
Prerequisites for Successful Architectural Knowledge Sharing

Rik Farenhorst, Patricia Lago, Hans van Vliet

Department of Computer Science

Vrije Universiteit Amsterdam

The Netherlands

{rik, patricia, hans}@cs.vu.nl

Abstract

Sharing knowledge pertaining to software architectures

becomes increasingly important. If this knowledge is not

explicitly stored or communicated, valuable knowledge dis-

sipates. However, stakeholders will only share knowledge

with each other if they are motivated to do so, or in other

words if the necessary incentives are created. In this pa-

per we identify three incentives for architectural knowledge

sharing: the establishment of social ties, more efficient de-

cision making, and knowledge internalization. Next, we

discuss our experiences on how architectural knowledge is

shared in a large software development organization. Based

on these experiences we propose a set of prerequisites that

need to be met to foster successful architectural knowledge

sharing. The importance of these prerequisites is motivated

by demonstrating that they create the identified incentives.

1. Introduction

The last decade and a half has seen a phenomenal growth

of software architecture as a discipline [22]. There now is

a universal recognition that software architecture is an in-

dispensable part of software system development. Using an

explicit software architecture allows for early stakeholder

interaction, provides a basis for a work breakdown struc-

ture, and makes it possible to assess the quality of the sys-

tem in an early stage [5]. Although considerable progress

has been made in this area, few techniques exist to manage

and share knowledge pertaining to software architectures.

Various authors (e.g. [2,6,18]) address the notion of ‘ar-

chitectural knowledge’ and provide a model of what this

notion entails. Key elements in all these models are archi-

tectural design decisions and their rationale. A focus on

such decisions allows capturing the process of how the soft-

ware architecture was created and why it was done this way,

instead of only emphasizing what it is comprised of.

Architectural design decisions embodied in the software

architecture and the rationale for these decisions is often

not explicitly stored or communicated. Therefore, valu-

able knowledge dissipates. This common problem in the

architecting phase of software development is also known

as knowledge vaporization [6].

Emerging trends such as globalization, offshoring, vir-

tual organizations, and collaboration within closed and open

communities further enhance the importance of sharing ar-

chitectural knowledge. Stakeholders are often located at

large distances from each other, which makes face-to-face

exchange of knowledge hard. Nevertheless, to exchange

ideas and share expertise these stakeholders have specific

knowledge needs.

The knowledge needs of stakeholders in the architect-

ing process can be addressed in various ways. However,

implementing means for architectural knowledge sharing is

definitely not only about choosing the right tool. Success-

ful knowledge sharing can only be achieved if the necessary

incentives are created. These incentives induce stakehold-

ers to share valuable architectural knowledge, such as the

major design decisions made, the underlying rationale for

these decisions, and alternatives that were considered.

In Figure 1 our research contribution is visualized

schematically. In this figure, the numbers between the

brackets denote the main results presented in this paper.

Based on a literature review on knowledge management

principles, combined with our own experience in software

architecture research, we (1) identify three incentives for

architectural knowledge: the establishment of social ties,

more efficient decision making, and knowledge internaliza-

tion. In addition, to get insights in how architectural knowl-

edge is shared in practice, we have conducted a case study

in a large software development organization. Based on the

results of this case study, we (2) identify a set of issues

pertaining to sharing architectural knowledge. In order to

address these issues, we (3) propose a set of prerequisites

for architectural knowledge sharing. We argue that suc-

cessful architectural knowledge sharing is only possible if

Issues related to

AK sharing

Prerequisites for

AK sharing

Incentives for

AK sharing

addressed by

create

(1)

(2) (3)

Case study: AK Sharing in Practice

Figure 1. Research Contribution

these prerequisites are met. We demonstrate this by show-

ing that these prerequisites not only address the identified

issues, but also create the identified incentives for sharing

architectural knowledge. This demonstration indicates that

these prerequisites are crucial to foster successful architec-

tural knowledge sharing; not only in the context of the case

study organization, but in general.

During the case study, our primary interest was in the

architecting process and the mechanisms implemented to

share architectural knowledge. We have modeled the ar-

chitecting process of this organization using four different

perspectives that focus on the design decisions taken, the

architectural descriptions made, the roles and responsibil-

ities of the stakeholders involved, and the architecting en-

vironment in which the process takes place, respectively.

