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Abstract

Dynamic reconfiguration is a useful technique for
software  update because it can achieve an
architectural change without shutdown of a system.
However, so far in the state-of-arts, there has not been
an approach that can evaluate and comtrol both the
Junctional influence and performance influence of
reconfiguration in a unified framework. In this paper,
we present an approach that addresses the above
drawback. In our approach, we use a reconfiguration
algorithm and a reconfiguration scheduler to control
these two types of influence. The algorithm reduces the
logical performance influence by allowing old and new
components coexisting and uses a version management
mechanism to avoid functional side effect in the
coexisting period. The scheduler controls the physical
performance  influence through restricting the
processor time spent on the reconfiguration procedure.
We implement the algorithm and the scheduler in our
Reconfiguration Data Flow model.

1. Introduction

Dynamic reconfiguration aims to implement
runtime architectural changes of long-running software
[12]. Many research efforts have been made on
component models that support  dynamic
reconfiguration, such as SOFA2 [15], ArchJava [1],
Fractal [2], Darwin [11], Rapide [10], and K-
Component [5]. However, these models are all weak in
controlling the influence of dynamic reconfiguration.
As dynamic reconfiguration is performed during
system runtime, its influence should be evaluated
systematically. It may bring severe threats to the
system if its influence is not determinable or
controllable [14].

The existing studies on the influence of dynamic
reconfiguration can be divided into two main branches.
The first branch focuses on the influence on
functionality. Zhang has presented the term ‘safe
adaptation’ to mean the program maintains its integrity
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during dynamic adaptation [17]. Desmet has
considered the correctness of a dynamic system during
and after a reconfiguration [4]. Feiler has introduced
the concept of configuration consistency in terms of
syntax, type, resource utilization, and semantics [6].
The second branch concentrates on the influence on
performance. Gorinsek has laid out a base to support
QoS (Quality of Service) management during
reconfiguration [7]. Mitchell has demonstrated a
generic  algorithm  for  scheduling  dynamic
reconfigurations that maintains QoS guarantees for
multimedia stream [13]. Hillman has designed
OpenRec, an open framework for managing dynamic
reconfiguration and measuring the impact of
reconfiguration in terms of time and disturbance [8].
However, there has not been a method that can
evaluate and control these two types of influence in a
unified framework."

In this paper, we propose an approach that
addresses the above drawback. Based on the
representation of the data flows of a system, we
propose a reconfiguration algorithm and a
reconfiguration scheduler to control the influence of
reconfiguration. The reconfiguration algorithm can
change the architecture of a sysiem from one
configuration to another. The reconfiguration scheduler
can control the execution of reconfiguration. Under the
co-work of the algorithm and the scheduler, the
influence of dynamic reconfiguration on functionality
and performance is controllable.

2. Reconfigurable system and influence of
reconfiguration

2.1. Reconfigurable system

For a reconfigurable system, we have the following
assumptions.

A reconfigurable system is a component-based
system. A component-based system is composed of
components and connectors [16]. A reconfiguration is
a change of the system architecture, ie.



addition/removal of components/connectors. A
component is a sysiem element that implements certain
functions and is able to communicate with other
componenis through its impui and output ports. A
connecior provides a communicaiion link between two
components. Such a sysiem could change its
architeciure using component as the basic operational
unit,

Te support reconfiguration, the reconfiguration
operations must be able to be executed during runtime
and will not cause incorrect status of the system. For
example, a system will undertake an incorrect status if
removing a connector between two components when
they are in communicating. Therefore, some system
procedures, such as communication, must be defined
as atomic. And a synchronization mechanism is
necessary to prevent these atomic processes from being
interrupted by reconfiguration operations.

A reconfigurable system needs a representation of
architectural configurations to specify the current and
target configurations of the architecture. The most
popular way for this purpose is Architecture
Description Language (ADL). It usually uses a form of
predicates or scripts to describe the components and
the connectors between them. For a reconfiguration,
the current architectural configuration can be detected
by the system itself, the target architectural
configuration is specified by the administrator.

