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Abstract

Software maintenance and evolution are inevitable ac-
tivities since almost all software that is useful and suc-
cessful stimulates user-generated requests for change and
improvements. One of the most critical problems in soft-
ware maintenance and evolution is to maintain consistency
between software artefacts by propagating changes cor-
rectly. Although many approaches have been proposed,
automated change propagation is still a significant tech-
nical challenge in software engineering. In this paper
we present a novel, agent-oriented approach to deal with
change propagation in evolving software systems that are
developed using the Prometheus methodology. A meta-
model with a set of the Object Constraint Language (OCL)
rules forms the basis of the proposed framework. The un-
derlying change propagation mechanism of our framework
is based on the well-known Belief-Desire-Intention (BDI)
agent architecture. Traceability information and design
heuristics are also incorporated into the framework to fa-
cilitate the change propagation process.

1. Introduction

Software maintenance and evolution is an important and
lengthy phase in the software life-cycle which can account
for as much as two-thirds of the total software develop-
ment costs [34, page 449]. Software maintenance activi-
ties are usually classified as adaptive maintenance (chang-
ing the system in response to changes in its environment
so it continues to function), corrective maintenance (fixing
errors), and perfective maintenance (changing the system’s
functionality to meet changing needs). An early study [17]
suggested that a significant proportion of the maintenance
effort is concerned with perfective maintenance. The im-
portance of software maintenance and evolution has been
further emphasised with the emerging popularity of incre-
mental development and release approaches to software de-

velopment.
A critical issue in software evolution is how to propagate

changes so that consistency is maintained between differ-
ent artefacts. When some part of the software is altered,
other parts of the system may need to change as well. The
identification of these parts and the changes that need to
be made to them is a very difficult task. Although impact
analysis techniques [1] address this problem to a certain ex-
tent, these approaches are still labour-intensive manual so-
lutions, and managing inconsistencies in software models
remains a challenging problem [22, 31]. In particular, there
is a need for automated support for change propagation.

Much of the work that has been done in change propaga-
tion has been addressing the issue at the code level [11, 26,
27]. Recently, however, as the importance of models in the
software development process has been better recognised,
more work has aimed at dealing with changes at the model
level [15, 16, 31]. The work we present here deals with
propagating changes through agent oriented design models.
As far as we are aware, no work has yet been done in this
area. The models we use are those based on the Prometheus
design methodology [23], which is a detailed, full life-cycle
methodology, providing a range of different models for de-
signing agent based systems.

We also use an agent-oriented approach to deal with
the change propagation issue. The framework we present
is based on the well-known Belief Desire Intention (BDI)
agent architecture [28] in conjunction with the use of Ob-
ject Constraint Language (OCL) [29] and traceability. A
software agent [36] is a piece of software which is situated
in an environment, autonomous (i.e. acts on its own), social
(interacts with other similar entities), and which appropri-
ately balances being reactive (responding to changes in its
environment) with being proactive (working to achieve its
goals).

The particular agent framework that we use is a Belief-
Desire-Intention (BDI) framework. The BDI family of
agent theories, languages and systems are inspired by the
philosophical work of Bratman [5] about how humans do
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resource bounded practical reasoning. These systems use
the concepts of beliefs, desires, intentions, and predefined
hierarchical plans or “recipes”. The BDI architecture is re-
alised in a number of agent platforms (e.g. see [4]), and
provides a flexible, robust approach for our change propa-
gation system.

The work we describe in this paper is closely related to
work on rule-based engines to detect and resolve inconsis-
tencies [12, 30, 35]. In these approaches, rules are defined in
terms of constraints and actions in such a way that if a con-
straint is violated, one or more actions will be performed. In
[30] such rules then form the knowledge base of an expert
system which gives advice to users to repair inconsistencies
in their working models. In [12, 35], the event-driven con-
sistency check approaches make an improvement in terms
of efficiency by incrementally re-validating only the context
of the last changes and not the whole model.

