
Validating ORA-SS Data Models using Alloy

Lin Wang, Gillian Dobbie, Jing Sun
Department of Computer Science

The University of Auckland
Private Bag 92019

Auckland, New Zealand
lwan066@ec.auckland.ac.nz

{gill, j.sun}@cs.auckland.ac.nz

Lindsay Groves
School of Mathematics, Statistics

and Computer Science
Victoria University of Wellington

P.O. Box 600
Wellington, New Zealand
lindsay@mcs.vuw.ac.nz

Abstract

Semistructured data is typically represented using XML.
However, little semantic information can be captured us-
ing XML. Other data models, such as the Object Relation-
ship Attribute data model for Semistructured data (ORA-
SS), have been introduced to represent more detailed se-
mantic information. Automatic analysis of the data mod-
els would enable us to reveal inconsistencies both at the
schema and instance levels of the semistructured data. The
aim of this paper is to encode the semantics of the ORA-SS
data model in the Alloy formal language and automatically
validate the semistructured data design using the Alloy An-
alyzer. It enables us to check the consistency of an ORA-SS
schema and its instances.

Keywords: Semistructured data, ORA-SS, Modeling
language semantics, Formal verification and validation.

1 Introduction

Semistructured data is used in many application areas
such as multimedia data management, biological databases,
digital libraries, and data integration. In particular, it has be-
come prevalent with the growth of the Internet. EXtended
Markup Language (XML) [4], which is a specialization of
the Standard Generalized Markup Language (SGML), has
become the likely standard for representing and exchanging
semistructured data. To date, there is no widely accepted
data model for XML or semistructured data. A number of
data modeling languages have been proposed for semistruc-
tured data [2, 5, 11, 16], including the Object Relation-
ship Attribute data model for Semistructured data (ORA-
SS) [9, 15] which captures the constraints that are neces-
sary for the informal modeling of applications and algo-
rithms [14, 15, 19].

The ORA-SS data model not only reflects the nested
structure of semistructured data, but also distinguishes be-
tween object classes, relationship types and attributes. The
main advantages of ORA-SS over other data models is its
ability to express the degree of a n-ary relationship type, and
distinguish between the attributes of relationship types and
the attributes of object classes. This semantic information
is essential, even crucial for semistructured data representa-
tion and management.

A primary concern in designing a semistructured data
model for a particular application is to reveal any possi-
ble inconsistencies at both the schema and instance lev-
els. The former refers to the possible errors in a semistruc-
tured data schema model, where a customized ORA-SS
schema model should be consistent with respect to a given
set of constraints. The latter refers to the possible errors in
a semistructured data instance, where an XML document
should be consistent with respect to the designed schema
model. For example, an inconsistency that might arise at the
schema level is the specification of a ternary relationship be-
tween only two object classes. An inconsistency that might
arise at the instance level is a many to many relationship
between elements when a one to many relationship is spec-
ified in the schema. These two aspects of validation are es-
sential in the semistructured data design process. Thus, the
provision of automated tool support for validating ORA-SS
semistructured data modeling is very beneficial.

An important part of software engineering is proving
properties of new concepts. In this paper, we present an ap-
proach to encode the semantics of the ORA-SS data model
into the Alloy formal language [12] and use the Alloy An-
alyzer to perform automatic consistency checking on both
the semistructured schema model and its data instances. We
chose Alloy over other formal languages for the following
reasons. First, Alloy is a light weight formal language that
is easily analyzable. Second, Alloy is based on first-order
relational logic, and relationships among elements are an

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

O R A-S S d a ta

m o d e l

A l l o y r e p r e s e n ta t i o n

o f O R A-S S

Al l o y An a l y z e r

A l l o y r e p r e s e n ta t i o n

o f d a t a a n d s c h e m a

c o n s i s te n c y c h e c k i n g

r e s u l t

s e m i s t r u c tu r e d d a ta

a n d s c h e m a

i n p u t

i n p u t

o u t p u t

t r a n s fo r m

tr a n s fo r m

Figure 1. Overall approach to validate semistructured data using Alloy.

important concept in the ORA-SS data model and more gen-
erally in semistructured data. More importantly, Alloy has
automated tool support - Alloy Analyzer [13]. It is a fully
automatic tool built on top of a set of SAT Solvers [20] to
simulate and check the specification models written in the
Alloy language.

Figure 1 shows our approach in validating semistruc-
tured data through Alloy. Firstly, a formal semantics for
the ORA-SS data modeling language is defined in Alloy.
It provides a precise and rigorous formal basis for repre-
senting ORA-SS data schema models and their instances in
Alloy. Secondly, with the assistance of the Alloy Analyzer,
automated consistency checking on the semistructured data
at both the schema and instance levels can be achieved.