The advantages of modeling the organization’s architecting

process this way are twofold. First, it acts as a diagnosis

instrument that allows us to identify the issues related to

architectural knowledge sharing. Second, it serves as an

implementation instrument that helps improving the orga-

nization’s architecting process by addressing these issues.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work on knowledge management in

the software architecture domain. In Section 3 a set of in-

centives for architectural knowledge sharing is identified.

Section 4 describes the research methodology used during

the case study. Sections 5 and 6 cover the results of this

case study, and list a number of issues pertaining to archi-

tectural knowledge sharing. In Section 7 a set of prerequi-

sites for architectural knowledge sharing is proposed, and

it is demonstrated how these prerequisites create the neces-

sary incentives for architectural knowledge sharing. Finally,

Section 8 contains our conclusions and presents an outlook

on future work.

2. Related work

In recent years, increasing attention has been paid in

software architecture research to the notion of ‘architec-

tural knowledge’ and how this knowledge, such as architec-

tural design decisions and their rationale, can be success-

fully managed [6,24,26]. A growing number of researchers

acknowledges that a software architecture can - or should

- be viewed as the collection of architectural design deci-

sions [17], or as the design decisions plus the resulting de-

sign [18]. Consequently, the architecting process is viewed

as being primarily a decision making process.

In an overview of the maturation of the software archi-

tecture field [22], Shaw and Clements conclude with an

outlook on future work in software architecture research.

Promising topics mentioned include the organization of ar-

chitectural knowledge to create reference materials, and the

link of architectural design decisions to quality attributes.

Both these goals are served in our recent work on con-

structing a domain model of architectural knowledge [12],

that acts as a common frame of reference for architectural

knowledge concepts.

Other recent software architecture research focuses on

the traceability between architectural design decisions and

stakeholder concerns [27], and the documentation of ar-

chitecture design rationale [23]. In addition, some initia-

tives for managing or sharing architectural knowledge have

been introduced. These include an architectural knowledge

repository that provides an environment to capture and man-

age architectural knowledge and support the architecting

process [2], and a tool that models the relationship between

a software architecture and the design decisions embodied

in it in detail [17].

Research pertaining to architectural knowledge benefits

from related research fields, especially from knowledge

management research. The influence from the knowledge

management field in Software Engineering research is not

new, as can be seen from examples such as the Experi-

ence Base construct [3] and organizational learning prin-

ciples [9]. To further enhance the state of the art in software

architecture, in this paper we draw on knowledge manage-

ment principles in order to improve architectural knowledge

sharing.

In recent literature additional warnings are presented for

the fact that not all knowledge sharing implementations

are successful automatically. In [13] several factors that

make knowledge sharing difficult are listed, such as the fact

that knowledge sharing is time consuming, and that people

might not trust the knowledge management system. An-

other warning is that it is infeasible to strive for complete-

ness. In [20] it is noted that it is impossible to create a tool

to reason about all the issues that an architect would nor-

mally need to consider. Finally, we should be aware of the

fact that a lot of the available knowledge cannot be made

explicit at all, but instead remains tacit in the minds of peo-

ple [21]. Sharing this tacit knowledge is very hard, as stated

in [14].

The above warnings clearly indicate that successful

architectural knowledge sharing involves more than just

choosing the right software tool. We argue that success-

ful architectural knowledge sharing can only be achieved if

the necessary incentives are created. How these incentives

can be created is the topic that is addressed in the remainder

of this paper.

3. Incentives for AK Sharing

In the architecting phase of software development, a lot

of implicit and explicit knowledge is required to take ap-

propriate architectural design decisions. This knowledge is

usually scattered across the organization. Various stake-

holders, such as software developers, architects, project

managers, and maintainers, all possess knowledge that can

be of value when developing the software architecture. We

assert that sharing this knowledge between these stakehold-

ers leads to a number of ‘intrinsic’ benefits. If stakehold-

ers would recognize these benefits, it would induce them to

share valuable architectural knowledge. In this sense, these

benefits act as incentives for architectural knowledge shar-

ing.

