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Enhancing Adaptive Random Testing through Partitioning by Edge and
Centre

Tsong Yueh Chen Fei-Ching Kuo Huai Liu∗

Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn Victoria 3122, Australia
{tchen, dkuo, hliu}@ict.swin.edu.au

Abstract

Random Testing (RT) is a simple but widely used
software testing method. Recently, an approach namely
Adaptive Random Testing (ART) was proposed to en-
hance the fault-detection effectiveness of RT. The ba-
sic principle of ART is to enforce random test cases as
evenly spread over the input domain as possible. A va-
riety of ART methods have been proposed, and some
research has been conducted to compare them. It was
found that some ART methods have a preference of se-
lecting test cases from edges of the input domain over
from the centre. As a result, these methods may not per-
form very well under some situations. In this paper,
we propose an approach to alleviating the edge pref-
erence. We also conducted some simulations and the
results confirm that our new approach can improve the
effectiveness of these ART methods.

1. Introduction

Random Testing(RT) is a fundamental software test-
ing method, which selects test cases randomly from
the input domain(the set of all possible inputs of the
program under test) [11, 18]. Due to its advantages,
such as simplicity, efficiency and randomness, RT has
been popularly applied in industry. For example, RT
has been used to examine the reliability of some UNIX
utility programs [16, 17], and it was found that a great
number of programs were crashed by random test data.
Moreover, RT was also applied in many automatic test-
ing tools, such as those developed by Microsoft [19],
IBM [2] and Bell Lab [10].

It has been observed thatfailure-causing inputs(pro-
gram inputs that can reveal failures) tend to cluster to-
gether [1, 3, 9]. Some researchers [8, 14] found that
under such a situation, the performance of RT can
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be significantly enhanced by evenly spreading gener-
ated test cases over the whole input domain. This ap-
proach was named asAdaptive Random Testing(ART).
Based on their work, many ART methods have been
proposed, and some typical examples includeFixed-
Sized-Candidate-Set ART(FSCS-ART) [8, 14], Re-
stricted Random Testing(RRT) [4], andLattice-based
ART [15]. These methods have been experimentally
evaluated and it was confirmed that ART can use fewer
test cases to detect the first failure than RT when failure-
causing inputs are clustered into contiguous regions
(namelyfailure regions[1]).

Recently, some research has been conducted to com-
pare some ART methods [12], and it was pointed out
that although all ART methods have the same aim, that
is, evenly spreading test cases, their performances are
different from one another because they distribute test
cases using different approaches. One of the most im-
portant observations of the research is that FSCS-ART
and RRT, which provide the best performances when
failure rate is small, prefer to select test cases from the
edge part of the input domain rather than from the cen-
tral part. This preference, however, deteriorates the per-
formances of FSCS-ART and RRT as the failure rate
and dimension increase, and it even can make FSCS-
ART and RRT less effective than the original RT under
some situations [6, 7, 12].

In this paper, we study theedge preferenceof a
particular ART method, namely FSCS-ART. We pro-
pose a new approach to alleviating the preference, and
thus to enhancing the performance of FSCS-ART. The
structure of the paper is introduced as follows. Sec-
tion 2 gives some background information of FSCS-
ART. Section 3 introduces how we measure the edge
preference of a testing method, explains our approach to
alleviating the edge preference, and compares the fault-
detection effectiveness of our approach and the original
FSCS-ART. Finally, Section 4 concludes the paper.



2. Preliminaries

In Fixed-Sized-Candidate-Set ART(FSCS-ART) [8],
two sets of test cases are maintained: theexecuted set,
which stores all test cases already executed but without
revealing any failure, denoted byE = {e1,e2, · · · ,en};
and thecandidate set, which containsk randomly gen-
erated inputs, denoted byC = {c1,c2, · · · ,ck}, wherek
is fixed throughout the testing process. A candidate will
be selected as the next test case if it has the largest dis-
tance to its nearest neighbour inE. The algorithm of
FSCS-ART is given in Figure 1.

1. Setn = 0, E = {} andC = {}.
2. Randomly generate a test casee from the input domain,

according to uniform distribution.
3. Test the program withe as the test case.
4. while (e does not reveal a failure)
5. Storee into E.
6. Incrementn by 1.
7. Randomly generatek candidates from the input

domain, according to uniform distribution, and store
them intoC.