There has been other research that provides formal se-
mantics for semistructured data. For example, Calvanese
et al. [6] presents a formalization of XML DTD and docu-
ments in terms of an expressive description logic. Anutariya
et al. [1] formalizes XML DTD and documents in XML
declarative description, a theoretical framework developed
from declarative description theory. Conforti and Ghelli [7]
introduces spatial tree logics, a language based on ambient
logic, as formalisms for semistructured data. More recently,
Bidoit et al. [3] applies hybrid multimodal logic to formal-
ize the semistructured data via the pattern grammar, a notion
of semistructured data schema proposed in the paper.

The main advantages of our approach over others is sum-
marized as follows: first, the ORA-SS data model expresses
the semantics of semistructured data more adequately and
clearly than any other existing data modeling notation; sec-
ond, we provide an automatic methodology to validate both
the semistructured data schema and instance by utilizing the
Alloy System, which has become increasingly crucial with
the growing usage of semistructured data.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a brief overview of the ORA-SS data modeling
notation and the Alloy language. Section 3 defines a for-
mal semantics of the ORA-SS data modeling language in
Alloy. Section 4 presents a case study that demonstrates the
validation of semistructured data using the Alloy Analyzer.

Section 5 outlines the conclusions and the directions of fu-
ture work.

2 Background

2.1 ORA-SS data model overview

The ORA-SS data model is comprised of three basic
concepts: object classes, relationship types and attributes.
An ORA-SS schema diagram represents constraints at the
schema level that any corresponding ORA-SS instance di-
agram (semistructured data) should follow. For example,
in the schema diagram we can represent the constraint that
there is a binary many-to-many relationship type between
two object classes ‘class’ and ‘student’. In the in-
stance diagram we can represent the constraint that there is a
relationship between object instance ‘class’ with attribute
value ‘cname:CS105’ and object instance ‘student’
with attribute value ‘ID:1002’. An example of these can
be found in Figure 2.

Figure 2. Examples of ORA-SS schema and
instance diagrams.

Figure 2 shows an ORA-SS schema diagram and its in-
stance diagram. The diagram on the left represents an ORA-
SS schema model. A labelled rectangle represents an object
class, and a labelled circle with name represents an attribute.
Note that the filled circle in the diagram represents the key
attribute of an object class. The relationship between an ob-
ject and an attribute is denoted by a directed edge, which

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

means an object has certain attributes, e.g., a ‘school’ has
an attribute called ‘sname’. The relationship type among
objects is denoted by a directed labelled edge. The label
represents a tuple ‘(name, n, p, c)’, where name de-
notes the name of the relationship, ‘n’ is an integer indicat-
ing the degree of the relationship (e.g. n = 2 indicates bi-
nary, n = 3 indicates ternary, etc.), ‘p’ is the participation
constraint of the parent object class in the relationship type,
and ‘c’ is the participation constraint of the child object
class in the relationship type. The participation constraint
is defined in the form of ‘min:max’, which represents the
lower and upper limit of the participation instances. For
example, we can see in the schema diagram that the re-
lationship type between the object classes ‘school’ and
‘class’ is give as ‘sc, 2, 1:n, 1:1’, which indi-
cates that the relationship type is named ’sc’ and it is a
binary relationship with a ‘1:n’ constraint on ‘school’
(a school can have 1 or more classes) and a ‘1:1’ con-
straint on the ‘class’ (a class belongs to 1 and only 1
school). The label on the edge between an object class
and an attribute indicates that the attribute is a relationship
type attribute. For example, the label on the edge between
‘student’ and ‘grade’ in the schema diagram indicates
that ‘grade’ is an attribute of the relationship type ‘cs’.

The diagram on the right represents an ORA-SS data in-
stance, where labelled rectangles represent object instances,
labelled circles with names and values represent attribute
instances, and the directed edges represent relationship
instances among object instances and attribute instances.
From the diagram we can see that the instance diagram rep-
resents one possible set of instances corresponding to the
data model defined by the schema diagram. A full descrip-
tion of the ORA-SS data modeling language can be found
in [9, 15].

2.2 Alloy overview

Alloy is a structural modeling language based on first-
order logic, suitable for expressing complex structural rela-
tionships and constraints. The syntax of Alloy is similar to
the standard mathematical syntax of first order logic. The
essential constructs of Alloy are as follows [12]:

• A signature (‘sig’ in Alloy syntax) denotes a set of en-
tity objects. It introduces a basic type and a collection
of relations (called fields) along with the types of the
fields and constraints. A signature may inherit fields
and constraints from another signature.

• A fact (‘fact’ in Alloy syntax) is a constraint on rela-
tions and objects that always holds. It is a formula that
takes no arguments and does not need to be invoked
explicitly.