Our framework also uses an event-driven mechanism,
where events trigger the appropriate BDI plans to resolve
the inconsistency. The BDI architecture allows for more
flexibility than the rule based approaches as new or alterna-
tive ways of resolving an inconsistency can readily be added
via additional plans, without changing the previous struc-
ture. Additionally, the hierarchical relationship between
plans which consist of actions to repair inconsistencies al-
lows for a natural representation of rules that can cascade,
i.e. where fixing an inconsistency by performing an action
can cause further inconsistencies requiring further action
(see 4.2 for details). Finally, unlike the expert system ap-
proach, our framework takes advantage of the situatedness
of agents to directly perform changes to the model rather
than just giving advice to users.

In the next section we briefly introduce the Prometheus
methodology. We then describe a meta-model for
Prometheus and some example well-formedness con-
straints. Section 4 then describes our change propagation
framework, followed by an example in section 5. We con-
clude with some comments on related work, and discussion
of future directions.

2. The Prometheus methodology

Prometheus1 is a prominent agent-oriented software en-
gineering methodology which has been used and developed
over a number of years. The methodology is complete, de-
scribed in considerable detail, and has tool support2. The
description in this paper is necessarily extremely brief, and
for further details we refer the reader to [23]

1Prometheus was the wisest Titan. His name means “forethought” and
he was able to foretell the future. Prometheus is known as the protector
and benefactor of man. He gave mankind a number of gifts including fire.
(www.greekmythology.com)

2http://www.cs.rmit.edu.au/agents/pdt

The Prometheus methodology consists of three phases:
system specification, architectural design and detailed de-
sign. In this section, we describe them briefly with the main
focus being on the artefacts that are produced at each stage.

2.1. System Specification

The system specification phase involves: identifying ac-
tors and their interaction with the system; developing sce-
narios illustrating the system’s operation; identifying sys-
tem goals and sub-goals; and grouping goals into the basic
roles of the system.

The concept of actors in Prometheus is similar to that of
object-oriented analysis. Actors are any stakeholders who
will interact with the system to achieve some goals, and can
be humans or other software systems. For each actor, per-
cepts which are inputs from the actor to the agent system
are identified. In addition, outputs from the system to ac-
tors (actions) are identified. A stakeholder diagram3 is used
in Prometheus to describe the relationship between actors,
percepts, actions and scenarios.

Similar to identifying use cases in the object-oriented ap-
proach, the interaction between each actor and the system is
described using scenarios in Prometheus. Each interaction
scenario is described in a structured form which includes a
sequence of steps, where each step can be an action being
performed by a role, a percept being received by a role, a
goal being achieved by a role, or a sub-scenario4.

Figure 1. Example of a goal overview diagram
for a stock trading management system

The system goals are identified on the basis of the initial
scenarios as described above. Further goals are then elicited
using abstraction and refinement techniques, as well as by
developing scenario steps. This results in a goal hierarchy
which is represented in a goal overview diagram. Figure 1
shows an example goal overview diagram for a stock man-
agement system where the goal Make Profit has two sub-
goals: Manage Stock and Manage Funds.

3This is being changed to an analysis overview diagram for greater flex-
ibility.

4There is also an “other” step type which can be used to represent mis-
cellaneous things such as waiting for a response.
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The final step of the system specification phase involves
identifying roles. Roles are obtained by grouping similar
goals, and also including the percepts and actions associated
with the included goals. A role diagram is used to capture
the roles, and their percepts, actions and goals.

2.2. Architectural Design

The major purpose of the architectural design phase in
Prometheus is to identify the agent types within the agent
system and the interactions between these agent types. The
main steps of this phase are: determining what agent types
will be implemented; developing the interaction diagrams
and interaction protocols that describe the dynamic behav-
iour of the system; and developing the system overview di-
agram which captures the system’s overall (static) structure.

Agent types are derived as groups of one or more roles.
The choice of grouping is guided by considerations of cou-
pling and cohesion which are identified with the aid of the
data coupling diagram and agent acquaintance diagram.

Once the agent types have been determined it is possi-
ble to start defining the interactions between them using in-
teraction protocols. These protocols capture the dynamic
behaviour of the system by defining the intended valid se-
quences of messages between agents. The interaction proto-
cols are developed from interaction diagrams which in turn
are based on the scenarios developed in the system specifi-
cation phase. Interaction protocols can be captured using a
range of possible notations. The Prometheus methodology
does not prescribe a particular notation, but the Agent UML
(AUML5) notation is often used.