There needs a representation of reconfiguration
plan, which specifies how to change the architecture
step by step. A reconfiguration plan could be
represented as a piece of program, a script, a partial
order plan, or vice verse. Usually, a reconfiguration
plan is written by an administrator manually or
generated by a planner automatically. Then an
execution engine executes it.

2.2. Influence of reconfiguration

We classify the influence of reconfiguration into
two types, functional influence and performance
influence. Functional influence is the change on the
system functionality caused by reconfiguration.
Performance influence is the change on the system
running speed caused by reconfiguration.

At most cases, a reconfiguration has functional
influence on the system because changing functionality
is one-of the commonest purposes of reconfiguration.
But a reconfiguration should not have functional side
effect, which means incorrect outputs for some inputs.
Formally, the functionality of a system could be
represented as a function F. For any input e, its output
is F(e). Suppose a reconfiguration r change the
functionality of a system from F to F’, r has functional
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side effect if » causes the system output neither Fe)
nor F’(e) for an input e.

Under the above constraint, there are two practicing
modes for transferring system functionality in
reconfiguration.

The first mode is switching transformation. The
finctionality of the system is switched from F(e) to
F’(e) at a time stamp ¢ in the reconfiguration progress.
Therefore, the system output is as follows (Figure 1-a):

1) the system outputs F(e) for any input e
appearing before 7, whether the computing
progress covers ¢ or not (Cj, C, in Figure 1-a);
and
the system outputs F'(e) for any input e
appearing after 7 (C; in Figure 1-a).

The second mode is coexisting transformation. The
old functionality and new functionality are coexisting
in reconfiguration. Therefore, the system output is as
follows (Figure 1-b):

1) The system always outputs F(e) if the

processing of input e completes before r starts
(C; in Figure.1-b);

2)

2) The system always outputs F'(e} if the
processing of input e completes after » ends (C,
in Figure.1-b);

3) The system outputs either F(e) or F’(e) if the
processing of input e completes afier r starts
and before r ends, ie. during the
reconfiguration period (C;, C; in Figure.1-b).
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Figure 1. Functional influence



The performance influence of a reconfiguration is
expected to be as small as possible. The performance
influence can be reflected by the change of the system
output rate, which is the amount of outputs the system
produces in a time slice. In a time slice, suppose the
actual output rate is o’ and the output rate should be o
if there was no reconfiguration, then the performance
influence is d=|o’-0|/0. We name o theoretical output
rate.

If a reconfiguration is performed at the system’s
different workload, its performance influence will be
various. Due to the limitation of computing capability,
every system has a maximum workload and therefore a
maximum output rate, which is the output rate when
the system is fed with enough inputs. The performance
influence is the largest if the reconfiguration is
performed at this time.

To evaluate the performance influence of a
reconfiguration, the worst condition should be
considered. Therefore we use the Possible Maximum
Performance Influence (PMPI), the performance
influence of a reconfiguration performed at the
maximum system workload, to represent the
performance influence of a reconfiguration.

The theoretical maximum output rate is not fixed
during reconfiguration and it is not easy to calculate
because the system architecture is in changing.
Suppose the theoretical maximum output rate of a
system is m before reconfiguration r and m’ afier
reconfiguration . We expire the theoretical maximum
output rate ranging between m and m’ during
reconfiguration period. Thus if the PMPI is p, the
actual maximum output rate is:

1) m before r starts;

2) m’ after r ends;

3)  Smin(mx(l-p).m’x(1-p)) during
reconfiguration », where min returns the
smaller value of the two parameters.