• A predicate (‘pred’ in Alloy syntax) is a template for a
parameterized constraint. It can be applied elsewhere
by instantiating the parameters and evaluates to either
true or false.

• A function (‘fun’ in Alloy syntax) is a template for
a parameterized expression. It can be applied else-
where by instantiating the parameters and evaluates to
a value.

• An assertion (‘assert’ in Alloy syntax) is a constraint
that is intended to follow from the facts of a model. It
is a formula whose correctness needs to be checked,
assuming the facts in the model.

Alloy is equipped with the Alloy Analyzer. It translates
Alloy specifications into propositional formulas and gener-
ates a set of finite scope instances that satisfy the proper-
ties expressed in the specifications by exploiting the SAT
solvers [20]. Alloy Analyzer provides two kinds of auto-
matic analysis: simulation in which the consistency of a fact
or predicate is demonstrated by generating a snapshot of the
model; and checking, in which a consequence of the specifi-
cation is tested by attempting to generate a counterexample
for an assertion. Alloy and its analyzer has been success-
fully applied in various research case studies [8, 10, 17].

3 Formal semantics of ORA-SS data model

In this section, we present an Alloy semantics for the
ORA-SS data modeling language. We first define some ba-
sic concepts for the notation, followed by other features of
the ORA-SS language. Due to the space limit, only part of
the semantics is presented in the paper. For a detailed view
on the Alloy ORA-SS semantics, please refer to our recent
technical report [18].

3.1. Basic concepts

First, we define three basic signatures, Object, Rela-
tionship and Attribute, for the schema level description of
semistructured data. They represent the concept of object
class, relationship type and attribute in the ORA-SS schema
diagram respectively.

3.1.1 Object class

The signature of Object is defined as follows:

abstract sig Object {
instances: set OInstance,
parent: lone Object,
ancestor: set Object,
related: lone Relationship,
has: set Attribute,

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

directhas: set Attribute,
key: lone Attribute,
ref: lone Object,
refed: set Object
}

The keyword abstract indicates that Object will be
refined further by other signatures that extend it. The dec-
laration gives all fields for an Object class. For example, in
each Object class, it contains a set of instances and an
optional parent object class. The ancestor relates to
a set of object classes which are above it in the hierarchy.
The related field defines a possible relationship type. An
object class has a set of attributes, which involves the field
has and the field directhas, where has is the combina-
tion of its own attributes (directhas) and its referenced
attributes. The key defines that each object class can have
one identifier only. The last two fields defines the reference
relationship in the ORA-SS data model, i.e., each object
class can have one referenced object class ref, whereas
an object class can be referenced by several other object
classes refed.

Based on the field definitions in the Object signature,
we can state some basic facts about those fields as follows.

{
all x:Object | x !in (x.ˆ@parent + x.@ref

+ x.@refed + x.@related.@contain)
ancestor = parent + parent.@ancestor

+ refed + refed.@ancestor
one related => this.@parent=related.@end
has = directhas + ref.@has
one key => O_CandidateA (this, key)

&& key in has
one ref => one ref.@key && key = ref.@key
one ref =>this in ref.@refed
some refed => this = refed.@ref
one ref => all x:instances |

one y:ref.@instances |
x->y in ORASSModel.R_OiOi

one ref => all x:ref.@instances |
one y:instances |

y->x in ORASSModel.R_OiOi
}

These facts express constraints on the fields. For exam-
ple, the second fact states that an ancestor should in-
clude the parent and its own ancestors as well as the an-
cestors of its references. The fourth fact defines that the at-
tributes of each object class are the combination of its own
attributes and its reference’s attributes. The fifth fact states
that key must be one of the candidate key attributes of the
object class.

3.1.2 Relationship type

A relationship type can be binary or n-ary (where n > 2).
The signature of Relationship is defined as follows:

abstract sig Relationship{
instances: set RInstance,
contain: some Object,
start : one Object,
end: one Object
}

A relationship type can also have a set of instances,
and it must contain some object classes that participate in
the relationship. We can define some basic facts about those
fields as follows.

{
start & end in contain
start != end
#contain=2 => start= end.@parent
&& no end.@related

contain in end.*@parent
#contain>2 => one end.@related
&& contain-end = end.@related.@contain

instances.@contain in contain.@instances
}

The first two facts state that the intersection of start
object class and the end object class must be a subset of
the object classes of the relationship type, and the start
object class of the relationship type cannot be the same as
the end one. The third fact defines that the start object
class of the relationship is the parent of the end object class
if the relationship is a binary one. The next two facts define
that the relationship type is a consecutive object class chain
that starts from the object class higher in the hierarchy to
those lower in the hierarchy. The last fact states the con-
straint between relationship type and its instances.