Figure 2. System overview diagram for a
stock trading management system

The system’s (static) structure is captured in a system
overview diagram which gives the software engineers a gen-
eral picture of how the system as a whole is structured. It
shows the agent types, the communication links between

5http://www.auml.org

them, and data. It also shows the system’s boundary and its
environment (actions, percepts, and external data). For ex-
ample, figure 2 shows the system overview diagram for the
stock management system. It shows, amongst other things,
that the Trader and Funds Manager agent types commu-
nicate following the Query Current Stock Values protocol;
that the End Of Date percept is handled by the Trader agent
type; and that the Trader agent type performs the actions of
Buy Stock and Sell Stock.

2.3. Detailed Design

The internal structure of each agent and how it will ac-
complish its goals within the overall system are addressed
in this phase. Specifying agent internals in Prometheus is a
process of progressive refinement, including: defining and
developing capabilities (modules within agents) and their
relationships; developing process diagrams depicting the in-
ternal processing of each agent related to the protocol spec-
ifications; and developing plans, events, and data and their
relationship. Most of the Prometheus methodology does not
assume any particular agent architecture. However, the low-
est layer of plans and events does assume that the target
agent architecture is plan-based (which is the case for BDI
agent platforms). This could easily be exchanged for an al-
ternative architecture if desired, but a detailed design which
is close to code, must make some assumptions about the
implementation architecture. Agent overview diagrams and
capability overview diagrams capture the structure of the
capabilities, sub-capabilities, plans, events and data within
the agent.

3. The Prometheus meta-model and well-
formedness constraints

A step towards the automation of change propagation
and consistency maintenance between those Prometheus
artefacts described earlier is formalising the relationships
between all Prometheus entities (goals, agents, roles, per-
cepts, actions, etc.). We do this by developing a meta-model
for Prometheus and identifying well-formedness constraints
for this model.

3.1. Prometheus meta-model

As described in section 2, following the Prometheus
methodology produces a range of artefacts at different
stages of the software development lifecycle. These arte-
facts form a semantically consistent abstraction of an agent
system to be built. Each artefact represents a different as-
pect or abstraction level of the underlying system and can
be seen as a “view” on the full underlying model. Each
view depicts various associations between the Prometheus
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concepts or entities, such as actors, goals, agents, roles,
percepts, actions, etc. Many of the entities may appear in
different views. For instance, the same percept entity can
appear in the stakeholders diagram, a scenario descriptor,
the role diagram, the system overview diagram, an agent
overview diagram and a capability overview diagram. In
each of these views, the percept has associations with other
entities. This repetition of entities across different views
induces dependencies among them.

Figure 3. Prometheus meta-model (Part 1 -
System Specification)

Figures 3 and 4 are a UML representation of the meta-
model we have developed6. They summarize the structure
of the underlying model and all the specified relations be-
tween entities. Figure 3 depicts entities described in the
System Specification phase, while figure 4 depicts those de-
scribed in the design phases. There are two types of goals:
abstract goals and concrete goals. Concrete goals have no
children (sub-goals) while abstract goals can have children.
A scenario consists of a sequence of steps which are as-
sociated with corresponding entities such as goal steps and
goals, action steps and actions, etc. An agent consists of
several capabilities or plans and each capability contains
some plans and/or sub-capabilities. Note that the relation-
ship between agents and plans is constrained to be transi-
tive: if an agent has a capability, and that capability has
some plans, then that agent is deemed to also have these
plans. A plan sends and receives messages as well as per-
forms some actions which may include accessing data to

6The union of the two figures is the meta-model. We break it into two
figures for readability. For association ends that do not have a multiplicity,
it should be interpreted that their multiplicity is zero or many (0..*).

handle a percept or to achieve some goals. As a result,
agents and capabilities also have these associations with
goals, percepts, actions, messages, and data7. There are
two types of messages in Prometheus: internal messages
posted within an agent to trigger other plans, and external
messages exchanged between agents. Interaction protocols
describe the patterns of messages between agents (i.e. ex-
ternal messages).