Therefore the actual maximum output rate of the

system is higher than minimx-p).m’x(1-p))
(Figure.2).
A thoeretical
Output rate output rate
. m’
m actual
output rate
Time
r starts r ends .
(b) Influence on performance

Figure 2. Performance influence
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3. Influence control for reconfiguration
3.1. Representing application computation

To design a reconfiguration approach that can not
only achieve an architectural change but also restrict
the influence in a user-acceptable scope, the two types
of influence have to be considered in a unified
framework. Application computation is a suitable
object to integrate these two types of influence. An
application computation is a working progress of an
application, which starts when receiving an input and
ends after generating output for the input. A
reconfiguration will cause functional side effect if it
interrupts a running application computation or results
in a new application computation not pre-designed by
the user. A reconfiguration will cause performance
influence if it pause or slow down an application
computation. Therefore, a representation of the
application computations of a system is fundamental to
the influence control of reconfiguration.

From data flow viewpoint, we represent an
application computation as a route, a sequence of
components that a data element passes through one by
one. A route could be a designed route or a data route.
A designed route is a route pre-designed by designers.
A data route is a route that a data element has actually
passed through. In a system, all the designed routes
compose a route map, which is part of the system
design. As a designed route defines a progress of data
processing, it corresponds to one of the system
functions. And the route map is a system design to
describe how components cooperate to implement
system functions.

Route map and architecture are different levels of
system design. For a system, the architecture should
support the route map. It means that the architecture
can control data elements not to pass through a route
that does not belong to the route map but able to pass
through every route in the route map. If the
architecture does not support the route map, it means
implementation can not guarantee design. The relations
between architecture, route map, application
computations, and system functions are shown in

Figure.3.
A reconfiguration will change the architecture of a
system from one configuration to another.

Correspondingly, the system route map supported by
the architecture will be changed from one to another
too.
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Figure 3. Architecture, route map, computations,
and functions

Definition 1. An architectural configuration (or
configuration in short) of a system is a tuple <C, N>,
where C is the set of components in the system, N is
the set of connectors in the system. A connector is a
tuple <cy,p;,czp2>, which means the connector links
component c;’s output port p; and component c;’s
input port p,.

Definition 2. A route 7 is a sequence /¢y, ¢y, ..., C/,
n2l, where ¢, ¢3, ..., ¢,€C are components. On the
route, ¢; is an input component that imports data from
outside environment. ¢, is an output component that
exports data to outside environment. [¢;4j, ..., ¢,/ is the
subsequence of ¢;, /<i<i-1. A designed route is a
component sequence pre-designed by designers. A
data route is a component sequence that a data
element has actually passed.

Definition 3. A route map R is a set {7, 73, ..., 1},
k=1, where r;, r; .. rp are designed routes. A
configuration 4 supports a route map R if p(4)=R,
where p(4) is the set of data routes possible appearing
under 4.

3.2. Eliminating functional side effect

Functional side effect results from incorrect data
route.

Definition 4. A reconfiguration has functional side
effect if it may cause a data route r&(R (R ’), where R
is the route map before reconfiguration and R’ is the
route map after reconfiguration.

Such a data route r could appear under three
conditions:

1) Datum loss. A datum loss means a data
element is removed from the system
incorrectly.

2) Dead datum, A dead datum means a data

element is still in the system but not able to
flow any more.
Wrong route. A wrong route means a data
element has passed through the system but the
data route it passed does not equal to any
designed route predefined in the route map.

A datum loss or dead datum results in a data route
that is an incomplete designed route. Under such a

3

62

condition, the data route does not equal to a designed
route of old or new route map, although it is a prefix of
a designed route.

To implement the switching transformation, a
reconfiguration should theoretically support an
operation that can switch the architecture from the old
configuration to the new configuration “instantly’. The
architecture supports the old route map before the
switching and the new route map after the switching.
Therefore, in Figure 1-a, the result is F(e) if e appears
before r and F’(e) if e appears after 7.