3.1.3 Attribute

An attribute may be single or composite, and must belong
to either an object class or a relationship type. The signature
of Attribute is defined as follows:

abstract sig Attribute {
instances: set AInstance,
related: lone Relationship,
contain: set Attribute
}

An attribute can have a set of valid values as its
instances, and may be related to a relationship type.
A composite attribute also can contain other attributes via
the field contain.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

3.1.4 Instances

After giving three basic signatures for the description at the
schema level, we define signatures for the instance level de-
scription of semistructured data. Having treated Object,
Relationship and Attribute as three signatures, all
of them will have a set of corresponding instances, i.e.,
OInstance, RInstance and AInstance. For exam-
ple, OInstance represents the object instances of an ob-
ject class, and its Alloy representation is defined as follows:

abstract sig OInstance {
parent: set OInstance,
ancestor: set OInstance,
has: set AInstance,
directhas: set AInstance,
related: set RInstance,
ref: lone OInstance,
refed: set OInstance

}

We can see that the OInstance has similar fields cor-
responding to the object class signature. However, the dif-
ference is that the types of those fields are defined in terms
of various instances, e.g., the parent field of an object
instance is a set of OInstance type. Thus the instance
signature represents the relationships among instances in an
ORA-SS data model. A set of facts that relate to the above
instance fields can be defined as follows.

{
no parent && no refed=> no ancestor
has = directhas + ref.@has
one ref => this in ref.@refed
some refed => this = refed.@ref
this->ref in ORASSModel.R_OiOi
refed->this in ORASSModel.R_OiOi
parent->this in ORASSModel.R_OiOi
this -> has in ORASSModel.R_OiAi
related->this in ORASSModel.R_RiOi

}

The first four facts define the set of constraints similar
to that of the object class signature. For example, the first
fact states that an object instance will have no ancestor if
it has no parent instance and it is not referenced by other
object instances. The last five facts of OInstance define
some default relationships in a ORASSModel, which will
be explained further in the next subsection. Similarly, the
signatures for relationship instance (RInstance) and at-
tribute instance (AInstance) can be defined [18].

3.2 ORA-SS diagram

The ORA-SS diagram includes all the instance relation-
ships involved in a semistructured data model. The signa-
ture of ORASSModel is defined as follows.

one sig ORASSModel {
R_OiOi: set OInstance -> OInstance,
R_OiAi: set OInstance -> AInstance,
R_AiAi: set AInstance -> AInstance,
R_RiOi: set RInstance -> OInstance,
R_RiAi: set RInstance -> AInstance
}

The keyword one indicates that ORASSModel is a
concrete type and each ORA-SS schema should have one
and only one ORASSModel element. The five fields of
ORASSModel represent five types of relationships among
the object instances, relationship instances and attribute in-
stances in an ORA-SS data model. The R OiOi denotes
the relationship between an object instance and another ob-
ject instance. The R OiAi represents an object instance
to an attribute instance relationship, where the R AiAi de-
notes the relationship between two attribute instances. The
R RiOi represents the relationship between a relationship
type instance to an object instance, and the R RiAi denotes
the relationship between a relationship type instance to an
attribute instance. As we mentioned earlier, an ORA-SS di-
agram is defined in terms of these five types of relationship
among the different instances. When creating an instance
signature, corresponding relationships are established auto-
matically in the ORASSModel. For example, in the previ-
ous subsection 3.1.4, the last five facts of the OInstance
signature defines its relationships in R OiOi, R OiAi and
R RiOi.

3.3 ORA-SS language constructs

Having presented the ORA-SS basic elements in Al-
loy, we are ready to define various language constructs of
the ORA-SS data modeling language. These ORA-SS lan-
guage constructs are defined in terms of the parameter-
ized constraints on the five types of relationships in the
ORASSModel.

3.3.1 Candidate key attribute

The candidate key attribute of an object class refers to an
attribute where each of its instance value uniquely identify
an instance of the parent object class that holds the attribute.
It can be defined in Alloy as follows.

pred O_CandidateA(o:Object, a:Attribute) {
a in o.has
all x:o.instances | one y:a.instances

| x->y in ORASSModel.R_OiAi
all x:a.instances | one y:o.instances

| y->x in ORASSModel.R_OiAi
all x:a.instances | x.ancestor = x.parent

+ x.parent.ancestor && no x.decideby
}

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

The above predicate, which includes four constraints,
specifies the features that a candidate key attribute must
have. The first constraint indicates that a candidate key at-
tribute must be in the field has of the object class. The
next two constraints specify that the relationships between
object instances and candidate key attribute instances are
one to one. The last constraint indicates that the object can-
didate key attribute is related to a single object class rather
than a relationship type.