Figure 4. Prometheus meta-model (Part 2 -
Design)

3.2. Model well-formedness constraints

The meta-model is not expressive enough to formally de-
scribe all constraints and relationships between Prometheus
entities. For instance, it is difficult for the meta-model to
express the constraint that the plan being triggered by a
percept should belong to the agent that is responsible for
handling the percept. UML models have limited expres-
siveness, which is also a common issue for object-oriented
development using UML. A solution that has been widely
used is to extend the UML meta-model with the Object
Constraints Language (OCL) [29]. OCL is used to specify
invariants, pre-conditions, post-conditions, and other kinds
of constraints imposed on objects in UML models. As
a declarative language, OCL’s expressions do not specify
any action that changes the state of the model. One of the
strengths of OCL is that it is carefully designed to be both
formal and simple.

We have also adopted OCL to specify additional con-
straints on the Prometheus meta-model. Each node in the

7In figure 4, associations marked with an ‘A∗’ are between agent, ca-
pability, and plan and goal, percept, action, data, and message. We group
and represent them as a single association for readability.
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meta-model is annotated with a set of OCL constraints. For
example, figure 5 shows constraints that are applied to the
ConcreteGoal node (constraints 1-6) and constraints that
are applied to the Plan node (constraints 7 and 8).

In the OCL notation “self” denotes the context node to
which the constraints have been attached and an access pat-
tern such as “self.achieverRole” indicates the result of fol-
lowing the association labelled “achieverRole”, which is, in
this case – rule (1), a collection of roles to which the con-
crete goal (context node) is allocated. OCL also denotes op-
erations on collections such as “size” returning the number
of elements in the collection, and “forAll” specifying that a
certain condition must hold for all elements of a collection.
For detailed information on OCL see [29].

context ConcreteGoal inv:
self.achieverRole→size ≥ 1 (1)
self.agent→size ≥ 1 (2)
self.plan→size ≥ 1 (3)
self.agent.role→includesAll( self.achieverRole ) (4)
self.plan→forAll( pl:Plan |

self.agent→exists( a:Agent |
pl.agent→includes(a) ) ) (5)

self.capability→size ≥ 1 implies
self.capability→forAll( c:Capability |

self.agent→exists( a:Agent |
a.capability→includes(c) ) )

and self.plan.capability→includesAll(
self.capability ) (6)

context Plan inv:
self.agent→size ≥ 1 (7)
self.capability→size ≥ 1 implies

self.agent→includesAll( self.capability.agent ) (8)

Figure 5. Constraints on concrete goals (1-6)
and on plans (7-8)

Rule (1) means that each concrete goal should be allo-
cated to at least one role. Similarly, rules (2) and (3) spec-
ify that each concrete goal should be assigned to at least
one agent and one plan respectively. Rule (4) says if a role
is assigned to achieve a goal then there exists at least one
agent which achieves the goal and plays that role. Rule
(5) means any plan that achieves a goal should belong to
at least one of the agents that aim to accomplish that goal.
Finally, rule (6) means if a goal is allocated to some capa-
bilities then some agents achieving that goal should contain
these capabilities and there should exist some plans in these
capabilities which handle that goal. Constraints similar to
these have been developed for each of the entities within the
meta-model, and provide a mechanism for checking well-
formedness of a full model.

4. A change propagation framework

In this section we first explain why Prometheus is a
multi-view modelling methodology which can be based on
the single model principle. We also present a classification
of evolution actions. We then describe the major component
of our framework which is the underlying mechanism to de-
tect consistency violation and to resolve inconsistencies by
propagating changes.

4.1. Multi-view development and evolution

As described in section 3.1, Prometheus promotes a
multi-view development process by having views of dif-
ferent aspects and at different development phases. The
different views and artefacts are based on a common and
single model, as described by [24]. Consequently we rely
on a Model View Controller model [9] to consistently up-
date views when the model is changed. In particular, as
registered views are updated, this causes changes to the un-
derlying model. All views then get data from this model
to update themselves to reflect the new model. Conse-
quently, the main issue we address in this paper is to keep
the Prometheus model well-formed as evolution actions are
performed on the model. In doing so, changes should be
propagated from one entity or relation to another. Our main
goal is to assist the software engineer in making changes by
automating the change propagation mechanism as much as
possible.

