
Copyright 2005 IEEE. Published in the Proceedings of 2005 Australasian Software Engineering Conference, Brisbane, Australia. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445

Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

Supporting dynamic software tool integration via web service-based components

Nelson Yap1, Hau Chean Chiong1, John Grundy1, 2 and Rebecca Berrigan2
Department of Electrical and Computer Engineering1 and Department of Computer Science2,

University of Auckland, Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

Most software engineering tools come with fixed
functionality or limited plug-in extension capabilities.
Building software development environments that support
truly dynamic extension capabilities to incorporate a wide
range of additional facilities at run-time has proved to be a
very challenging task. We describe a new approach using
web service components to support the dynamic discovery,
integration and invocation of remote software tool
facilities for JEdit, an open source Integrated Development
Environment. In this approach discrete software tool
functionality is encapsulated in software “toolets”,
accessed as remote web service-based components. These
toolet services are registered and discovered, and then
dynamically integrated and invoked from within the JEdit
IDE as required. We describe the architecture of our
approach, key design and implementation issues, and
illustrate the feasibility of the approach with several
prototype toolet components and results of evaluations.

Keywords: software tool integration, web services, service
discovery and integration, integrated development environments

1. Introduction

A single software engineering tool seldom provides a
complete set of facilities for all of its potential users. Thus
software tool integration has become a major research and
practical area of work in software engineering, allowing
developers to compose an environment from multiple,
integrated tools [18, 22, 25].

Common approaches to software tool integration
include data integration via common file formats or shared
data repositories [8, 26]; control integration via event
passing, plug-in APIs or remote object APIs for tools [12,
22, 28]; presentation integration via plug-ins and wrappers
[22, 23, 15]; and process integration via workflow tools
and process-centred environments [1, 2, 3]. All of these
approaches trade off different advantages and
disadvantages. Common problems encountered include a
need to install tools on all potential user machines and
keep up-to-date; difficultly in tightly integrating client PC
IDEs with distributed server facilities; and the complexity

and incompatibility between different plug-in and remote
object APIs for software tools.

To try and overcome these problems we have
developed a proof-of-concept approach to supporting
dynamic software tool extension via web service-based
remote software components. In this work we extended an
open-source Integrated Development Environment (IDE),
JEdit, to support dynamic discovery of new tool facilities
via web service component registries. These newly
discovered software tool components, which we call
“toolets”, are integrated into this extended “JEdit-WS”
IDE and invoked remotely via XML web service
messages. The remotely hosted toolet services process
requests from multiple users and results are displayed
within the client JEdit-WS environments. To demonstrate
the feasibility of this concept we have developed remote
services for version control, collaborative messaging, code
refactoring and code inspection. All of these use remote
web service component interfaces to existing third-party
software tools to provide these facilities. Web service
wrappers were used to provide data and control integration
with these remote web services, with JEdit-WS providing a
consistent presentation integration strategy for them.

We firstly provide a motivation for this work and
summarise key contributions to date of related research.
We then outline our approach of using a remote web
service component-based tool extension mechanism. We
illustrate our approach with several toolet examples used to
dynamically extend our proof-of-concept JEdit-WS IDE.
We describe key design and implementation issues and
provide an evaluation of our approach’s key strengths and
weaknesses. We conclude with a summary of the
contributions of our work and directions for future
research.

2. Motivation

Integrated Development Environments (IDEs), by their
very name, provide software developers with a way of
integrating the toolsets that improves their personal
productivity and code quality. From an organisational
software production perspective, software vendors are
keen to benefit from this increased productivity and quality
that a good IDE promises to deliver.

Plugins list

 JEdit Host PC JEdit IDE

Plug-in Manager

JRefactor Plug-in

CVS Plug-in

JLint Plug-in

IMS Plug-in

mySQL Plug-in

Rose IF Plug-in

Remote JEdit
Plug-in Repository

Remote CVS Server

Local JLint, JRefactor
Tools

Instant
Messaging

Server

MySQL Server
Database

Local Rational
Rose™ CASE

tool

Plug-
in IF

Figure 1. (a) Example of a dynamically extensible JEdit IDE and (b) its possible software architecture.

However, several factors can limit the suitability of an IDE
for use within a software production organisation.