3.3.2 Disjunctive attribute

The disjunctive attribute is an attribute where its instances
are selected from a set of attributes. It can be presented in
Alloy is as follows.

pred DisjunctiveA(p : Attribute,
c : set Attribute)

{
c = p.contain
p.instances = c.instances
all x:p.instances |

x.(ORASSModel.R_AiAi) = x
all x:p.instances | one y: c.instances

| x->y in ORASSModel.R_AiAi
all x:c.instances | one y: p.instances

| y->x in ORASSModel.R_AiAi
}

The above predicate defines five constraints between a
disjunctive attribute and its children. The first constraint in-
dicates the children of a disjunctive attribute must be in the
set of attribute that the disjunctive attribute contains. The
second constraint shows that the instance of a disjunctive
attribute is equal to the union of all its children instances.
The third constraint states that the disjunctive attribute rela-
tionship must be reflexive. The last two constraints indicate
that there is always a one to one mapping for each pair of
disjunctive attribute instances. Similarly, we can apply the
same approach in defining the disjunctive object class and
composite attribute constructs in the ORA-SS language.

3.3.3 Participation constraint on object class

In this subsection, we present how the ORA-SS participa-
tion constraint of an object class is defined in Alloy. Firstly,
the participation constraint on a parent object class with a
minimal number is defined as follows:

pred OOPMinConstraint (p: Object, c:Object,
min: Int) {

all x:p.instances |
#(x <: (p.instances->c.instances &

ORASSModel.R_OiOi)) >= int min
}

Where p and c represent the parent object class
and child object class respectively, and min is an in-
teger representing the minimal participation on the par-
ent object class. The constraint specifies that the num-
ber of parent instances in the relationship type should
be greater than or equal to the minimum. In a
similar manner, the participation constraint on parent
object with maximum number OOPMaxConstraint,
the participation constraint on child object with mini-
mum number OOCMinConstraint and the participa-
tion constraint on child object with maximum number
OOCMaxConstraint can be defined accordingly.

So far, we have presented some of the Alloy semantics
for the ORA-SS language due to the space limit. By us-
ing the same approach, a complete set of ORA-SS language
constructs can be defined accordingly. A detailed ORA-SS
Alloy semantics can be found in [18].

3.4 Presenting the ORA-SS diagram in
Alloy

After defining an Alloy formal semantics for the ORA-
SS data modeling language, any ORA-SS diagram can be
easily represented in Alloy. We encode our Alloy semantics
of ORA-SS into a module named ‘ORASS’, so that users can
import this module when constructing their own ORA-SS
schema and instance data models. For example, the simple
schema diagram example in Figure 2 of Section 2.1 can be
presented in Alloy as follows.

open ORASS
sig school, class, student

extends Object {}
sig sname, cname, ID, grade

extends Attribute {}
sig sc, cs extends Relationship {}
fact {
one school && one class && one student
one sname && one cname
one ID && one grade
one sc && one cs
noParent (school)
class.parent = school
student.parent = class
OOPMinConstraint (school, class, Int 1)
OOCMinConstraint (school, class, Int 1)
OOCMaxConstraint (school, class, Int 1)
OOPMinConstraint (class, student, Int 1)
OOCMinConstraint (class, student, Int 1)
school.directhas = sname
class.directhas = cname
student.directhas = ID + grade
school.key = sname
class.key = cname
student.key = ID
sc::defineR(school, class, school+class)

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

s tu d e n t

h o s te l

c o u r s e
h o m e

tu to r A

tu to r B

s _ n a m e

g r a d et i t l ec o d e

fe e d b a c k

r o o mb u i l d i n g

h _ n a m e n u m b e r s t r e e t

o f f i c e

th , 2 , 1 :1 ,+
s c ,2 , 1 :3 , 2 : n

s c s c t , 3 , 1 :1 , 1 :n

s c t

Figure 3. An ORA-SS schema diagram.

cs::defineR(class, student, class+student)
R_OptionA(cs, grade)
noRelated (school + class + student)
noRef (school + class + student)
noRefed (school + class + student)
singleAttribute (sname+ cname+ ID+ grade)

}

The open command imports the ORASS module that
contains the ORA-SS Alloy semantic definitions. The sig-
natures of school, class and student have been cre-
ated by extending the object class signature. Similarly, cor-
responding attribute and relationship type definitions are
created. Finally, the fact section specifies the semantic links
among the object classes, attributes and relationship types
in the diagram, e.g., the school is a parent of class, the
participation constraint from the class to school is 1 to
1 and so on. After transforming an ORA-SS schema dia-
gram into an Alloy-based formal model, we can then per-
form automated validation using the Alloy Analyzer. In the
next section, we will demonstrate the consistency checking
processes through a more complicated case study.