8. for each candidatec j ∈C, where j = 1, · · · ,k
9. Calculate the distanced j betweenc j and its

nearest neighbour inE.
10. end for
11. Findcb ∈C such thatdb ≥ d j , where j = 1, · · · ,k.
12. Sete= cb.
13. Test the program withe as the test case.
14.end while
15. Report the detected failure and exit.

Figure 1. The algorithm of FSCS-ART

It has been pointed out in [6, 7, 12] that FSCS-
ART has a preference of selecting test cases from the
edge part of the input domain over from the central
part. In [12], some ART methods were compared in
terms of the test cases distribution. The edge preference
of these methods was measured by a metric, namely
MEdge:Centre, defined as the ratio of the number of test
cases inside the subdomainDEdge to the number of test
cases inside the subdomainDCentre, whereDCentre is lo-
cated in the centre of the input domain,DEdge is right
outsideDCentre, and the sizes ofDCentre andDEdge are
equal. These two subdomains in 2-dimensional (abbre-
viated as2D) space are illustrated in Figure 2. It was
found thatMEdge:Centre for FSCS-ART is always greater
than 1, which confirms the edge preference of FSCS-
ART.

Many studies have been conducted to compare
FSCS-ART with RT [8, 14] and other ART meth-

DCentre

DEdge

Figure 2. DEdge and DCentre in a 2D input domain

ods [12] in terms of their F-measure (the expected num-
ber of test cases required to detect the first failure). It
is often assumed that all inputs can be repeatedly se-
lected (known as theselection with replacement[13])
and have an equal chance of being selected (known as
theuniform distribution[11]). Therefore, the expected
F-measure of RT (denoted byFRT) is equal to 1/θ ,
whereθ denotes failure rate, the ratio of the number
of failure-causing inputs to the number of all possible
inputs. Since F-measure of ART (denoted byFART)
depends on many factors, theoretical study ofFART is
extremely difficult. Hence, the majority of the previ-
ous research studiedFART through simulations. In each
simulation, the failure rateθ and the failure pattern (the
shapes of failure regions together with their distribution
over the input domain) were predefined [5, 6, 7]. When
a point is generated inside a failure region by ART, it is
said that a failure has been revealed. The simulation was
repeated for a sufficient number (S) of times to ensure
that FART is accurate within a certain confidence level
and a certain accuracy range. The details of calculating
Scan be found in [5].

Since ART is to enhance the fault-detection effec-
tiveness of RT, the effectiveness of ART is often mea-
sured in terms of ART F-ratio (defined asFART/FRT).
Like all these studies, we will adopt ART F-ratio in this
paper for measuring the enhancement of ART over RT.

3. Enhancing FSCS-ART by alleviating the
Edge Preference

3.1. Measuring the edge preference of a testing
method

In this paper, we will measure the edge preference
of a testing method in a slightly different way from
MEdge:Centre in [12] in order to describe the distribution
of test cases in a more precise way. The following il-
lustrates how we measure the edge preference of FSCS-
ART.



The input domain was first partitioned into 128
equal-sized and disjoint subdomains (instead of 2 sub-
domains in [12]) from the edge to the centre of the in-
put domain. Then, test cases were generated by FSCS-
ART in 1D, 2D, 3D and 4D space, respectively. We
separately obtained the firstn test cases, wheren =

{10,100,1000,10000}, and recorded the related num-
ber of points in each subdomain. Such processes were
repeated for a sufficient number of times to obtain a re-
liable average frequency with a confidence level of 95%
and±5% accuracy range, and finally we got four groups
of values. For ease of comparison, we also conducted
the above simulations using pure RT. It was found that
no matter whatn is, the test cases of RT are always uni-
formly distributed, as theoretically expected. The em-
pirical frequency distributions for test cases of FSCS-
ART with variousn are shown in Figure 3, in which, x-
and y-axes denote the subdomain’s location and the nor-
malised frequency of test cases inside each subdomain,
respectively.The figure confirms the edge preference of
FSCS-ART, and it is clearly shown that the preference
becomes more and more serious with the increase of the
dimension of the input domain.