Diversity : Software developers, through training and
diverse experience, will each have individual preferences
regarding the tools that suit them the best in their daily
work habits. In recent times this has started to be catered
for through IDE plug-in solutions where toolsets can be
composed by the developer using a framework for
integration. Many new Integrated Development
Environments (IDEs) and CASE tools, such as Visual
Studio™, Eclipse, Rational Rose™, Together™, Visio™
and JBuilder™, provide a large range of facilities for
developers, even if many are never used or are under-used.
In addition, many provide plug-in based extension
mechanisms allowing new facilities to be added by a
software component plug-in approach. Each user wanting a
new tool facility uses a plug-in to their IDE or CASE tool
to access the facility. This approach typically requires
copies of the new tool facility held on each developer’s PC
and sometimes very detailed knowledge of the IDE’s plug-
in approach to integrate it.

Figure 1 (a) shows an example of a typical IDE, JEdit
[13]. New plug-in facilities can be integrated within the
JEdit IDE by use of a plug-in manager, with each plug-in
requiring a wrapper interface implemented following a
standard convention. The architecture of such a tool is
illustrated in Figure 1 (b). The IDE “client” is extended by
plug-in components conforming to this interface standard
and which typically access tool facilities implemented in
the same language as the IDE (Java in the case of JEdit).
Some remote tool services e.g. a version control server,
may be accessed by a custom protocol with the plug-in
providing an adaptor to this. Third-party tools may be
accessed in the same manner. While a range of extensions
may be supported dynamically via plug-in components,
many kinds of tool extension typically require
modification of the tool itself e.g. collaborative editing,

tool editor enhancements, code generation and reverse
engineering support.

Such approaches to tool integration are limited in that
they require each version of an IDE to be extended,
sometimes manually, with copies of the plug-ins providing
the new tool facilities distributed. Despite the flexibility of
the plug-in solution, the plug-ins must be written
specifically for designated IDEs, promoting in some cases
IDE lock-in where, contrary to intentions, the choice of
plug-ins will dictate the preferred IDE.

Many tool integration approaches are not dynamic and
require tool modification or at the least advanced user
support for enhancement. As copies of plug-ins are
distributed developers may not be using the latest and best
versions of tool extensions. If a distributed extension isn’t
actually used it may waste space and still cost the
organisation for purchase and upgrade. Considerable
knowledge of a tool architecture is typically required to
find and deploy extensions.

Opportunistic vs. Mandated Practice : Within the

suite of tools employed by an organisation, some provide
best organisational gains through mandated use. These
tools include time logging, source control, project
management, change request maintenance. While the
business case for purchase of mandated tools is clear, the
costs associated with integration with IDEs is often
underestimated and will tend to lock-in a particular IDE,
thwarting the productivity through diversity approach
referred to above.

Tool use in development is not always mandated.
Opportunistic tool use can be common, where developers
use tools sporadically as a succinct service e.g. they supply
code or designs for processing and receive a report (which
is not recorded, stored or managed). The business case for
installation and/or upgrading of such facilities is not so
strong where tools are not regularly utilised, as usage is

unpredictable so committing to large numbers of software
licenses is not always warranted.

Process : In both cases where tools are used through

either personal preference or an orgnisational mandate, we
know that tool selection can affect and be influenced by an
organisation’s software development process. These
affects are not easy to measure as time spent using tools as
a part of process is not generally measured. In general, to
impinge upon an organisation’s day to day environment
with experiments that have real world consequences is a
questionable strategy. There is merit, however, in
monitoring usage of a range of different IDEs in
conjunction with a selection of tools. This provides
invaluable data that is not generally available to
organisations with respect to committing to tool purchase.
However, such monitoring is very difficult where tools and
plug-ins are all installed locally and where the plug-in
mechanisms don’t support such monitoring activities.

Licensing Policy : IDE vendors and standard tool

vendors alike offer single user trial licenses for short
periods in order for a user to evaluate the tool or IDE. This
evaluation is intended for the user to check basic usability
and to evaluate feature sets in order to decide whether to
purchase. Tool evaluation rarely involves the tool in high
risk work, as very few tool consumers will be comfortable
with the use of a tool as a dependent part of a development
system knowing that licensing will expire. The ability for a
range of developers to use a tool on a pay per use basis is
attractive to business as the business case for purchase
becomes clear over time and useful work is still facilitated.
A centrally co-ordinated service to facilitate the integration
of a range of business users with a range of tool-based
services and manage micropayment would serve to address
a tangible overhead in evaluation costs.

3. Related Work

A range of integration approaches for software tools
have been developed over many years [10, 18, 27]. Most
integration approaches tend to focus on supporting data
integration [8, 26], control integration [22, 23], user
interface integration [15, 22], and/or process integration [1,
2]. Many are not dynamic, requiring a toolset to be
manually extended by code or script development, and
typically require each environment to be extended rather
than using shared tool facilities. Dynamically extending
software engineering environments, i.e. extending a toolset
while it is in use, is an especially challenging task. Limited
work has been done in this area, generally focusing on
supporting a limited range of tool plug-ins or data-based
information exchanges between tools.