4 Validating ORA-SS data models in Alloy

With the assistance of the Alloy Analyzer, we can per-
form automated semistructured data validation at both the
schema level and instance level. The following is a case
study for demonstrating the verification process.

4.1 Schema validation

Figure 3 shows an ORA-SS schema diagram that con-
tains most of the language constructs in the ORA-SS data
modeling language. In the diagram, object class student
is related to object classcourse via the binary relation-
ship type sc, and there is a ternary relationship type

sct between student, course and tutorA. Note that
grade is an attribute of the binary relationship type sc
and feedback is an attribute of the ternary relation-
ship type sct. The object class tutorB, which has a
composite attribute office and a disjunctive relationship
type with object class hostel and object class home,
is referenced by the reference object class tutorA. We
present this ORA-SS schema diagram in the Alloy model
‘example schema’, so that it can be used for instance
validation later.

module example_schema
open ORASS
sig student, course, tutorA, tutorB, hostel,

home extends Object {}
sig s_name, code, title, grade, feedback,

office, building, room, hours, h_name,
number, street extends Attribute {}

sig sc, sct extends Relationship {}
fact {
...
student = course.parent
course = tutorA.parent
...
O_OptionA (tutorB, office)
CompositedA (office, building+room)
DisjunctiveO (tutorB, hostel+home)
}

In this example, we define schema object classes such as
student, course, etc., which extend the Object sig-
nature from the ORASSmodule. Similarly, we define the set
of attributes and the relationship types used in the schema
diagram. We state the facts that describe the relationships
in the diagram, such as student is the parent of course,
course is a parent of tutor and so on. We also define the
ORA-SS constructs used in the diagram such as office is
a composite attribute of building and room, etc.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Figure 4. Identifying the source of inconsistency in an invalid schema.

pred show () {}
run show for 1 but 6 Object, 13 Attribute,

2 Relationship, 0 OInstance, 0 AInstance,
0 RInstance

After representing the ORA-SS schema diagram in Al-
loy, we create a predicate called show and perform a run
command with the number signatures in the model to auto-
matically validate this schema. When executed, Alloy An-
alyzer will try to create a solution that satisfies all the con-
straints defined in the model. Alloy outputs ‘No solution
found, show may be inconsistent’, which means the Alloy
Analyzer cannot generate a running snapshot of all the de-
fined signatures that satisfy the above model. Thus we may
conclude that this ORA-SS schema model is inconsistent
because there are conflict constraints in the model. After
careful review of the ORA-SS schema diagram in Figure 3,
we find that the inconsistency is due to the referenced object
class tutorB not having a key identifier.

Tracing the source of inconsistency could be frustrating
without any tool support. The developers of Alloy Ana-
lyzer have added the functionality ‘unsatisfied core’ in their
latest version, where this functionality can provide some
assistance for tracing the cause of an invalid model. For
example, Figure 4 shows the result after compute the ‘un-
satisfied core’ for the above inconsistent schema example.
In the code panel on the left, Alloy Analyzer highlights (in
red) the facts that caused the inconsistency. After exam-
ining these clauses, we find that the inconsistency is due
to the fact that every referenced object class must have a
key attribute whereas tutorB does not, which violates the
ORA-SS language semantics defined in the ORASSmodule.
This gives the same result as from our manual inspection.

To make this schema valid, we add a new key identifier
named t name for the tutorB object class in the schema
diagram and run the model again. This time Alloy Analyzer
outputs ‘Instance found’, which means that it has found an
snapshot of the signatures that satisfies all the constraints.
Based on the generated solution, we can conclude that this
ORA-SS schema model is consistent. In Alloy Analyzer,
there are three ways to display a solution: graphical view
using the visualization menu, a tree structure, or in textual
form.

4.2 Instance validation

Besides the schema level validation, we can also validate
whether ORA-SS data instances conform with their defined
schema model. For example, we can check the validity of
the following XML data file against the schema in Figure 3
(with the additional correction of the key attribute t name).