Based on insights gained from related knowledge man-

agement literature, as well as our own experience in soft-

ware architecture research, we have identified three incen-

tives for architectural knowledge sharing. We argue that

these incentives need to be created in order to promote suc-

cessful architectural knowledge sharing. Below, they are

elaborated in turn.

1. Establishment of social ties. Research has shown that

if stakeholders trust each other and the ‘competition’

between them is minimized, the motivation for cooper-

ation and sharing knowledge is higher [1]. Moreover,

individuals will only participate willingly in knowl-

edge exchange once they share a sense of identity or

belonging with their colleagues [7]. Sharing knowl-

edge with these colleagues may then further increase

the trust between them, thereby improving relation-

ships. Establishing social ties, either by increasing the

trust or by minimizing the competition between stake-

holders, therefore acts as an incentive for knowledge

sharing.

This incentive for knowledge sharing also applies to

the software architecture domain. When typical stake-

holders in the architecting process, such as project

managers, developers, or architects, collaborate in the

decision making process and exchange ideas or exper-

tise, the social ties between them will become stronger.

2. More efficient decision making. According to [8] a

group’s performance increases when everyone in this

group is informed of each other’s expertise. This is be-

cause such knowledge allows groups to engage in joint

brainstorming sessions in which group members are

able to explore new ideas and discuss difficult issues.

This increase in group performance is something ar-

chitects in a software architecture environment benefit

from. For software architects it is often very important

to not only get feedback from colleague architects, but

also from developers or maintainers when developing

the software architecture. Developers may have a lot of

expertise and their insights and experience can benefit

the architects in an early stage. The same holds true

for maintainers that may have gathered knowledge on

the actual pros or cons of past decisions. Architec-

tural knowledge sharing creates a feedback loop be-

tween architects and other stakeholders in the archi-

tecting process. Having such a feedback loop greatly

improves the efficiency of the decision-making process

and is therefore an incentive for architectural knowl-

edge sharing.

3. Knowledge internalization. When actively sharing

knowledge, people are able to communicate valu-

able experience with each other. This experience is

then stored as tacit expert knowledge in their minds.

This process is called knowledge internalization [8].

Knowledge internalization refers to the degree to

which a recipient obtains ownership of, commitment

to, and satisfaction with the transferred knowledge.

When knowledge is fully internalized by a recipient,

it becomes theirs. Consequently, tacit knowledge in-

creases the quality of the work and makes the work go

smoothly [14], and the more knowledge is shared, the

more knowledge can be internalized by practitioners.

Knowledge internalization greatly assists software ar-

chitects in their daily practice. Having internal-

ized valuable experiences helps them in avoiding sub-

optimal solutions, but also enables them to learn from

mistakes, such as ‘bad’ design decisions or architec-

tures that have been developed in the past but now

cause headaches. As a result, the software architec-

tures that are being developed are based on a set of de-

cisions that is more carefully considered, and therefore

have a higher overall quality.

4. Research Methodology

Within our research group we are developing notations,

tools and associated methods to extract, represent and use

architectural knowledge. Our research is conducted in a re-

search consortium, in which four large organizations par-

ticipate. Each of these organizations has specific interests

in, or issues with successful managing and sharing knowl-

edge pertaining to software architectures. In yearly research

cycles we focus on a selection of these issues, conduct case

studies to come to the core of the problem, and subsequently

propose and develop solutions to this problem. After each

research cycle we reflect on the insights gained and results

obtained, in order to further improve our understanding of

architectural knowledge.

In our latest research cycle, we aimed at investigating

how architectural knowledge is shared in practice. To this

end, we have conducted a case study in a large Dutch soft-

ware development organization. Although this organization

acknowledges the importance of software architectures, dis-

cussions with architects and developers indicated that the

organization struggles with how software architecture de-

velopment - using methods, techniques, and tools - can best

be fit in the overall development process, and how architec-

tural knowledge can best be shared and (re)used.