Data-oriented tool integration approaches have
included CASE tool data exchange [26], shared object-

oriented databases [8], special-purpose tool databases like
PCTE and active repositories [25, 17], and federated
systems [3]. The main disadvantages of these approaches
are lack of dynamic integration support and limitation to
data-oriented exchanges. User interface integration
techniques provide a common user interface metaphor e.g.
GUI wrappers [22], a common interface library [5], or
WWW [15], but often lack back-end integration support
for the tools [23]. Remote object-based integration
approaches include use of CORBA and related distributed
object technologies [8], software components [11, 12, 28],
and web services, particularly for workflow system
integration [3, 14, 20]. These approaches provide powerful
integration support, but often lack adequate user interface
and process integration support across the integrated tool
sets [18, 11, 23]. Process-based integration approaches
typically use either data integration or remote object
services to achieve process-based co-ordination of tool
usage [12, 1, 2, 3]. They often also achieve a limited
degree of user interface integration via the process co-
ordination tool interface e.g. shared to-do lists. Such
approaches to date have been limited by the degree of data
and control integration mechanisms provided by the tools
to integrate, resulting in data redundancy and inconsistency
and limited ability to invoke other tool facilities [1]. Meta-
tools are an alternative approach, where users can build
and tailor tools to their own needs dynamically [7, 9, 16].
However these approaches often take great effort and most
meta-tools lack integration support for existing third-party
tools.

We believe that Web Services could provide a
powerful integration technology for facilitating a variety of
IDE extensions within a software development
organisation, both for mandated tools and opportunistic
tool usage. Web service-based integration can support data
exchange (via XML documents), control-oriented co-
ordination (via SOAP messages), a degree of user interface
integration (via user interface synthesis by clients), and
process integration (via web service-based workflow
specification and enactment). Dynamic discovery of web
services during IDE usage supports incremental rather than
fixed integration mechanisms [20, 19]. Web services
support flexible tool integration using either data, control
or process-oriented facilities as appropriate, lack of
distributed tool installation and upgrading, tool usage
monitoring, and flexible (pay per use) licensing.

4. Overview of Our Approach

We wanted to investigate a new approach to supporting
dynamic software tool integration and extension using web
service component technologies. The aim of this work was
to allow an IDE or CASE tool to be dynamically extended
with new facilities while in use.

C V S S erver

JL in t

JR e facto r

R o se

1 .D eve lo p re m o te W S
co m p s fo r “to o le ts”

C V S W S IF

JL int W S IF

JR e f. W S IF

R o se W S IF

2 .A d vert ise a va ila b le to o le t W S
co m p s in U D D I reg ist r y

U D D I
R eg istry

5 .Integ rate req u ired to o le t
co m p s and U Is w ith JE d it -

3 .JE d it -W S c lie nt is su es
q u er y to reg ist ry

6 .Invo k e R e m o te to o let
co m p v ia W S inte r face

as req u ired 4 .S elec t to o le t W S co m p s
w ant to m ak e u se o f

U D D I
R eg istry

JE d it -W S C lie nt

W S P lu g - in
M a nag er

JE d it -W S C lie nt

W S P lu g - in
M a nag er

C V S W S IF JE d it-W S C lie nt

W S P lu g - in
M a nag er

W S IF s

C V S W S IF

JR e f. W S IF

JR e f. W S IF

R o se W S IF

JE d it-W S
C lie n t

W S IF s

C V S W S IF

C V S S erver

S O A P

C V S P ro to co l

Figure 2. Overview of our approach.

Wherever possible it would make use of remote
“toolet” facilities via web service component interfaces
rather than copy toolets locally. Web services provide a
remote object invocation protocol using standard internet
transport (HTTP) and representation (XML) technologies,
along with a remote server description and reflection
mechanism (Web Service Description Language, WSDL)
and registry system (Universal Discovery, Description and
Integration, UDDI) for dynamically locating remote
component interfaces [19].

Figure 2 shows how our approach works for our
extended JEdit-WS prototype IDE. Various tool extension
facilities are enabled for use by the development of web
service interfaces and WSDL descriptions (1). Examples
might include CVS (version control), JRefactor (code
refactoring tool), JLint (code quality assessment tool),
Rational Rose™ CASE tool interface (for code generation
and reverse engineering support), Instant Messaging
Service (for collaboration), and so on. These web service
interfaces are advertised in a UDDI registry (2), enabling a
client IDE application to locate them dynamically (3). The
user may be presented with options for remote toolets to
integrate into their IDE, or the IDE may use user
preferences to select from located toolet services
automatically (4). Software interfaces are synthesised to
enable communication with the remote toolet web service
and user interfaces synthesised for IDE user interaction
with the remote toolet (5). As required, the IDE invokes
the remote toolet via its web service interface, results being
returned and processed by the IDE (6).