<?xml version="1.0" encoding="utf-8" ?>
<uni>
<student s_name="Tim">
<course code="c101" title="database"

grade="80">
<tutor t_name="Mike" feedback="good" />
</course>
<course code="c102" title="java" grade="90">
<tutor t_name="Joe" feedback="verygood" />
</course>
</student>
<student s_name="Ben"/>
<student s_name="Robert">
<course code="c102" title="java" grade="90">
<tutor t_name="Joe" feedback="verygood" />

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

</course>
<course code="c103" title="c" grade="80">
<tutor t_name="Joe"/>
</course>
</student>
<tutor t_name="Mike" office="Bt100A"

buliding="B" room="t100A" >
<hostel h_name="H1"/>
</tutor>
<tutor t_name="Joe" office="Bt110A"

buliding="B" room="t110A" >
<home number="10C" street="mount" />
</tutor>
</uni>

We first transform this XML representation of the
schema instances into its Alloy representation as follows.

module example_instance
open example_schema
sig student1, student2, student3, course1,

..., home1 extends OInstance{}
sig Tim, Ben, Robert, C101,

..., mount extends AInstance {}
...
fact {
one student1 && one student2 ...
//assign instances
student.instances = student1+student2

+ student3
course.instances = course1+course2+course3
tutorA.instances = tutorA1+tutorA2
...
//R_OiAi relationship
student1->Tim + student2->Ben + ...

+ course2->C102 + course3->C103 + ...
+ home1->n_10C + home1->mount
= ORASSModel.R_OiAi
//R_OiOi relationship
student1->course1 + student1->course2

+ student3->course1 + ...
+ course1->tutorA1 + ...
+ tutorA2->tutorB2 + ...
+ tutorB1->hostel1 + tutorB2->home1
= ORASSModel.R_OiOi
//R_AiAi relationship
Bt100A->B + Bt100A->t100A + Bt110A->B
+ Bt110A->t110A = ORASSModel.R_AiAi
...
}

pred show1 (){}
run show1 for 1 but 6 Object, 13 Attribute,
2 Relationship, 12 OInstance, 25 AInstance,
13 RInstance

In the above instance representation, after creating
the corresponding instances and defining the relationships

among the instances, we ask Alloy Analyzer to generate a
running example of the system. Alloy Analyzer outputs ‘No
instance found’ which means this may be an inconsistent set
of instances. After reviewing the data instances, we find that
it is inconsistent because every student must study at least
one course based on the participation constraints defined in
the schema definition, whereas the student ‘Ben’ has none.

Similarly, the following incorrect instances cannot pass
the validation from the Alloy Analyzer.

//R_OiAi relationship
student1->Tim+student2->Ben+student3->Ben
+course1->C101+course2->C102+course3->C103
+course1->database+course2->java+course3->c
+course1->g80+course2->g90+course1->g70
+course3->g80+tutorA1->Mike+tutorA2->Joe
+tutorB1->Mike+tutorB2->Joe+tutorA1->good
+tutorA2->verygood+tutorA1->neutral+
tutorB1->Bt100A+ tutorB2->Bt110A+
hostel1->H1+home1->n_10C+home1->mount
= ORASSModel.R_OiAi
...

Alloy Analyzer returns the result that it is inconsistent
after running. This time it is inconsistent because s name
is the key identifier of student and there are two students
named ‘Ben’ in the above example.

4.3 Lessons learned

Undertaking the work presented in this paper has helped
to deepen the understanding of the ORA-SS data model-
ing langauge. Some features in the langauge are not well
defined, and representing the ORA-SS data model in Alloy
has forced us to precisely define those features. Considering
how an XML document is represented in Alloy also forced
us to think about what constraints are expressible in XML.

The most important finding is that it is possible to repre-
sent the semantics of the ORA-SS data model in Alloy, and
automatically validate both the schema and instance levels
using the Alloy Analyzer. Although we were successful,
we observe that there are potential problems with our cur-
rent model. In hindsight we could design a model which
contains less repetition that is easier to understand. For ex-
ample, the rules for the schema and the instance are cur-
rently intertwined. Another concern is the performance of
the Alloy Analyzer when analyzing the current model.

Based on these findings, we are currently developing a
new 3-layer representation of the ORA-SS data model in
Alloy. The first layer contains semantic constraints on the
ORA-SS language, e.g., there must be three object classes
associated with a ternary relationship. The second layer
models the constraints on the ORA-SS schema and the third
layer models constraints on the data instance.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

5 Conclusion

In this paper, we presented an approach to provide au-
tomatic reasoning support for semistructured data design.
We first formalized the ORA-SS data modeling notation in
the Alloy formal language. We defined a formal semantics
for the ORA-SS data model in Alloy, and then transformed
both the semistructured data and its schema into their cor-
responding Alloy-based ORA-SS models. With the assis-
tance of Alloy Analyzer, we demonstrated that the consis-
tency of the semistructured data and its schema model can
be validated automatically. We showed that even subtle er-
rors which are hard to find manually can be easily detected
using our approach.