Our research methodology best resembles action re-

search [4]. The essence of action research can be described

as a two stage process, consisting of a diagnostic stage

that involves a collaborative analysis of the current situa-

tion, followed by a therapeutic stage that covers collabora-

tive change experiments to improve this situation. During

the case study we were actively involved with stakeholders

from the case study organization. Results of the diagnostic

stage, in which we investigated how architectural knowl-

edge is currently shared within the case study organization,

are elaborated in Sections 5 and 6. Our suggestions for im-

provement are discussed in Section 7, but implementation

thereof remains to be done.

5. Modeling the Architecting Process

We started our research in the case study organization

with a diagnosis of how architectural knowledge was per-

ceived in this organization. We used three main sources for

this diagnosis: a questionnaire containing several use cases

for architectural knowledge, a documentation study of stan-

dards, best practices and architectural descriptions, and fi-

nally a set of open interviews with various stakeholders of

the architecting process.

Questionnaire. We used a questionnaire consisting of

27 potential use cases for architectural knowledge. A more

elaborate description of these use cases is given in [25]. We

asked 15 architects how important they consider these use

cases, by letting them give scores on a scale from 1 to 5.

We ranked the use cases by counting the total scores they

received from the 15 architects. Among the five use cases

that rank highest are three use cases that are clearly devoted

to sharing architectural knowledge:

• Take a design decision based on explicit concerns of a

stakeholder.

• Explain to stakeholders (the impact of) a design deci-

sion that is taken.

• Keep stakeholders up-to-date on a certain (new or

changed) design decision.

This indicates that there is a clear interest in sharing ar-

chitectural knowledge within this organization.

Documentation study. In order to retrieve more infor-

mation on how architectural knowledge is currently shared,

we examined available documentation such as architectural

standards and best practices, example architecture docu-

ments, and related functional and technical system docu-

mentation. During this documentation study we gained ini-

tial insight into the terminology used and the kind of sys-

tems that are developed.

Interviews. We held 17 interviews with various kinds

of stakeholders, among which were architects, developers,

maintainers, project managers, and software testers. The

interviews were open and focused on how the interviewees

perceive architectural knowledge in the organization. Since

the interviewees were asked to elaborate their answers the

interviews provided us with detailed information on how ar-

chitects and other stakeholders use architectural knowledge,

what their knowledge need is, and what the current limita-

tions are regarding architectural knowledge sharing.

Using the questionnaire, documentation study, and inter-

views as primary sources, we were able to collect an exten-

sive amount of information about the architecting process

of the case study organization. We have modeled the col-

lected information using four perspectives. These four per-

spectives have been identified based on our domain model

of architectural knowledge [12]:

1. The architecting environment perspective that targets

the broad context in which the software architectures

are developed.

2. The decision making perspective that puts the archi-

tectural design decisions and their rationale central.

3. The architectural descriptions perspective that fo-

cuses on the design artifacts that are constructed.

4. The stakeholder roles and responsibilities perspec-

tive that examines the stakeholders and their roles.

Viewing the case study organization from these multiple

angles allowed us to retrieve information specific to impor-

tant aspects of the architecting process, and to capture the

recursive nature of this process, which is described in [15].

Other approaches tend to focus on either the decision mak-

ing process, without explicitly looking at the process in

which the decisions are being taken (e.g. [19] and its de-

scendants), or on the design artifacts (e.g. [16]).

In this paper we use the observations made in [11] with

respect to architectural knowledge sharing in the case study

organization to determine a set of prerequisites that address

the knowledge sharing issues. In the following subsections

we summarize the findings by focusing on each of the four

different perspectives in turn.

5.1. Architecting environment

Architect: ”Even though it was clear that the system’s

performance was worse when using this type of database

connections, the customer strictly referred to its reference

architecture that forbids any alternatives. Further discus-

sion on this issue was not possible.”

The organization in which this case study has been per-

formed has a large organization as its main customer. This

customer organization has its own architecture department

that has strict control over the system development. Based

on this customer organization’s reference architecture, con-

straints have been defined for individual systems. Often

there is little room for deviating from these constraints.