3.2. Our Approach

The new approach alleviates the edge preference of
FSCS-ART by introducing a new partitioning method,
that is, partitioning the input domain into some equal-
sized partitions from the edge to the centre of the input
domain. Test cases are evenly allocated among these
partitions. Without loss of generality, we will illustrate
this approach using a two-dimensional input domain,
as shown in Figure 4, where the input domain is parti-
tioned into four equal-sized partitionsD1, D2, D3 and
D4, from the edge to the centre, respectively.

Suppose that the first test caset1 is randomly gener-
ated from the whole input domain and happens to be lo-
cated insideD2. For the second test case to be selected,
the original FSCS-ART generates six candidates,c1, c2,
c3, c4, c5 andc6, as shown in Figure 4. However, since
c2 is inside the same partition ast1, our approach re-
quires a replacement forc2, sayc′2 which is not located
inside the same partition ast1. Then, the second test
caset2 is selected fromc1, c′2 (instead ofc2), c3, c4, c5

andc6 according to the original FSCS-ART, and finally
we got t2 = c′2. We term the new approach asFSCS-
ART with Partitioning by Edge and Centre(ECP-FSCS-
ART).

There are two methods of partitioning the input do-
main. One method is to dynamically partition the input
domain, that is, the number of partitions is varying with
the number of executed test cases. The other method
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3.a Test cases distribution for 1D FSCS-ART
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3.b Test cases distribution for 2D FSCS-ART
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3.c Test cases distribution for 3D FSCS-ART
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3.d Test cases distribution for 4D FSCS-ART

Figure 3. Frequency distribution of test cases for
FSCS-ART
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Figure 4. Illustration of the new approach

is static partitioning, that is, the number of partitions is
fixed throughout the testing process. These two meth-
ods, namelyDynamic ECP-FSCS-ARTandStatic ECP-
FSCS-ART, are shown in Figures 5 and 6, respectively.

As shown in Figure 5, Dynamic ECP-FSCS-ART
partitions the input domain more and more precisely
with the increase of the number of test cases (State-
ment 7). Since the number of partitions is always larger
than the number of executed test cases (n+ 1 > n), at
least one partition will not contain any executed test
case. Therefore, the candidate set can be constructed
in such a way that all candidates are from “blank” par-
titions (Statement 8), and thus the next test case will be
from a partition where there is no executed test case.
This will prevent test cases from being allocated more
frequently in certain subdomains, and hence alleviate
the edge preference of FSCS-ART.

Static ECP-FSCS-ART partitions the input domain
at the beginning of testing (Statement 2 of Figure 6),
and this partitioning strategy is reserved throughout the
testing process. For the candidate set to be constructed,
the partitions which contain the fewest test cases are
first found, and then all candidates are generated only
from these partitions(Statement 8). Briefly speaking,

1. Setn = 0, E = {} andC = {}.
2. Randomly generate a test casee from the input domain,

according to uniform distribution.
3. Test the program witheas the test case.
4. while (e does not reveal a failure)
5. Storee into E.
6. Incrementn by 1.
7. Divide the input domain inton+1 disjoint partitions

Di , from the edge to the centre of the input domain,
where allDi have the same size, andi = 1, · · · ,n+1.

8. Randomly generatek candidates from partitions
where there does not exist any test case, and store
them intoC.

9. for each candidatec j ∈C, where j = 1, · · · ,k
10. Calculate the distanced j between c j and its

nearest neighbour inE.
11. end for
12. Findcb ∈C such thatdb ≥ d j , where j = 1, · · · ,k.
13. Sete= cb.
14. Test the program withe as the test case.
15.end while
16. Report the detected failure and exit.

Figure 5. The algorithm of Dynamic ECP-FSCS-
ART

1. Setn = 0, E = {} andC = {}.
2. Divide the input domain intom disjoint partitionsDi ,

from the edge to the centre of the input domain, where
all Di have the same size, andi = 1, · · · ,m.

3. Randomly generate a test casee from the input domain,
according to uniform distribution.

4. Test the program witheas the test case.
5. while (e does not reveal a failure)
6. Storee into E.
7. Incrementn by 1.
8. Randomly generatek candidates from partitions

where the number of associated tests is the fewest,
and store them intoC.