In the future, we will revisit our ORA-SS semantic en-
coding in Alloy and extend our work to validate the proper-
ties of algorithms that are applied to semistructured data.
We plan to focus our research on the normalization of
semistructured data schema. The normal form of the ORA-
SS data model for designing semistructured databases has
been proposed in [19]. We would like to validate whether
the semantics of a normalized schema is the same as its
original schema. This can show whether a normalization
algorithm changes the semantics of the schema during the
transformation. We also plan to develop a visual environ-
ment that can transform XML documents to their Alloy-
based ORA-SS models automatically, reducing user inter-
actions and guaranteeing there are no errors in the resulting
models.

References

[1] C. Anutariya, V. Wuwongse, E. Nantajeewarawat, and
K. Akama. Towards a Foundation for XML Document
Databases. In EC-WEB ’00: Proceedings of the First In-
ternational Conference on Electronic Commerce and Web
Technologies, pages 324–333. Springer-Verlag, 2000.

[2] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Ja-
cobs, A. L. Hors, G. Nicol, J. Robie, R. Sutor, C. Wil-
son, and L. Wood. Document Object Model (DOM) Level
1 Specification. http://www.w3.org/TR/1998/
REC-DOM-Level-1-19981001/.

[3] N. Bidoit, S. Cerrito, and V. Thion. A First Step Towards
Modeling Semistructured Data in Hybrid Multimodal Logic.
Journal of Applied Non-classical Logic, 14(4), 2004.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible Markup Language (XML) 1.0 (Third
Edition). http://www.w3.org/TR/REC-xml/.

[5] P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu.
Adding Structure to Unstructured Data. In ICDT ’97: Pro-
ceedings of the 6th International Conference on Database
Theory, pages 336–350. Springer-Verlag, 1997.

[6] D. Calvanese, G. D. Giacomo, and M. Lenzerini. Repre-
senting and Reasoning on XML Documents: A Descrip-
tion Logic Approach. Journal of Logic and Computation,
9(3):295–318, 1999.

[7] G. Conforti and G. Ghelli. Spatial Tree Logics to reason
about Semistructured Data. In S. Flesca, S. Greco, D. Saccà,
and E. Zumpano, editors, SEBD ’03: Proceedings of 11th
Italian Symposium on Advanced Database Systems, pages
37–48. Rubettino Editore, 2003.

[8] G. Dennis, R. Seater, D. Rayside, and D. Jackson. Automat-
ing commutativity analysis at the design level. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international sym-
posium on Software testing and analysis, pages 165–174.
ACM Press, 2004.

[9] G. Dobbie, X. Wu, T. Ling, and M. Lee. ORA-
SS: Object-Relationship-Attribute Model for Semistruc-
tured Data. Technical Report TR 21/00, School of Com-
puting, National University of Singapore, Singapore, 2001.

[10] J. S. Dong, J. Sun, and H. Wang. Checking and Reasoning
about Semantic Web through Alloy. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME, volume 2805 of Lecture
Notes in Computer Science, pages 796–813. Springer, 2003.

[11] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB’97: Pro-
ceedings of 23rd International Conference on Very Large
Data Bases, pages 436–445. Morgan Kaufmann, 1997.

[12] D. Jackson. Micromodels of Software: Lightweight Mod-
elling and Analysis with Alloy, 2002. http://alloy.
mit.edu/reference-manual.pdf.

[13] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy
Constraint Analyzer. In ICSE’00: Proceedings of 22th In-
ternational Conference on Software Engineering, Limerick,
Ireland, June 2000.

[14] T. Ling, M. Lee, and G. Dobbie. Applications of ORA-SS:
An Object-Relationship-Attribute data model for Semistruc-
tured data. In IIWAS ’01: Proceedings of 3rd International
Conference on Information Integration and Web-based Ap-
plications and Serives.

[15] T. W. Ling, M. L. Lee, and G. Dobbie. Semistructured
Database Design. Springer, 2005.

[16] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data. SIGMOD Record, 26(3):54–66, 1997.

[17] M. Vaziri and D. Jackson. Checking Heap-Manipulating
Procedures with a Constraint Solver. In TACAS ’03: Pro-
ceedings of 9th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, War-
saw, Poland, 2003.

[18] L. Wang, G. Dobbie, and J. Sun. Formalizing and Validating
ORA-SS data model with Alloy. Technical Report UoA-SE-
2005-2, Software Engineering, The University of Auckland,
New Zealand, 2005.

[19] X. Wu, T. W. Ling, M. L. Lee, and G. Dobbie. Design-
ing Semistructured Databases Using the ORA-SS Model. In
WISE ’01: Proceedings of 2nd International Conference on
Web Information Systems Engineering, Kyoto, Japan, 2001.

[20] H. Zhang. SATO: An Efficient Propositional Prover. In
CADE-14: Proceedings of the 14th International Confer-
ence on Automated Deduction, pages 272–275. Springer-
Verlag, 1997.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