However, in practice, a real instant switching is
impossible because any reconfiguration operation
needs a time period to execute. But a reconfiguration
operation can be viewed as ‘instant’ if no inter-
component communication is performed during the
execution of the operation. It is because a
reconfiguration operation has no influence on the
running of inner-component processing. Therefore, a
practical ‘instant switching’ is a sequence of
reconfiguration operations that satisfy the following
constraints (Figure 4):

1) before the execution of these operations, the
system architecture supports the old route map
and the system is running normally;
during the execution of these operations, any
inter-component communication are buffered;
after the execution of these operations, the
communication is resumed and the system
architecture supports the new route map. And
the old part of the system keeps running until
all existing computations complete.

switching
old route map > . new route map

2)

3)

>
<7

< .
R
i v
~0

' reconfiguration period '

Figure 4. Switching transformation

To implement the coexisting transformation, a
reconfiguration should establish the new routes before
removing the old routes. As a result, the new routes
and old routes will coexist for a period. During this
period, an input data element can follow either an old
route or a new route. Therefore, in Figure 1-b, the
result could be either F(e) or F'(e) if a computation
completes during reconfiguration period.

A reconfiguration for coexisting transformation
could be divided into three stages (Figure 5):

1) The first stage is the establishment of mew
route map. During this stage, new routes are
established one by one. Once a new route is
established, it allows data eclements to pass
through.



2) The second stage is a short period after the
establishment of new route map ends and
before the removal of old routes starts.

The third stage is the removal of old route map.
In this stage, old routes are removed one by
one. Before removing a route, it should be
guaranteed that no data element is on the route.

3)

1)
new route rhap
removal '

1
1 establishment
old route map

;
1
1
1 -

! reconfiguration period '
Figure 5. Coexisting transformation

3.3. Managing performance influence

The influence of reconfiguration on system output
rate may be caused by two reasons. First, the system
has different maximum output rate under different
architectural configurations. During reconfiguration
progress, the system experiences a series of interim
configurations before reaching the target configuration.
Under these configurations, the system is likely to have
different maximum output rate. Second, the execution
of a reconfiguration procedure itself requires some
resources, especially the processor time. The
reconfiguration procedure is executed along with the
functional processes of components on the same node.
If the node has a fixed computing capability and it
spends some time on the reconfiguration procedure, it
spends less time on the finctional processes than
normal. Therefore there is a practical decline of the
system output rate during a reconfiguration even
though the reconfiguration procedure does not change
the maximum output rate theoretically. We name the
first kind of influence as logical performance influence
and the second as physical performance influence.

To control the performance influence of a
reconfiguration, both design time and runtime supports
need to be considered. The logical performance
influence of a reconfiguration is decided by the
reconfiguration plan. Thereby, in design time, the
operations in a reconfiguration plan should be arranged
carefully to ensure the theoretical maximum output
rate of every interim configuration. The physical
performance influence of a reconfiguration can be
controlled through reconfiguration scheduling during
plan execution. The reconfiguration procedure should
run alternatively with other procedures and the
processor time spent on it in a time slice should be
restricted in a small percentage.

Although both switching transformation and
coexisting transformation have no functional side
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effect, their logical performance influence is quite
different. In the switching period of switching
transformation, the theoretical maximum output rate is
down to zero since inter-component communications
must be paused. Since the switching period is
necessary for a switching transformation, this kind of
impact on performance is inevitable. However, in a
coexisting transformation, such a switching period is
not necessary. Both inter-component communication
and inner-component processing can run normally
during reconfiguration. Therefore, the logical
performance influence of coexisting transformation is
smaller than that of switching transformation.

To reduce logical performance influence, we choose
coexisting transformation as the reconfiguration
method. Suppose the theoretical maximum output rate
of the old configuration and new configuration are ¢
and 7’ respectively, the theoretical maximum output
rate of the system during a reconfiguration is changed
from ¢ to ¢’ since old routes are stopped and new routes
are started one by one.

To restrict physical performance influence, we use a
reconfiguration scheduler, which can confrol the
processor time spent on the reconfiguration procedure
in a time slice. Suppose the theoretical maximum
output rate of a system is m and the processor time
spent on the reconfiguration procedure is p in time
slice s, the actual max output rate is mx(1-p/s).