5. Architecture

We developed a new JEdit plug-in for locating,
integrating and accessing remote toolets. The architecture
of our approach is illustrated in Figure 3. A user wishing to

make use of web service-based extensions to JEdit installs
our WS toolet plug-in (1). The WS toolet plug-in requests
available remote toolet services from one (or more) UDDI
registries (2), and the user selects which toolset services
they want to use.

 JEdit IDE

Plug-in Manager

WS Toolet Manager
Plug-in

JEdit File Editor
API

WS Toolet UI Panel

JRef. Client

CVS Client

JLint Client JEdit File
Manager API

UDDI
Registry

JRefactor
Toolset Service

JRefactor
Programme

(1)

(6)(5)

(4)

(2)

(7)

(8)

(9)

Local Files

Toolet files &
parameters

Toolet
results

(3)

(previously registered)

Figure 3. JEdit-WS software architecture.

This results in toolet client adaptors being initialised to
communicate with each remote toolset service. A remote
toolet service is interacted with by the user via a toolet
panel added to JEdit, with request parameters, message
text and/or selected files captured to be sent to the remote
toolet web service (3). The toolet client adaptor generates
SOAP message requests which are sent to the remote
toolet service (4). In this example, a request to the
JRefactor toolet service includes file(s) to refactor, sent in
the SOAP message. These files are stored by the remote
service host (5) and then the actual JRefactor programme
run over them (6). Results from the remote toolet service
are returned to the JEdit web service client (7).

(2)

(1)
(3)

Figure 4. JEdit-WS tool discovery and integration support.

Depending on the kind of toolet service, results may be
presented to the user in the toolet panel, in the JEdit editing
pane, or the WS toolet manager plug-in may manipulate
JEdit data structures e.g. open code files or local PC-held
files. In the case of the refactoring tool, a summary of the
refactoring is presented (8) and any affected JEdit open
files and local PC files updated (9). This approach is
suitable for other IDE and CASE tools with plug-in
architectures and open APIs, such as Eclipse.

6. Example Usage

In this section we illustrate some example web service-
based toolets we have developed for JEdit-WS and how
they are integrated and used within the JEdit-WS IDE.
Figure 4 (1) shows the interface to the WS toolet plug-in in
JEdit-WS. The user specifies a UDDI registry location and
this is queried to obtain a list of available toolet services.
These can be hosted on the developers own PC or on
remote servers. Details of each service can be viewed (2),
including the location of the toolet, the particular toolet
facilities available and the Web Service Description
Language (WSDL) interface description for the services.

After requesting a toolet web service be made available
within their JEdit-WS IDE, a user may access the service
via a tabbed panel made available by the toolet web service
manager plug-in (3). In this example, we have discovered
and integrated four toolet services: a code quality
assessment tool (JCodeLint), a code refactoring tool

(JRefactor), a version control tool (JEditCVS) and an
instant messaging tool (JICQChat). Note that there may be
more than one available toolet service providing each of
these kind of services. In this case the developer would
select the particular instance of the remote toolet service
that they wish their JEdit-WS IDE to use. Some discovered
toolet services may provide a web services protocol that is
incompatible with the one encoded in the web service
integration plug-in for JEdit-WS. In such a situation the
developer may search for a suitable adaptor service to
convert the JEdit-WS protocol into the toolet service
protocol.

Consider using the developer wanting to make use of
the discovered refactoring tool service from their JEdit-WS
IDE. This is illustrated in Figure 5. The refactoring tool
takes one or more Java source files specified by the JEdit-
WS user and runs the JRefactor tool over them,
determining a set of appropriate modifications to the
source files to achieve various code refactoring
improvements. To access this tool the user selects the
JRefactor item in the toolet control panel, specifies various
configuration parameters for the refactoring process, then
specifies file(s) to refactor (1). These files are uploaded to
the refactoring tool service where they are processed and
potentially modified (2). When finished, a report on the
refactorings done and the updated files are returned to the
JEdit-WS toolet client (3). Updated files are modified in
the JEdit editing buffers and on disk by using the JEdit
APIs.

(1)

(5)

(2)

(3)

(4)

Figure 5. Example of using the code refactoring and code quality assessment toolets.