Because of the existing systems that are already in place

in the customer organization, little or no systems are de-

veloped based on a ‘greenfield’ situation. Often, new sys-

tems have to replace or extend an existing system. The case

study organization has developed a knowledge repository to

guide architects in creating an architecture, but this repos-

itory is mainly intended for ‘greenfield’ system develop-

ment. The guidelines used by the repository do not comply

with the reference architecture of the main customer. The

customer organization acknowledges that if crucial archi-

tectural knowledge about the reference architecture is added

to the repository, the quality and efficiency of decision mak-

ing will increase. Nevertheless, as of yet no effort has been

taken to implement this. Therefore, when using the repos-

itory, chances are that architectural solutions proposed are

in conflict with the constraints defined by the customer.

One can argue that among the most interesting architec-

tural knowledge worth sharing is that of the customer orga-

nization. The fact that this is not done in the current repos-

itory is one of the main reasons for architects not to use it.

This was confirmed in interviews held with four different

architects.

5.2. Decision making

Developer: ”It is often the case that me and my

colleagues take the major design decisions, while the ar-

chitect’s main function is that of a scribe. The architecture

documentation he creates reflects the decisions we have

taken.”

We found out that currently in this organization the archi-

tects do not have overall control over the decision making

process. Developers often possess more technical expertise

and are more up-to-date with the functional and technical

constraints posed by the customer. Therefore, they make

most of the technical design decisions. In addition, since

the customer organization dictates certain rules that have to

be adhered to, already several decisions have been made at

the start of the architecting process. Architects and develop-

ers maintained in the interviews that they have only limited

freedom in taking design decisions. They decide mainly

on more localized and less cross-cutting issues, such as the

kind of development tools to be used.

Above observations are in contrast with the statement

that the architect is taking the main design decisions [10].

Architects in this organization do not create much architec-

tural knowledge to share with other stakeholders, but they

do act as linking pin between the customer organization and

the development teams. Architects are responsible for the

overall quality of the system to be built, and therefore need

to solve conflicting decisions, make the right tradeoffs, and

check whether development teams comply to the architec-

ture. Therefore, for them it is important that knowledge

created within the customer organization or within the de-

velopment teams is shared. Both project managers and ar-

chitects confirmed in the interviews that this feedback loop

would allow architects to build up expertise, gain practical

insights, and define best practices for future software archi-

tectures.

5.3. Architectural descriptions

Maintainer: ”Up until this interview I didn’t know there

existed an architecture description of the system.”

Not all stakeholders agree with the level of detail that

is to be used in the views of the architectural description.

Developers and maintainers indicated in the interviews that

they consider most of the views too high-level. Project man-

agers on the other hand think the architectural descriptions

are clear and nicely suited for non-technical people as well.

Architectural knowledge is not only found in the stan-

dard architecture documentation, but also scattered around

in technical and functional design documents used by de-

velopers and maintainers. Many interviewees stressed the

need for collaboration and sharing important information

between architects, developers and maintainers.

Although some views in the architecture description are

targeted at the maintainers, maintainers are unaware of the

information that is described for them. In a meeting with

five maintainers it became clear that none of them had seen

the architecture description of the system they were main-

taining before.

5.4. Stakeholder roles and responsibilities

Architect: ”Basically, the architecture description is

finished as soon as the project manager and lead developers

give their approval. After this, my job ends and I am no

longer responsible for keeping the architectural description

up-to-date.”

In the case study organization architects are not responsi-

ble for maintaining the architecture document after the sys-

tem has been developed. Since no other ‘owners’ of this

document exist, it soon becomes outdated. This is one of

the reasons for the fact that architectural descriptions are

not often read by developers and maintainers.

The architect does not fulfill a prescriptive role in the ar-

chitecting process that allows him to take all major architec-

tural design decisions, but rather a descriptive one in which

he is the mediator between the customer organization and

the technical stakeholders. However, the knowledge reposi-

tory introduced in Section 5.1 is designed to be prescriptive,

and supports architects in making decisions. Because of this

mismatch, the repository turned out to be unpopular among

architects and seldom used.

6. Issues related to AK Sharing

Based on the results described in the previous section,

we can conclude that the available mechanisms for sharing

architectural knowledge are not optimally implemented in

the case study organization. From the case study results

we have distilled six issues related to sharing architectural

knowledge. Figure 2 depicts a model of the current archi-

tecting process of the case study organization. This model

helps visualizing the issues by highlighting the five differ-

ent stakeholders of the architecting process and how they

communicate. The rectangular elements represent entities;

the elliptical ones denote actions on or with these entities.