3.4, Reconfiguration algorithm

We propose a reconfiguration algorithm, which can
implement a coexisting transformation. Suppose the
architectural configuration and route map are 4, R
before reconfiguration and 4°, R’ after reconfiguration.
A supports R and A4’ supports R’. A- coexisting
transformation includes two main steps:

1) Establishment - establishing the new routes.

2) Removal —removing the old routes.

But the challenge problem in the reconfiguration is
how to ensure version compatibility during the
coexisting period, i.e. old version data elements should
be distributed to old version components and new
version data elements should be distributed to new
version components. An example is shown in Figure 6.
Component ¢ could process both old version and new
version data elements. After being processed by c, old
version data elements must be distributed to
component d and new version data elements to
component d’. The old route is [a,b,c,de]; the new
route is fa,b’,c,d’,e]. Routes [a,b,c,d’e] and [a,b’,c,d e]
should not be permitted.
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Figure 6. A sample of version compatibility

The requirement of version compatibility is caused
by the dependency relationship between components.
Component 4 depends on component B means that
data elements must be processed by B before they can
be processed by 4, whether 4 is B’s direct descendant
or not. In a data transfer system, for example, the
decryption component depends on the encryption
component.

The dependency relationships in a system belong to
the domain of application requirements. Therefore, for
a system, the route map must satisfy all the
dependency relationships. For a reconfiguration, the
old route map should satisfy the old dependency
relationships and the new route map should satisfy the
new dependency relationships.

Definition 5. A dependency relationship 4 is a
tuple <0, 0>, where O,Q are component classes and Q
depends on Q. For a route r=[¢;, ¢3 ..., ¢,/ and a
dependency relationship d=<O0, (0>, r satisfies d if 1)
there is no instance of O or Q in 7; or 2) for each
instance of O in r there is an instance of Q in its
subsequence. For a system, the route map R satisfies
the dependency relationships if (V#eR, YdeD)(r
satisfies d), where D is the set of all the dependency
relationships of the system.

To ensure version compatibility, different versions
of data elements should be distinguishable. Therefore a
version tag should be attached to each data element.
The tag could be a real one or a virtual one. A real tag
is an item in the data structure of data element. A
virtual tag is a parameter that indicates the version of
data elements in a communication between
components.

Components should be able to recognize the version
tag and control which version of data elements it can
process. A component should support three modes:

1) Strict(x,y). The component can only process
version x data elements; the results are all of
version y.

2) Transparent. The component can process any
version data elements; the results are of the
same version as the data elements processed.

3) Filter(x). The component can process any
version data elements; but the results are all of x
version.

A component can only process the same versions of
data elements in a processing in despite of which mode
it is. The mode of a component can be changed at any
time, but the new mode is brought into effect after the
current processing and before next processing.

Using the version control mechanism, the version
compatibility can be ensured, even if there are
intersections between old routes and new routes.
Figure 7 shows a configuration of the components’
modes that can support the route map shown in Figure
6. Thus, by arranging components’ modes, version
compatibility can be ensured in reconfiguration.

old route [a,b,c,d,e]
i "V SToNT A Blémens T T >
a b c d e
strict(n,n)  strict(n,n) transparent strict(m,n)  strict(nn)
| > > > > |
~ ’ﬂ . ,ﬂ
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T "\r'"—--r' Vi 4:—-"--(’ >
. [ I a \ e { 4
. _strict(n,m) / N, strict(m,n) .~
NS N g 7
NI R N
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v -
new route [a,b’,c,d’,e]
version m data elements

Figure 7. A sample of configuration that supports
version compatibility

In the reconfiguration algorithm, all the components
are divided into three groups, removed components,
added components, and reserved components. The
reserved components are further divided into involved
components and wuninvolved components. Their
definitions are as follows:

The set of removed components is RC = 4.C-4".C,
where A.C is the set of all the components of
configuration 4 (see definition 1), 4°.C is the set of all
the components of configuration 4",

The set of added components is AC =A4".C-4.C.