The first step towards this goal is to understand the types
of evolution and how they affect the Prometheus model. For
this purpose, we have adapted an evolution model described
in [18] which classifies evolution actions into four types:
addition of entities (goal, role, agent, etc.) to the model;
removal of entities from the model; connection of entities
with relationships (i.e. adding relationships); and discon-
nection, i.e. removal of relationships between model ele-
ments.

The evolution actions modify model elements which re-
sult in a change from the current model to a new one. In
the following section we describe the mechanism by which
evolution actions are propagated from one model element
to another model element.

4.2. A BDI change propagation engine

We assume that we start the change process with a
Prometheus model which is well formed according to the
meta-model, and the constraints as described in section 3.
When a change (i.e. addition, removal, connection or dis-
connection) is made to the model, the constraints can be vi-
olated, resulting in inconsistencies in the model. The initial
change is usually called the primary change. In practice,

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06) 
1530-0803/06 $20.00 © 2006 IEEE 



software engineers have to make a lot of additional changes
to reintroduce consistency into the model and preserve the
well-formedness constraints. The process of making further
changes is usually called change propagation. As this is a
labour-intensive process, it is advantageous if we can auto-
mate this process as much as possible.

We have adopted the well-known Belief-Desire-
Intention (BDI) architecture to represent and implement the
underlying change propagation engine. A BDI agent has a
collection of plans which are triggered by events or goals.
Each plan defines what triggers it, under what conditions
it is applicable, and a plan body: a sequence8 of steps that
are performed. The plan body can contain sub-goals which
trigger further plans. Our BDI change propagation system
has the main goal of maintaining the model consistency by
resolving constraint violations as changes are made to the
model. The belief component of the BDI system contains a
representation of the Prometheus model. In addition, trace-
ability information such as reasons for changes, and design
decisions can be stored.

Figure 6. BDI change propagation model

Figure 6 depicts what happens when an evolution action
takes place. Each modification made to the model will gen-
erate an event called “Evolution Action Event”. Currently,
our framework deals with four basic types of event corre-
sponding to the four evolution types described in section
4.1: “addition event”, “removal event”, “connection event”
and “disconnection event”. Each event carries some in-
formation such as the entity type, its ID, etc. For exam-
ple, an “addition” event resulting from adding a goal would
carry information about which entity type has been added
(namely a goal), and which entity was added (namely the
entity ID, e.g. “Print stock portfolio”).

When an evolution action event is generated, a corre-
sponding plan (called “Evolution Action Plan”) is triggered
to handle that event. Basically, this plan first identifies the
entity or relation being modified based on information car-
ried with the event. After that, it checks all the constraints

8Some agent platforms generalise this to allow more control structures
such as loops, conditionals etc.

associated with this entity node one by one. As discussed
in [12, 35] an incremental validation approach is more ef-
ficient than other similar rule-based approaches since we
only revalidate the context of the last change, instead of the
whole model. If any of the constraints is violated, the plan
will generate a “Constraint Violation Event”. Below is an
example of a plan which is triggered by the event of adding
a goal. Note that there are dependencies between the con-
straints: for example, it does not make sense to check rule
(4) (figure 5) – which is concerned with the agent and roles
that are associated with the goal – before the goal is actually
assigned to a role and to an agent (rules (1) and (2)). More
generally, rules that require the existence of related entities
should be checked (and enforced) before rules that check
for conditions involving these entities.

Plan: Goal addition
Triggering event: Addition
Context condition: Addition type is goal
Plan body:

1. Check constraints associated with a goal from (1) to
(6) (see figure 5 for details of these rules).

2. If a rule is violated, generate a “Goal violation” event
(see the description of this type of event below) to
address the violation, then go back to step (1).