Arrows indicate the creation of new instances of an entity.

Actions and entities that are linked together can be read as

sentences, e.g ”An architect takes an architectural design

decision.”

1. No consistency between architecture and design

documents. There is no alignment between the architecture

descriptions and the functional design and technical design

documents used by developers and maintainers. Because

of the lack of alignment, valuable architectural knowledge

might be dispersed in the organization without the archi-

tects knowing it. Consequently, it is hard to judge whether

the architectural description conflicts with the design that is

preferred by the developers. This lack of alignment is visu-

alized in Figure 2 by the absence of a direct connection be-

tween the functional and technical design documents shown

at the left part and the architectural description shown at the

to have

Architectural

knowledge

repository

to update
Repository

maintainer

Architecture

department

Existing

software

systems

Reference

architecture
conform to

to maintain

Customer organization

Architect

Maintenance

team

Technical

design
Architectural

description

to create

w.r.i.

to take

Architectural

design decision

Architectural

design decision

to take

w.r.i.

w.r.i.

Expertise Best practices

Technology

preferences and

standards

Development

team

to create

Legend

Domain actionDomain entity Stakeholder

w.r.i.

Instance creation

(“which results in”)

Participation

association

Functional

design

w.r.i.

Figure 2. Current Architecting Process

right part. Architectural knowledge in a technical design

document that needs to be shared therefore has to travel

through two different stakeholders to reach the architecture

description.

2. Communication overhead between stakeholders.

Developers occasionally have to explain the architects tech-

nical decisions more than once. The reason for this is that

decisions made in earlier meetings, including the rationale

for these decisions, are not adequately stored in the archi-

tecture description. This knowledge sometimes dissipates

quickly. Consequently, architects need to meet again with

the developers to get this knowledge explicit at a later point

in time. This problem of communication overhead is de-

picted in the right part of Figure 2 by the lack of explicit

connection between design decisions taken by developers

to the architectural description created by the architect.

3. No explicit collaboration with maintenance teams.

Although maintainers are targeted in the architectural doc-

umentation, they are not involved as a stakeholder in the

architecting process. No active discussions between archi-

tects and maintainers take place and the requirements of the

maintenance teams are not taken into account during archi-

tecture development. The lack of a connection between the

maintenance team and the architect in Figure 2 illustrates

this problem.

4. No feedback from developers to architects. Devel-

opers sometimes wear the hat of the architect and also make

design decisions. However, architects are not informed on

the decisions made by the developers unless explicit meet-

ings take place. There is no mechanism in place that allows

developers to share what they are doing. Therefore, it is

very difficult for the architect to find out what kind of tech-

nical issues are encountered or what detailed decisions are

taken. The lack of feedback from developers to architects is

reflected in the center of Figure 2 by the lack of communi-

cation between the development team and the architect.

5. No up-to-date knowledge from development teams

in repository. The architectural knowledge repository con-

tains little to no information on the ‘best practices’, tech-

nology preferences and standards, and expertise currently

available at the development teams. Therefore, the reposi-

tory is unable to advise architectural directions that match

with the development processes. This problem is visualized

in Figure 2 by the fact that design decisions made by the de-

velopers are disconnected from the knowledge repository.

6. No up-to-date knowledge from main customer in

repository. The architectural knowledge repository also

lacks up-to-date knowledge on the customer organization’s

reference architecture. Therefore, the repository cannot

give architectural directions that automatically comply with

the constraints posed by this reference architecture. This is

illustrated in Figure 2 by the isolated reference architecture

in the top right corner.

7. Prerequisites for Successful AK Sharing

The six issues identified in the previous section suggest

that in the case study organization architectural knowledge

sharing is immature. We have investigated how the archi-

tecting process of this organization needs to be changed

in order to improve architectural knowledge sharing. We

propose four prerequisites that have to be met in order to

change the architecting process in such a way that all six

architectural knowledge sharing issues are addressed. We

argue that meeting these four prerequisites leads to an im-

proved architecting process in which architectural knowl-

edge is successfully shared. A conceptual outline of this

improved process is depicted in Figure 3.