The set of reserved components-is VC =
A.Cr4".C. o

The set of involved components is IC = {c | ceVC
and ((Fic)(cic;eRC A [...Cp..Cy.nnCy . JER) OF
(Fic)(cic;€AC A[....CouunsCo . sCi - JER} ) J.

The set of uninvolved components is UC = VC-IC.

The components in RCUIC and the connectors
between them form an old subsystem, which can
process old version data elements. The components in
ACUIC and the connectors between them form a new
subsystem, which can process new version data
elements. A coexisting transformation can be achieved
through arranging these two subsystems running in



parallel. To control data elements flow into and out the
new subsystem, the algorithm also needs to distinguish
the entrance components and exits components of the
new subsystem from other components.

The set of entramce components of the new
subsystem is ENC = {c¢ | cedC and (Fb)(beVC-IC A
<b* c¢*>ed’N) or ~AB)be A4A.C A
<b,*c,*>e4 ' N))}. Here ‘*’ represents any variable.

The set of exit components of the new subsystem is
ENC = {c| c€AC and ({7 b)beVC-IC A <c*
b,*>e4’N) or ~(7b)(be A°.C A <c,* b,*>ecd’N))}.

We give the reconfiguration algorithm in pseudo
code.
procedure reconfiguration
var

A: Configuration; // current configuration

R: RouteMap; // current route map, A supports R

A’, Configuration; // target configuration

R’, RouteMap; // target route map, A’ supports R’
begin

//1. Set all involved components to transparent
mode.

for each ceIC do set c to transparent mode;

//2. Establish new routes.

//2.1. start new components and set their modes.

for each ce AC do begin

start c;

if ce ENC then set c to strict(n,m) mode; //m=n
else if ce EXC then set ¢ to strict(m,n) mode;
else set c to strict(m,m) mode;

endif

//2.2. connect new components to the system.

=0;
while F£AC do begin
// find a added component whose descendants all
// have been connected to the system
for each ce AC-F do
if =(Fb)(be AC-FA...,c,...,b,...]€R’) then
break;
// set up connectors for the component
for each I=<c,*,*,*>c A’ N do setupl;
for each I=<**c *>c A’ N do setupl;
F=Fu{c};

endwhile

//3. Remove old routes.

/73.1. wait all old data to pass the old routes.

for each r=[cy,cs,...c Je R-R’ do begin

if —(F<*,* c;,*>e A’ N) then
wait ¢; to finish processing version n data;
for i=1 to k-1 do begin
for each I=<c;,* ¢y, *>c AN-A’N do
remove ;
wait ci1; to finish processing version n data;
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endif

endif

//3.2. remove all old components.

for each ce RC do remove c;

/4. Rearrange modes of component.

for each ce EXC do set ¢ to filter(n) mode;

for each ce AC-EXC-ENC do

set ¢ to transparent mode;
for each r=[cy,¢y,...cJe R’-R do begin
for i=1 to k do begin
if ;e ACUIC do begin
set c; to strict(n,n) mode;
wait ¢; to finish processing version m data;
endif
endif

endif
end procedure

The algorithm requires all components working in
strict(n,n) mode before reconfiguration. And all
components are set back to strict(nn) mode after
reconfiguration. Therefore, the system is ready for
another reconfiguration.

To use the algorithm, several preconditions must be
satisfied. First, cycle should not appear in old or new
route map. Second, flow synchronization is not allowed
in old or new route map.

Definition 6. There is a cycle on a route [¢;, ¢, ...,
enl, 122, if F,j, 1<i<j<h, such that c;=c;.

Definition 7. There is a flow synchronization if
there exist two routes [c;;, ¢z ..., C1if, B2, and [cy,
€72, «ens Comf, m22, in a route map and F,j,k [, 1<I<j<h,
1<k<I<m, such that c¢;;cy and c=cy.