3. If all constraints are valid, the new model is
consistent. No further action should be taken.

Model modification may result in inconsistencies in the
form of constraint violations. When such a violation occurs,
we generate an event (called “Constraint Violation Event”)
in our BDI system. For example, a “Goal violation” event
is generated by the plan “Goal addition” when one of the
constraints associated with the goal is invalid. This type of
event may carry information that is needed to make changes
so that the constraint becomes valid again. For example,
a goal violation event would carry information regarding
whether an association between the new goal and a role, an
agent, or a plan is needed, depending on which rule viola-
tion resulted in the event.

When a “Constraint Violation Event” occurs, a plan type
called “Violated Constraint Resolving Plan” handles it with
the aim of “repairing” the violation. To “repair” a violation,
this plan will perform further evolution actions. In most
cases, there are several options to resolve a constraint vi-
olation. For example, to make rule (1) valid, we need to
associate the newly added goal with a role. This can in-
volve either creating a new role or using one of the exist-
ing roles. The decision regarding which action should be
taken is based on constraint rules, traceability information,
heuristics and, in some cases, human intervention.
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In our BDI system, when an event is generated, there are
possibly several plans that are able to handle it. This natu-
rally corresponds to the fact that there are different options
to repair a violation. For instance, in our example below
there are several different plans (such as “Associating an
existing role with goal” plan, “Associating a new role with
goal” plan, “Associating an existing agent with goal” plan,
etc.) which are triggered by a “Goal violation” event. How-
ever only one of them will be executed to handle a particular
event. The determination as to whether a plan is applicable
to handle a specific generated event is expressed in its con-
text condition. For example, if the “Goal violation” event
indicates that a role-goal association is needed then the ap-
plicable plan should have this as part of its context condi-
tion (e.g. “Associating an existing role with goal” plan or
“Associating a new role with goal” plan). Additional cri-
teria can be incorporated in the context condition based on
design heuristics, allowing for a single plan to be chosen.
If multiple plans are applicable, they are tried in order of
pre-determined priority (although more sophisticated mech-
anisms can also be used).

In our framework, automated change propagation is
achieved not only based on explicit traceability links (as
specified in the meta-model and constraints) but based also
on design heuristics. The ability of BDI systems to have
multiple plans to handle an event in different situations
makes it easy to incorporate design heuristics. Such heuris-
tics are usually expressed in the context condition of a plan.
For instance, one heuristic is that if a new goal has just been
added, and all of its sibling goals are assigned to the same
role, then assign the new goal to the same role as its sib-
lings. This heuristic is expressed as one of the criteria in the
context condition of the “Associating an existing role with
goal” plan.

There is also a default plan which involves the interven-
tion of the software engineer. This corresponds to the situ-
ations where traceability information and heuristics are in-
sufficient to make a design decision. This also ensures that
there is always at least one applicable plan.

Plan: Associating an existing role with goal
Triggering event: Goal violation
Context condition: An association between the goal G
(related to the event) and a role is needed; and all its
sibling goals are implemented by an existing role Rexisting

Plan body:
1. A connection is made from goal G to role Rexisting

Plan: Associating a new role with goal
Triggering event: Goal violation
Context condition: An association between the goal G
(related to the event) and a role is needed; and not all its
sibling goals are implemented by an existing role
Plan body:

1. A new role Rnew is added

2. A connection is made from goal G to role Rnew

Plan: Associating an existing agent with goal
Triggering event: Goal violation
Context condition: An association between the goal G
(related to the event) and an agent is needed; and there
exists an agent Aexisting which plays an existing role to
which the goal is allocated
Plan body:

1. A connection is made from goal G to agent Aexisting

Plan: Associating a new agent with goal
Triggering event: Goal violation
Context condition: An association between the goal G
(related to the event) and an agent is needed; and there
does not exist an agent which plays an existing role to
which the goal is allocated
Plan body:

1. A new agent Anew is added
2. A connection is made from goal G to agent Anew

Plan: Associating plan with goal
Triggering event: Goal violation
Context condition: An association between the goal G
(related to the event) and a plan is needed
Plan body:

1. Retrieve the agent Aexisting that implements this goal
2. A new plan Pnew is added
3. A connection is made from plan P to agent Aexisting
4. A connection is made from goal G to plan Pnew

In this section, we have explained how BDI concepts
such as plans, events, and context conditions fit naturally
with the process of resolving constraint violations and prop-
agating changes. In the next section, we describe an exam-
ple to illustrate how our framework works in practice.