To support these kinds of interaction with the
developer and JEdit, the web service integration plug-in
we developed for JEdit-WS provides basic capabilities to
interact with the JEdit environment for remote web
services. These include asking for toolet service
configuration parameters from the user, opening and
closing source code files, modifying source code files in
the JEdit edit buffers and on the local disk, and displaying
results of remote toolet service processing in a window.

Developer interaction with the CodeLint service is
similar. The CodeLint toolet is used to assess the quality of
Java code and requires one or more Java source code files
to process and generates a report, providing line numbers
and code quality assessment for the line. To invoke this
toolet service the developer selects the CodeLint tool
option from the JEdit-WS toolet control panel. They
specify one or more Java source code files, either being
edited in JEdit or on the local PC, to be assessed. The
specified source code file(s) are then uploaded to the
remote CodeLint toolet via a SOAP message. The files are
assessed by the CodeLint tool and the assessment reports
are collected and returned to the JEdit-WS client. The

report may be viewed as a text list from the toolet control
panel (4), and if the file is open in JEdit the relevant lines
of an assessed file are highlighted in the JEdit text editor
(5).

The JEditCVS toolet provides version control facilities
using a remote toolet web service that itself accesses a
shared CVS server. Figure 6 (1) shows the user interface to
the version control facility in JEdit-WS. As with the
refactoring and code assessment tools, the user can select
one or more files being edited within JEdit or stored
locally on their PC to check in to the version control tool.
They can also browse a list of files held by the CVS
version control tool for check out (2). SOAP messages are
sent between the JEdit-WS CVS client and the remote
CVS toolet service to check in and check out files, as well
as to obtain directory listings from the CVS server. Results
of version control operations are presented to the user
using the toolet control panel (3).

1

2

3

Figure 6. Example of using the version control toolet.

The JRefactor, CodeLint and CVS toolet interfaces in
JEdit-WS are all synthesized by the JEdit-WS web service
toolet plug-in from the available toolet web service
descriptions. Each toolet service has a description
providing the user with an overview of the service and how
to use it, options for invoking the service (including
general toolet options, toolet commands and command
parameters), and source and/or result files required by
and/or generated by the service. The JEdit-WS toolet
service panel generates Description/Parameters/Source
Files panel user interface for each service when the toolet
service is installed in JEdit-WS. As can be seen from the
example panel user interfaces in Figure 5 and Figure 6,
these can get quite complex.

The version control tool supports asynchronous
collaboration among multiple, distributed developers, who
can share files in the CVS repository. In addition, we
wanted to provide JEdit-WS users with further support for
collaboration, including context-aware messaging and note
annotations. We decided to use an existing instant
messaging tool server, ICQ, accessed by a remote toolet
web service interface. The user logs onto the instant
messaging server via the toolet control panel, as shown in
Figure 7. They can send and receive messages as in
conventional instant messaging tools. They can also have
the message history stored by the remote messaging toolet
and associated with a file currently open in JEdit-WS, with
the message history forming a persistent discussion log
associated with this file. This facility can also be used as a
“note annotation” facility, where one developer adds a text

message against a JEdit file and later on another users sees
and reads this message, potentially replying to it.

Message
History

Standard
Messaging

Authentication

Figure 7. Example of using the text messaging toolet.

7. Design and Implementation

For our proof-of-concept JEdit-WS prototype
illustrated in the previous section, we chose to implement a
remote web service that takes SOAP messages for multiple
toolets and distributes them to each of our web service-
enabled toolet services. This is illustrated in Figure 8.

Deserialize and
process Input
parameters

ServerClient: jEdit

Web Service User
Interface

Validate and
serialize input

CVSCode
Lint

JRef
actor

IM
Invoke Services

Scheduler

SOAP
HTTP

Process and
serialize output

Waiting queue

Deserialize Output
and display

s
t
u
b

t
I
e
s

Results

Web Service
invocation

Figure 8. Our prototype JEdit-WS design.

Our JEdit-WS toolet manager plug-in discovers and

integrates available services and constructs a basic user
interface for each, consisting of a set of tabbed panels
including toolet service description , configuration
parameters, files to upload/download and results
presentation. Our remote service manager behaves as a
web service message router, receiving SOAP messages
from the JEdit-WS toolet client and scheduling these for
processing by our toolet web services. We chose to use this
approach to enable large numbers of requests from
multiple JEdit-WS users to be processed by multiple
service threads. When a toolet web service is invoked by
JEdit-WS, a SOAP message including configuration
parameters, service request data and possibly one or more
Java files is sent to the server, the request scheduled and
then data deserialised and the appropriate service invoked.
Results are returned via SOAP messages, then deserialised
and processed by the JEdit-WS client. Some results are
simply presented in a dialogue, some result in JEdit file
updates and some in JEdit editor or user interface
modifications.