A cycle in the new route map will cause the
algorithm to fail to connect all new components to the
system in step 2.2. Once a component is connected to
the system, the data it produces should be guaranteed
to be able to flow continuously. Therefore the
algorithm set up the connectors for a component after
all the descendants of the component have been
connected to the system. But in a cycle, a component is
one of the descendants of itself; thereby the algorithm
will fall into dead circulation.

A cycle in the old route map will cause the
algorithm to be not able to wait all old data to pass the
old routes correctly in step 3.1. When the algorithm
detects that all old data have flow through, there may
be some data still flowing in the cycle.

In a route map, when two routes have flow
synchronization, the two routes must transmit equal
numbers of data elements to the intersection part;
otherwise the redundant data elements could not be
processed. The algorithm cannot guarantee exactly the
same number of data elements have passed the two
routes when the two routes are removed.



3.5. Reconfiguration scheduler

We propose to use a reconfiguration scheduler to
control the execution of reconfiguration procedure. In a
time slice, the scheduler can suspend the
reconfiguration procedure after it has run for a period.
And the scheduler should resume the reconfiguration
procedure in next time slice.

The requirement on the PMPI on output rate can be
represented as a tuple (z,p) where 7 is the length of the
time slice for output rate statistic, and p is a percentage
that refers to the actual maximum output rate in
relation to the theoretical maximum output rate. Then
the time that can be spent on the reconfiguration
procedure is £x{7-p) per time slice 1.

The scheduler procedure runs in a high priority; the
reconfiguration procedure runs in a middle priority;
and other functional procedures run in a low priority.
The scheduler procedure wakes up two times in every
slice. The first time takes place when a new time slice
begins. It resumes the reconfiguration procedure,
which is put into running after the scheduler procedure
falls into sleep since its priority is higher than other
functional procedures. The second time takes place
when after rx(/-p) time passes. It suspends the
reconfiguration procedure so that other functional
procedures can possess the rest time in the time slice.
Thus, the time spent on the reconfiguration procedure
in a time slice t is £x{7-p). The scheduling algorithm is
as follows.
procedure scheduling
var

1: Procedure; // the reconfiguration procedure
t: TimeLength; // the length of the time slice
p: float; // the percentage
begin
while r is alive do begin
if r is running begin
suspend r;
sleep txp;
end else begin
resumer;
sleep tx(1-p);
endif

endwhile

end procedure

4. A case study

We use a data broadcasting system to demonstrate
how the algorithm and the scheduler work. In a data
broadcasting system (Figure &), data elements are
designed to be encrypted by encrypter first, and then
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broadcasted by broadcaster. Next, the data elements
can be received by all receivers and decrypted by
decrypters. To wupdate the encryption/decryption
algorithm, a reconfiguration is needed to replace the
encrypter and all the decrypters with new version ones.

encrypter!:l: '_

broadcaster
recewen recelver,,

......
Mo

yige

newencrypter '

Wil

- .!— Y
newdecrypter; |_ :

decrypler; decyfpter,, E

Figure 8. Data broadcasting system

" | newdecryptes,

The original system is specified as follows.
Dependency relationship:
<Encrypter, Decrypter>
Architectural configuration:
{{encrypter, broadcaster, receiver, ..
decrypter, ..., decrypters},

{ <encrypter,1,broadcaster,1>,
<broadcaster,1,receiver;,1>,...,<broadcaster, 1 receiver,, 1>
<receivery,1,decrypter;,1>,... <receiver,,1,decrypter,, 1>} }

Route map:
{[encrypter, broadcaster, receiver;, decrypter;], ...,

[encrypter, broadcaster, receiver,, decrypter,]}

., receivery,

The target system is specified as follows.
Dependency relationship:
<NewEncrypter, NewDecrypter>
Architectural configuration:
{{newencrypter, broadcaster, receivery, ...,
newdecrypter;, ..., newdecrypter,},