5. Example

In order to illustrate how our framework works, we are
developing a case study, an excerpt of which is presented in
this section. The full case study is a stock trading manage-
ment simulation (STMS) which is specified and designed,
along with a number of additional requirements. These ad-
ditional requirements give examples of software evolution
(perfective maintenance) that are used to assess our pro-
posed framework.

The stock trading management simulation has three ma-
jor goals: Manage Stocks, Manage Funds and Serving
Stock Customers (see figure 1 for more details). The sys-
tem’s design has five roles: Purchase Management (achiev-
ing Buying Stock goal), Sale Management (achieving Sell-
ing Stock goal), Funds Management (achieving Manage
Funds goal), Stock Tracker (achieving Update Stock Portfo-
lio goal) and Customer Interaction (achieving Serving Re-
quest for Adding Funds goal). Figure 2 shows the system
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overview diagram of the initial version of STMS which has
three agent types: Trader agent (playing the roles Purchase
Management, Sale Management, and Stock Tracker), Funds
Manager agent (playing the role Funds Management) and
GUI Agent (playing the role Customer Interaction).

Now we assume that the clients have asked to add a new
requirement: the ability to print a list of current stocks held
and their market value.

The following scenario may take place:

• The software engineer creates a new concrete goal
Print stock portfolio in the Goal Diagram

• The software engineer then adds this goal as a sub-goal
to the existing goal Serving Stock Customers

At this point, the software engineer may wish to ask our
system what other artefacts he/she should alter to correctly
propagate the new change. Below we outline the sequence
of events that takes place, showing how our change propa-
gation framework helps in propagating the changes.

The reader should refer to sections 3.2 and 4.2 for the
description of constraint rules and plans which are used in
this example.

1. As the goal Print stock portfolio has been added, the
event “addition” is fired. This event triggers the “Goal
addition” plan because it matches this plan’s context
condition.

2. The“Goal addition” plan is executed and checks con-
straints (rules 1-6 in section 3.2) against the newly
added Print stock portfolio goal:

(a) Rule (1) fails as this goal is not allocated to any
role yet

i. This will result in a “Goal violation” event
being generated. This event also carries in-
formation indicating that an association be-
tween the goal and a role is needed. This
type of event can potentially trigger several
plans. However, in this case only the “Asso-
ciating an existing role with goal” plan is ap-
plicable because its context condition holds
(the sibling goal Serving Request for Adding
Funds is allocated to the existing role Cus-
tomer Interaction)

ii. As this plan is executed, a connection is
made from goal Print stock portfolio to role
Customer Interaction

iii. Rule (1) now holds

(b) Rule (2) fails since there is no agent assigned to
achieve this goal yet.

i. This will result in a “Goal violation (agent
associated)” event generated which can also
potentially trigger several plans. The plans’
context conditions again determine that only
one plan (which in this case is “Associating
existing agent with goal”) is applicable

ii. As this plan is executed, a connection is
made from goal Print stock portfolio and
agent GUI Agent

iii. Rule (2) now holds

(c) Rule (3) fails as there is no plan specified to
achieve this goal

i. This will result in a “Goal violation (plan
associated)” event generated which triggers
the plan “Associating plan with goal”.

ii. As this plan is executed, the following ac-
tions are performed: retrieving the agent
implementing the new goal (which is the
GUI Agent), adding a new plan called Print-
stock-portfolio-defaultplan, making a con-
nection from this plan to agent GUI Agent,
and making a connection from goal Print
stock portfolio to plan Print-stock-portfolio-
defaultplan

iii. Rule (3) now holds

(d) Rules (4) and (5) hold due to changes made in
previous steps.

(e) Rule (6) holds because there is no capability as-
sociated with this goal.

As can be seen from the above example, the change prop-
agation engine has helped by automatically adding several
new entities and relations to the existing model.

6. Related Work

Since maintenance is widely regarded as a critical phase
and evolution is an inevitable activity in software develop-
ment, there has been a significant amount of research in
this area. Some approaches include program comprehen-
sion and reverse engineering [21], restructuring [10, 19],
re-engineering [20], impact analysis [1], and management
processes [25, 32]. However, dealing with software evolu-
tion remains one of the most challenging issues in main-
stream software engineering [2].