9. for each candidatec j ∈C, where j = 1, · · · ,k
10. Calculate the distanced j between c j and its

nearest neighbour inE.
11. end for
12. Findcb ∈C such thatdb ≥ d j , where j = 1, · · · ,k.
13. Sete= cb.
14. Test the program withe as the test case.
15.end while
16. Report the detected failure and exit.

Figure 6. The algorithm of Static ECP-FSCS-ART



Static ECP-FSCS-ART makes all partitions contain al-
most the same number of test cases, and hence ensures
that test cases will not be allocated more frequently in
certain subdomains; as a result, the edge preference of
FSCS-ART can be alleviated.

3.3. Experiment 1

Let us first check to what extent our approach allevi-
ates the edge preference of FSCS-ART. We repeated the
simulations in Section 3.1 using Dynamic ECP-FSCS-
ART, and Static ECP-FSCS-ART with 100 and 1000
predefined partitions. The size of candidate set (k) is
set to 10 and the shape of the input domain is set to
square. The simulations results are shown in Figures 7,
8 and 9. For ease of discussion, we will useStatic-m
ECP-FSCS-ARTto denote the method of Static ECP-
FSCS-ART withmpartitions.

Based on these figures, we have the following two
observations.

• Dynamic ECP-FSCS-ART does distribute test
cases more evenly than the original FSCS-ART,
but there is still a small edge preference.

• When the number of test cases is small, neither
Static-100 nor Static-1000 ECP-FSCS-ART meth-
ods can alleviate the edge preference very well.

The first observation is understandable, because al-
though all candidates are from “blank” partitions, the
selected candidate will still have a higher probability of
being close to the edge of the input domain than other
candidates due to the nature of FSCS-ART. As far as
the second observation is concerned, when the number
of executed test cases is much smaller than the num-
ber of partitions, there are too many partitions with the
fewest test cases (no test case). As a result, the candi-
date set is effectively constructed from the whole input
domain, that is, at the beginning of Static ECP-FSCS-
ART with a large number of partitions, the testing is al-
most the same as the original FSCS-ART. On the other
hand, when the number of executed test cases exceeds
the number of partitions, the edge preference should
have been alleviated. As a justification, refer to Fig-
ures 8 and 9, where it can be observed that once the
number of executed test cases exceeds 100 and 1000,
respectively, the edge preference is significantly allevi-
ated.

3.4. Experiment 2

We have demonstrated that our approach can alle-
viate the edge preference of FSCS-ART. It is also im-
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7.a Test cases distribution for 1D Dynamic ECP-FSCS-ART
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7.b Test cases distribution for 2D Dynamic ECP-FSCS-ART
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7.c Test cases distribution for 3D Dynamic ECP-FSCS-ART
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7.d Test cases distribution for 4D Dynamic ECP-FSCS-ART

Figure 7. Frequency distribution of test cases for
Dynamic ECP-FSCS-ART
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8.a Test cases distribution for 1D Static-100 ECP-FSCS-ART
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8.b Test cases distribution for 2D Static-100 ECP-FSCS-ART
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8.c Test cases distribution for 3D Static-100 ECP-FSCS-ART
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8.d Test cases distribution for 4D Static-100 ECP-FSCS-ART

Figure 8. Frequency distribution of test cases for
Static-100 ECP-FSCS-ART
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9.a Test cases distribution for 1D Static-1000 ECP-FSCS-ART
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9.b Test cases distribution for 2D Static-1000 ECP-FSCS-ART
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9.c Test cases distribution for 3D Static-1000 ECP-FSCS-ART
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9.d Test cases distribution for 4D Static-1000 ECP-FSCS-ART

Figure 9. Frequency distribution of test cases for
Static-1000 ECP-FSCS-ART

portant to examine whether the effectiveness of FSCS-
ART can be improved, so we further conducted a series
of simulations to investigate the performance of ECP-
FSCS-ART. The parameters for these simulations are
predefined as follows.

• Testing methods: Dynamic ECP-FSCS-ART,
Static-100 ECP-FSCS-ART and Static-1000 ECP-
FSCS-ART.

• Shape of input domain: square.

• Dimension of input domain: 1, 2, 3 and 4.