We used a standard release version of JEdit enhanced
with a single web service toolet control manager plug-in,
using the standard JEdit plug-in API. This locates available
toolet web services using a standard UDDI registry and
query and allows the user to choose available services for
integration. We register all toolet services in the UDDI
registry, organising them by simple IDE service categories.
WSDL descriptions returned from the registry are used by
the JEdit-WS client to assemble a basic adaptor to the
remote toolet, including configuring the toolet control
panel user interface for the service. Some toolets require
update of JEdit IDE information, including highlighting
parts of files, updating JEdit file buffers and locally stored
files, and displaying chat message dialogue and contents.
We used the standard JEdit APIs to achieve these, avoiding

code changes to JEdit itself. One challenging
implementation issue was encoding Java files in SOAP
messages so that invalid control characters didn’t affect
message deserialisation. If a remote service invocation
fails the JEdit-WS client reports this to the user and can
either retry requests or attempt to locate and use another
instance of the remote toolet service.

8. Evaluation

We carried out three evaluations of our JEdit-WS
prototype: a usability survey with several experienced Java
IDE users, a performance analysis of the remote services
under heavy loading, and a qualitative assessment of the
JEdit-WS extensions against alternative approaches to
providing these kinds of dynamic IDE extensions.

We surveyed nine experienced Java IDE users, five
from the local software industry and four academic staff
and post-graduate students. We set development tasks that
necessitated the users finding and incorporating these web
service IDE extensions. They were asked to use our JEdit-
WS IDE to (i) locate a service; (ii) request incorporation of
the service; and (iii) make use of the incorporated service
in JEdit-WS. They then commented on the suitability of
JEdit-WS and its supported web service toolet extensions.

Results of our usability study showed that on the whole
experienced Java developers found the approach to
dynamically extending JEdit via web service-based toolets
to be a viable approach to the problem. The CVS and
instant messaging tools were found to be well-integrated
and provided an appropriate range of tool facilities and
good user interfaces to developers. Some CVS options
were found to be difficult to understand and use by
developers unfamiliar with CVS and its approach to
version control. The CodeLint code quality assessment tool
was found to be useful and well-integrated, though most
developers surveyed felt the results could be better
presented within JEdit code editing windows. Users
experience with the refactoring tool was disappointing,
with comments including the need for better control over
the tool operations and improvements in presenting results
to users.

One area of concern with current web service
technologies is their likely performance under heavy
loading. To assess this for JEdit-WS we developed a
performance test suite that made heavy requests to each of
the web services, sending a receiving files and reports a
large number of times. We measured response time of the
services with up to ten concurrent “users” (concurrent
threads).

Performance analysis of the toolet web services showed
that even our prototype toolet web services could service a
moderately large user base. The CodeLint and refactoring
tools could easily be run using a large number of multiple
threads, while the instant messaging and version control
toolets were limited by throughput of their respective third-

party servers. Nevertheless, all of the web service-based
tools provided quick (less than 5 second) response to users
even when up to ten concurrent requests for each was
submitted. It is unclear how the web service-based toolets
will perform if large numbers of files have to be exchanged
for each interaction e.g. large code base reverse
engineering. We think that it is likely they are the wrong
solution for such integration problems and a local
component is preferable.

Finally, we used a set of qualitative evaluation criteria
to assess how well our prototype JEdit-WS IDE satisfied
the requirements outlined in Section 2 of this paper. The
key criteria we used were:
• Flexibility of the integration mechanism i.e. how wide

a range of remote toolet services does it support
integration with

• Support for dynamic integration i.e. how easy to find
and add new toolet services while the tool is in use

• Sharing of toolet services i.e. how well supported is
sharing of a centralised service to reduce need to copy
the service and licensing the service

• Development effort for 3rd party integration i.e. how
difficult is it to integrate 3rd party, existing toolet
services using the JEdit-WS approach

• Usability of the integrated service i.e. how effective
and efficient is the generated toolet service user
interface in the JEdit-WS IDE

Our JEdit-WS approach allows a wide range of

software tool facilities to be dynamically discovered and
integrated within an open source, third-party IDE, using
the IDE’s existing APIs and plug-in management. This
was demonstrated by the range of services illustrated in
this paper. Remote services can include parameter capture
from the JEdit user, JEdit open file and local PC file
upload and download, file modification, text message
exchange and toolet processing report text. Wrapping
existing services was generally straightforward to date,
particularly if they provide command-line based control
interfaces and read and write files. Our web service toolet
control panel provides the user interaction support with
remote services It synthesizes a user interface within JEdit-
WS to support invocation of each remote toolet service. It
makes limited use of the existing JEdit APIs to modify
open file edit buffers, locally stored files and to highlight
open file contents where these are appropriate for the
remote toolet web service. In general services to integrate
with our approach need to consume one or more files and
produce a report or updated files back to JEdit-WS.
However, the ICQ-style chat service shows other kinds of
support services can be effectively integrated.

