs well in selecting the 

higher SOE paths from the larger search spaces, which 

is more representative of a program (as illustrated by 

our examples). The variable GA approach also 

out-performs the DFS and RGLS techniques as shown 

in Figure 5 and Figure 6. 

The path clusters selected using the GA technique 

can then be drawn for testing using traditional testing 

means like structural, dataflow and functional testing. 

Therefore if – say - 80% path coverage was required, 

one could run the GA iteratively to draw paths in a 

relatively sound order from the higher error prone, 

down to the lower error prone. The time taken to run 

the GA many times on a large search environment 

might be a constraining factor, but this can be easily 

overcome with a more powerful computer.  

An important result is that the GA approach does 

perform better than exhaustive DFS time. If several 

iterations are done, then most likely the best strategy 

becomes part of the resulting set of path clusters that 

cover a minimum desired percentage of SOE to be 

detected in testing. The GA technique performs 

quickly with reasonable results, even if it does not find 

the global optimum at first run. 

While the GA perform better on larger examples, 

the time to run the GA also grow with the larger 

examples. 

5. Conclusions 

In this paper we have demonstrated that it is 

possible to apply variable length Genetic Algorithm 

techniques for finding the most error prone paths for 

improving software testing efficiency. This was 

achieved with Genetic Algorithms performing well 

across all the environments tested by finding on 

average up to 80% of the paths within the 10% most 

error prone paths, and expanding to 90% within the 

25% most error prone paths. The Genetic Algorithms 

also outperformed the exhaustive search and local 

search techniques.

In conclusion, by examining the most error prone 

paths first, we obtain a more effective way to approach 

testing which in turn helps to refine effort and cost 

estimation in the testing phase. Our experiments 

conducted so far are based on relatively small 

examples and more research needs to be conducted 

with larger commercial examples. At this stage we 

want to judge the effectiveness of the GA in selecting 

top 10% and 25% error prone paths. Future research 

will involve comparing GA selected paths in larger test 

data and further refining the method presented. 
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