• Failure region: a single square failure region is ran-
domly placed inside the input domain.

• Failure rate: 1, 0.75, 0.5, 0.25, 0.1, 0.075,
0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001,
0.00075, 0.0005, 0.00025, 0.0001, 0.000075, and
0.00005.

• The size of candidate set (k) = 10.

• Confidence Level: 95%.

• Accuracy range:±5%

It should be noted that the setting of this experiment
is exactly the same as Experiment 1 in [6, 7]. The results
of these simulations are reported in Figure 10. The pre-
vious simulations results on the performance of FSCS-
ART are also plotted for ease of comparison.

We have the following findings based on the data.

• ECP-FSCS-ART outperforms the original FSCS-
ART under the following situations.

⋆ When the dimension of the input domain is
high or the failure rate is high, the performance of
Dynamic ECP-FSCS-ART is better than that of the
original FSCS-ART.

⋆ When the dimension of the input domain
is high and failure rates are smaller than 0.01 and
0.001, respectively, the performances of Static-100
and Static-1000 ECP-FSCS-ART methods are bet-
ter than that of the original FSCS-ART.

• ECP-FSCS-ART is comparable to the original
FSCS-ART method under other situations.

The finding about Dynamic method is intuitively ex-
pected by this paper, that is, FSCS-ART can be en-
hanced by alleviating the edge preference. What was
found about Static method is consistent with the obser-
vations in Section 3.3. The edge preference is not alle-
viated very well when the number of test cases is much
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10.a ECP-FSCS-ART’s performance in 1D space
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10.b ECP-FSCS-ART’s performance in 2D space
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10.c ECP-FSCS-ART’s performance in 3D space
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10.d ECP-FSCS-ART’s performance in 4D space

Figure 10. Performances of Dynamic ECP-FSCS-
ART and Static ECP-FSCS-ART

smaller than the number of partitions. Consequently,
only after the number of test cases exceed some specific
values (1/0.01= 100 and 1/0.001= 1000 for Static-
100 and Static-1000 ECP-FSCS-ART methods, respec-
tively), can Static ECP-FSCS-ART improve the perfor-
mance a lot.

Based on the results in the previous two experiments,
we can find a strong correlation between the edge pref-
erence and the performance of ECP-FSCS-ART. Since
Dynamic ECP-FSCS-ART alleviates the edge prefer-
ence from the beginning of the testing process, it has a
smaller F-measure than the original FSCS-ART for high
failure rates and dimensions, and can constantly per-
form well across various scenarios. It should be noted
that although there still exists an edge preference in Dy-
namic ECP-FSCS-ART, the preference is insignificant
and does not have any adverse impact on the perfor-
mance of Dynamic ECP-FSCS-ART, as shown in Fig-
ure 10. On the other hand, Static ECP-FSCS-ART can
alleviate the edge preference only when the number of
executed test cases exceeds the number of partitions.
This is why Static ECP-FSCS-ART has almost the same
F-ratio as the original FSCS-ART when the failure rate
is adequately high. In summary, both Static and Dy-
namic ECP-FSCS-ART methods perform better than
the original FSCS-ART, but Dynamic method provides
a more consistent improvement than Static method on
the fault-detection effectiveness of FSCS-ART.

4. Conclusion

ART is an approach to enhancing the fault-detection
effectiveness of RT. Recently, it has been pointed out
that some ART methods have a preference of selecting
test cases from the edge part of the input domain over



from the central part. This edge preference can deteri-
orate the performance of these ART methods. In this
paper, we propose a new approach, namely ECP-FSCS-
ART, to alleviating the edge preference, and present two
algorithms, Dynamic and Static ECP-FSCS-ART, to
implement the approach. Simulations were conducted
and the results show that the new approach can im-
prove the effectiveness of FSCS-ART, especially when
the failure rate is high or the dimension of the input do-
main is high. The basic idea of our approach is that
for an ART method which prefers to select test cases
from certain locations of the input domain, we can alle-
viate the preference by introducing a corresponding par-
titioning scheme and fairly allocating test cases among
all the partitions. Apparently, this idea is not only ap-
plicable and useful to FSCS-ART, but also to all other
ART methods whose test case generation is biased to-
ward certain locations of the input domain.
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