The main weaknesses in our current approach and
prototype relate to remote tool parameter setting and
understanding by users, and integration of remote tool
service input and output into the existing JEdit user

interfaces. The version control tool has complex
configuration parameters that are hard to understand and
use for developers unfamiliar with the tool. The refactoring
tool is difficult to both configure and understand its
refactoring operations using the current approach of access
only via the toolet control panel. The messaging tool user
interface could be more tightly integrated with existing
JEdit interfaces, such as showing messages inside relevant
JEdit code editing windows and buttons to send and view
messages via the JEdit toolbar. Our approach is not
suitable for all kinds of dynamic IDE and CASE tool
extensions. It seems to best suit ones where collaborative
information usage is needed, such as versioning,
messaging, tool integration, and sharing of information,
such as test cases, design patterns and so on. Plug-ins that
extend the JEdit environment’s local editing and user
interface facilities e.g. providing different code viewers,
might not suit this approach.

A number of promising current and future research
directions exist. The main one is improving the user
interface integration of remote toolet services within the
JEdit environment. We believe this requires encoding more
information about a remote service’s user interface needs,
both input to and output from the tool, within its WSDL
description, and using this to adapt existing JEdit tool
interfaces where appropriate. We have used this approach
successful in earlier component-based user interface
research but not yet with web service-based components
[12]. Improved help for users, such as for using
configuration parameters and tool output, and semi-
automatic use of remote toolet services, also appear to be
important future extensions. We need to better support
automatic adaptation of JEdit-WS to remote services. For
example, if the tool discovers two version control toolet
services e.g. CVS and MS Visual SourceSafe™, and these
use a different version control service protocol to what the
JEdit-WS client adaptor expects. We need JEdit-WS to
either discover and integrate an adaptor to translate its
protocol to/from the incompatible one, or even to
synthesise such an adaptor on the fly. A wide range of
other remote toolet services could be developed with this
approach. We are currently adding toolet services for a
remote JUnit-based test case library manager, basic design
pattern management, code generator and CASE tool
reverse engineering support. We would like to add further
remote code analysis toolets e.g. dependency analysis. We
would also like to try and use our toolset services with
other extensible Java IDEs, such as Eclipse® and
NetBeans®. Once an integrated environment is functioning
fully as described above the research progresses to that of
demonstrating the real world possibilities in terms of
allowing organisations to use a web service driven
environment to evaluate new tools, derive useful
measurement from usage and provide timely information

regarding usage with regard to remote service (pay per
use) vs. permanent licensing.

9. Summary

We have developed a proof-of-concept IDE extension
mechanism using web services components. This approach
allows an IDE to discover remote “toolet” web services
and to integrate and interact with these services from
within an open source IDE. We extended the JEdit IDE
with a web service toolet plug-in manager, providing toolet
service discover, integration, invocation and basic user
interface facilities. Some toolets make limited use of JEdit
APIs to display results or capture information (Java code)
for remote toolet processing. Evaluation of the usability,
performance and requirements satisfaction of our prototype
toolet services and JEdit-WS IDE have demonstrated the
approach is a promising one for remote component-based
extension of IDEs and CASE tools.

Acknowledgements

We gratefully acknowledge the support of the Foundation
for Research, Science and Technology.

References

1. Bandinelli, S., Di Nitto, E., and Fuggetta, A. Supporting
cooperation in the SPADE-1 environment, IEEE
Transactions on Software Engineering, 22 (12), 1996.

2. Barnes, A. and Gray, J. Workflow products as a tool
construction technology for process-centred SEEs, In
Proceedings of 2000 Conference on Software - Methods and
Tools, Australia, Nov 2000, IEEE CS Press.

3. Bitcheva, J., Perrin, O. and Godart, C. Cooperative Process
Coordination, In Proceedings of the 1st Int. Conference on
Web Services, Las Vegas, USA, June 23-26 2003.

4. Bounab, M., Godart, C. Tool integration in distributed
environments: an experience report in a manufacturing
framework. Journal of Systems Integration, 8 (1), March
1998, Kluwer Academic Publishers, pp.31-51.