Software change is the basic operation of software main-
tenance and evolution. The two central aspects of soft-
ware change are planning for changes and implementing
changes [7]. Change impact analysis [1] is a planning activ-
ity by which the software engineer assesses the extent of the
change, i.e. the artefacts, components, or modules that will
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be impacted by the change, and consequently how costly the
change will be. Our work is more focused on implementing
changes, in which changes are propagated from one artefact
to others in order to maintain consistency between artefacts
as the software evolves.

Various techniques and methods have been proposed in
the literature to address different activities of the consis-
tency management process including: detecting overlaps
between software models, detecting inconsistencies, iden-
tifying the source, the cause and the impact of inconsisten-
cies, and resolving inconsistencies [31]. As UML has be-
come the de facto notation for object-oriented software de-
velopment, most research work in consistency management
has focused on problems relating to consistency between
UML diagrams and models [15, 16]. Several approaches
strive to define fully formal semantics for UML by extend-
ing its current meta-model and applying well-formedness
constraints to the model [3, 6]. Our framework also involves
developing a meta-model and specifying well-formedness
constraints. However, our framework also addresses the
mechanism of resolving constraint violations when changes
are made to the model.

Other approaches applying formal methods to UML,
transform UML specifications to some mathematical for-
malism such as Petri-Nets [8], Description Logic [33], or
graph grammars [13]. Such approaches have been advo-
cated with the recent emergence of the Model Driven Ar-
chitecture (MDA) paradigm [14]. The consistency checking
capabilities of such approaches rely on the well-specified
consistency checking mechanism of the underlying mathe-
matical formalisms. However, it is not clear to what extent
these approaches suffer from the traceability problem: to
what extent can a reported inconsistency be traced back to
the original model. Furthermore, the identification of trans-
formations that preserve and enforce consistency still re-
mains a critical issue at this stage [8]. Our framework does
not involve any separate model translation step. We have a
single, common model for all diagrams or views. Change
actions are performed directly to the model and consistency
checks are done within this model only.

7. Conclusions and Future work

In this paper we have presented a flexible and incremen-
tal change propagation approach to maintain consistency
between software development artefacts described in the
Prometheus methodology. As part of our framework, we
have introduced a UML meta-model which represents all
Prometheus entities and their relations. In addition, we have
developed a set of OCL well-formedness and consistency
constraints imposed on the meta-model.

The novel aspect of our framework is the underlying
change propagation mechanism which uses agent technol-

ogy. Specifically, the change propagation process in our
framework is represented using the well-known Belief-
Desire-Intention (BDI) agent architecture. Within this sys-
tem, evolution and constraint violation are represented as
BDI events. The strategies of propagating change to re-
solve model inconsistencies caused by constraint violation
are represented as BDI plans. Heuristics and traceability
information are also incorporated into the plan and belief
components of the system to help the reasoning about which
plan is more appropriate to resolve an inconsistency.

The focus of this paper is to set the foundations for a
new approach to change propagation and to illustrate its
capacity to deal with consistency management in evolving
software systems. Although an agent-oriented methodol-
ogy is chosen as the setting in which we applied our frame-
work, we believe that our technique can be extended to other
(non-agent) software engineering methodologies. We have
started implementing the framework which we proposed
here. As part of the future work, we will complete the
Prometheus meta-model with additional well-formedness
rules. We also plan to investigate how to integrate domain
semantics into our framework and utilize them to give more
support for automated change propagation. Currently the
BDI plans are developed by hand based on the meta-model
and the well-formedness constraints. We will investigate
whether this process can be semi-automated, and how the
resulting set of plans can be checked for completeness and
consistency. In addition, more heuristics and traceability in-
formation such as design decisions, reasons for changes will
be integrated with our framework. Furthermore, we plan to
extend our framework to address the issue of change propa-
gation and consistency management at the implementation
level. More specifically, we will investigate how to (semi-)
automatically propagate changes from the design to source
code and vice versa.
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