{ <newencrypter,1,broadcaster,1>,
<broadcaster,1 receiver;,1>,...,<broadcaster,1 receiver,,1>,
<receiver;,1,newdecrypter;,1>,...,
<receiver,,1,newdecrypter,, 1>} }

Route map:
{[newencrypter, broadcaster, receiver;, newdecrypter], ...,

[newencrypter, broadcaster, receiver,, néwdecrypter,]}

receiver,,

In the reconfiguration algorithm, some variables are

as follows.
RC = {encrypter, decrypter;, ..., decryptera}
AC = {newencrypter, newdecrypter;, ..., newdécrypter,}
VC =IC = {broadcaster, receivery, ..., receiver,}
ENC = {newencrypter}
EXC= {newdecrypter, ..., newdecrypter,}
The parameters for the scheduler are as follows.
t=1 second .
p=280%

The system is implemented on the Reconfigurable
Data Flow (RDF) model, which is a component model
on Java platform. We have developed the RDF model
as an implementation of our influence control
approach. The RDF model is an extension to the



widely used Data Flow (DF) model [3], which focuses
on representation of the flow of data through a system.
DF model explores data flow diagram as graphical
representation and data flow programming [9] as
programming framework. For detail description of the
RDF model, please reference [18].

In order to highlight our concern about the influence
of reconfiguration on system performance, we make
the following assumptions in our experiment.

1) Enough data elements are provided for the
system to consume, thereby the system works
under its maximum workload and the influence
of reconfiguration is maximized. ,
The newdecrypter and the decrypter are
exactly the same, thereby the influence on
output rate is only caused by structure
reconfiguration.

In the experiment, we provide an sequence of
natural numbers (1,2,3,...) as the input of the system
and record the output and the output rate of every
branch through the runtime. We run the system two
times. In the first run, the reconfiguration is not
executed; and in the second run, the reconfiguration is
executed. Comparing the results, we can find the
influence of the reconfiguration.

The output:

In the first run
decrypter;: 1,2,3,...
decrypter,: 1,2,3,...

2)

In the second run
decrypter; & newdecrypter;: 1,2,3,...
decrypter, & newdecrypter,: 1,2,3,...

- data elements per second)

The output rate: (in dps
2

Time slice 1 3 4 5 6
First run 413 | 425 | 421 432 | 405 | 428
Second run 373 348 389 417 408

409

There is no difference between the outputs of the
two runs. Every branch outputs a sequence of natural
numbers as same as the input, whether the
reconfiguration takes place or not. Therefore we can
draw the conclusion that the reconfiguration has no
functional side effect.

Because of the uncertainty of the thread scheduling,
the output rate is not fixed during runtime. We choose
the average output rate in first run as the maximum
output rate. It is 421dps. And in second rum, since
newdecrypter and decrypter are exactly the same, the
theoretical ~ maximum  output rates  before
reconfiguration and after reconfiguration should be
same to that of the first run. Thus, the max
performance influence is |348-421}/421=17%<(1-p).
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Therefore, we can say the performance influence of the
reconfiguration is in the expected range.

5. Conclusion and future work

In this paper, we have shown how to control the
influence of dynamic reconfiguration. First, we analyze
the influence of dynamic reconfiguration on system
functionality and performance. Then, we use two
models, switching transformation and coexisting
transformation, to character reconfiguration. They all
have no functional side effect, but only the coexisting
transformation is suitable for performance influence
control. Next, we present a reconfiguration algorithm
and a reconfiguration scheduler, which are based on
the coexisting transformation reconfiguration model.
And finally, we give an implementation of the
algorithm and scheduler on the RDF model. The
experimental results of have confirmed that our
influence control approach is practical for dynamic
reconfiguration.

Future work focuses on extension of the
reconfiguration algorithm. Because at the current stage,
the algorithm requires that there is no ring or flow
synchronization on any route of the old or new route
maps, further efforts should be made to extend the plan
to adapt to these two conditions.
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