5. Dewan, P. and Choudhary, R. Coupling the User-Interfaces
of a Multiuser Program, ACM Transactions on Computer
Human Interaction, 2 (1), 1995, pp. 1-39.

6. Dossick, S.E., Kaiser, G.E. CHIME: A Metadata-Based
Distributed Software Development Environment, In
Proceedings of the 1999 International Conference on the
Foundations of Software Engineering, ACM, pp. 464-475.

7. Ebert, J., Suttenbach, R., and Uhe, I., Meta-CASE in
practice: A Case for KOGGE, In Proceedings of the 9th
International Conference on Advanced Information Systems
Engineering, LNCS 1250, Springer-Verlag, Barcelona,
Spain, 1997, pp. 203-216.

8. Emmerich, W., Arlow, J., Madec, J., and Phoenix., M., Tool
Construction for the British Airways SEE with the O2
ODBMS, Theory and Practice of Object Systems, 3 (3), 213-
231, 1997.

9. Ferguson, R.I., Parrington, N.F., Dunne, P. Hardy, C.,
Archibald, J.M. and Thompson, J.B. MetaMOOSE - an

Object-Oriented Framework for the construction of CASE
tools, Information and Software Technology 42(2) Jan 2000.

10. Gray, .J.P., Liu, A. and Scott, L. Issues in software
engineering tool construction, Information and Software
Technology, 42 (2), Elsevier, 73-77.

11. Grundy, J.C., Hosking, J.G., and Mugridge, W.B.
Constructing component-based software engineering
environments: issues and experiences, Information and
Software Technology, 42 (2), January 2000, Elsevier.

12. Grundy, J.C. and Hosking, J.G. Engineering plug-in
software components to support collaborative work,
Software – Practice and Experience, vol. 32, Wiley, pp.
983-1013, 2002.

13. JEdit Homepage, http://www.jedit.org/.
14. Kafeza, E., Chiu, D. and Cheung, S.C. Alert-Driven Process

Integration in a Web Services Environment, In Proceedings
of the 1st International Conference on Web Services, Las
Vegas, USA, June 23-26 2003.

15. Kaiser, G.E. Dossick, S.E., Jiang, W., Yang, J.J., Ye, S.X.
WWW-Based Collaboration Environments with Distributed
Tool Services, World Wide Web, vol. 1 (1) 1998, pp. 3-25.

16. Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A Fully
configurable Multi-User and Multi-Tool CASE
Environment, In Proceedings of CAiSE'96, Lecture Notes in
Computer Science 1080, Springer-Verlag, Heraklion, Crete,
Greece, May 1996, pp. 1-21.

17. Kelter, U., Monecke, M. and Platz, D. Constructing
Distributed SDEs using an Active Repository, in
Proceedings of the 1st International Symposium on
Constructing Software Engineering Tools, Los Angeles, 17-
18 May 1999, University of South Australia, pp. 149-157.

18. Meyers, S. Difficulties in Integrating Multi-view Editing
Environments, IEEE Software, 8 (1), 1991, pp. 49-57.

19. Newcomer, E. Understanding Web Services: XML, WSDL,
SOAP, and UDDI, Addison-Wesley, June 2002.

20. Pokraev, S., Koolwaaij, J. and Wibbels, M. Extending UDDI
with Context-Aware Features Based on Semantic Service
Descriptions, Proceedings of the 1st International Conference
on Web Services, Las Vegas, USA, June 23-26 2003.

21. Quatrani, T. Visual Modeling With Rational Rose™ and
Uml, Addison-Wesley, 1998.

22. Reiss, S.P. Connecting Tools Using Message Passing in the
Field Environment, IEEE Software, 7 (7), 1990, pp. 57-66.

23. Reiss SP. The Desert environment. ACM Transactions on
Software Engineering & Methodology, 8 (4), Oct. 1999,
pp.297-342.

24. Reps, T. and Teitelbaum, T. Language Processing in
Program Editors, Computer, 20 (11), 1987, pp. 29-40.

25. Thomas I. PCTE interfaces: supporting tools in software-
engineering environments. IEEE Software, 6 (6), Nov. 1989,
pp.15-23.

26. Thompson AK. CASE data integration: the emerging
international standards. ICL Technical Journal, 8 (1), May
1992, pp.54-66.

27. Wasserman, A. Tool Integration in Software Engineering
Environments, in Software Engineering Environments:
International Workshop on Environments, Berlin, 1990,
Springer-Verlag.

28. Wilcox et al. A CORBA-Oriented Approach to
Heterogeneous Tool Integation; OPHELIA, FSE/SIGSOFT
Workshop on Tool-Integration in System Development, Sept
1-2, 2003, Helsinki, Finland.