The four prerequisites are listed below. Two of them are

illustrated in more detail in Figure 4 by showing the dif-

ferences between the current and the improved architecting

process. The thick boxes and lines in this figure highlight

the domain entities and actions that relate to the issues in

the current process and the solutions to these issues in the

improved process.

1. Alignment between design artifacts. Architectural

descriptions need to be aligned with other design doc-

uments. This can be done by enriching the architec-

tural description with links to relevant (lower level) de-

sign documents, allowing developers or more technical

stakeholders to more easily find their way in the set

of documentation. Keeping these links up-to-date en-

sures that the architecture description always reflects

the current state of the system, rendering it a good

starting point for stakeholders that want to know some-

thing about the system. This prerequisite deals with is-

Architectural

knowledge

repository

to update

Repository

maintainer

Architecture

department

Existing

software

systems

Reference

architecture
conform to

to maintain

Customer organization

Architect
Development

team

Maintenance

team

Architectural

description

Architectural

Design Decision

to take

w.r.i.

Expertise Best practices

Technology

preferences and

standards

to have
to communicate

with

contains

contains

to generate

Technical

design

based on

input from

Functional

design

using

to use

to align with

in

to store

Figure 3. Improved Architecting Process

sue #1: ‘No consistency between architecture and de-

sign documents’. In the left part of Figure 4 is visual-

ized how this is done. At the top left of this figure the

current situation is depicted. There is a clear distance

between the architectural description used by the archi-

tect on the one hand, and the functional and technical

design documents used by the development team and

maintenance team on the other hand. The absence of

a direct connection between these documents is high-

lighted by the thick dashed line. This line indicates

that there is no check for consistency possible between

these documents. In the improved situation, depicted

in the lower left part of the figure, the alignment be-

tween design artifacts enables this consistency check.

2. Traceability between architectural decisions and

descriptions. If all architectural design decisions

are documented using specific templates (e.g. using

the one proposed in [24]), including considered al-

ternatives and the rationale for the decisions, archi-

tectural descriptions provide a good summary of the

decision-making process that leads to a certain ar-

chitecture. Documenting the valuable architectural

knowledge prevents its dissipation. As a result, com-

munication between architects and other stakeholders,

such as developers, will improve since the current state

of the architecting process is known at all times. Con-

sequently, discussions do not need to be held more

often than necessary. This prerequisite therefore ad-

dresses issue #2: ‘Communication overhead between

Issue #1: No consistency between

architecture and design documents
Issue #5+6: No up-to-date knowledge from

development teams or main customer in

repository

Prerequisite #1: Alignment between design artifacts Prerequisite #4: Central architectural knowledge repository

Architectural

knowledge

repository

to update

Repository

maintainer

Architecture

department

Existing

software

systems

Reference

architecture
conform to

to maintain

Customer organization

Architect
Development

team

Maintenance

team

Architectural

description

Architectural

Design Decision

to take

w.r.i.

Expertise Best practices

Technology

preferences and

standards

to have
to communicate

with

contains

contains
to generate

Technical

design

based on

input from

Functional

design

using

to use

to align with

in

to store

Architectural

knowledge

repository

to update

Repository

maintainer

Architecture

department

Existing

software

systems

Reference

architecture
conform to

to maintain

Customer organization

Architect
Development

team

Maintenance

team

Architectural

description

Architectural

Design Decision

to take

w.r.i.

Expertise Best practices

Technology

preferences and

standards

to have
to communicate

with

contains

contains
to generate

Technical

design

based on

input from

Functional

design

using

to use

to align with

in

to store

to have

Architectural

knowledge

repository

to update
Repository

maintainer

Architecture

department

Existing

software

systems

Reference

architecture
conform to

to maintain

Customer organization

Architect

Maintenance

team

Technical

design
Architectural

description

to create

w.r.i.

to take

Architectural

design decision

Architectural

design decision

to take

w.r.i.

w.r.i.

Expertise Best practices

Technology

preferences and

standards

Development

team

to create

Functional

design

w.r.i.

to have

Architectural

knowledge

repository

to update
Repository

maintainer

Architecture

department

Existing

software

systems

Reference

architecture
conform to

to maintain

Customer organization

Architect

Maintenance

team

Technical

design
Architectural

description

to create

w.r.i.

to take

Architectural

design decision

Architectural

design decision

to take

w.r.i.

w.r.i.

Expertise Best practices

Technology

preferences and

standards

Development

team

to create

Functional

design

w.r.i.

Figure 4. Addressing Architectural Knowledge Sharing Issues

stakeholders’.

3. Architects fulfill a central role. The architects need

to fulfill a central role in the architecting process.

This guarantees better communication with all in-

volved stakeholders through frequent formal and in-

formal meetings, direct involvement of developers in

decision-making, and better collaboration with the

maintenance teams. This prerequisite addresses is-

sues #3: ‘No explicit collaboration with maintenance

teams’ and #4: ‘No feedback from developers to archi-

tects’.

4. Central architectural knowledge repository. A cen-

tral architectural knowledge repository allows for stor-

ing valuable input on the decision-making process

from all stakeholders involved. This improvement is

visualized in the right part of Figure 4. In the top right

of this figure, the current situation is depicted. Here,

the architectural knowledge repository is isolated and

valuable knowledge, such as experience from develop-

ers or knowledge stored in the reference architecture

within the customer organization, is not contained in

this repository. In the improved situation this knowl-

edge is stored in a ‘central’ architectural knowledge

repository. The thick lines indicate that this repository

is positioned as a central storage facility for architec-

tural knowledge. This prerequisite therefore directly

addresses issues #5: ‘No up-to-date knowledge from

development teams in repository’ and #6: ‘No up-to-

date knowledge from main customer in repository’.

In the discussion of the four prerequisites for successful

architectural knowledge sharing, we have indicated how the

issues found in the case study organization are addressed.

The mapping between the six identified issues and the pre-

requisites that address these issues, is further illustrated in

the left part of Figure 5.

PrerequisiteIssue

3. Architects fulfill a

central role

4. Central architectural

knowledge repository

1. Alignment between

 design artifacts

2. Traceability between

architectural decisions

 and descriptions

5. No up-to-date knowledge

from development teams

in repository

1. No consistency between

architecture and design

documents

4. No feedback from

developers to architects

6. No up-to-date knowledge

 from main customer in

repository

2. Communication overhead

 between stakeholders

3. No explicit collaboration

with maintenance teams

1. Establishment of

 social ties

2. More efficient

 decision making

Creates

feedback loop

Minimizes

competition

3. Knowledge

 internalization

Incentive
addressed by create

Higher quality

knowledge

Figure 5. Mapping Prerequisites to the Identi-

fied Issues and Incentives

We argue that architectural knowledge sharing in prac-

tice significantly improves if all four of these prerequisites

are met. In order to show the importance of these prerequi-

sites, the right part of Figure 5 illustrates that these prerequi-

sites create the identified incentives for sharing architectural

knowledge. These incentives are created as follows. Ensur-

ing ‘alignment between design design artifacts’ and ‘adding

traceability between architectural decisions and descrip-

tions’ both improve the quality of knowledge that is made

explicit and subsequently shared. As described in Section 3,

this positively affects the amount of knowledge that is in-

ternalized by stakeholders, hence creating the ‘knowledge

internalization’ incentive.

The incentive ‘establishment of social ties’ is created

by allowing the ‘architects to fulfill a central role’ in the

architecting process. The improved communication initi-

ated by architects can create a bond between stakeholders

that induces architectural knowledge sharing. The inter-

nal competition is minimized as architects stress the need

for cooperation, and by working more closely together the

trust between stakeholders also increases. More extensive

knowledge sharing establishes social ties, as explained in

Section 3.

Finally, implementing a ‘central architectural knowl-

edge repository’ enables a feedback loop between devel-

opers, maintainers and architects. All stakeholders use the

central repository to monitor the status and progress of the

architecture, and are able to participate in the decision mak-

ing process by sharing expertise, best practices and common

sense. This improves the overall group performance. As

explained in Section 3 the existence of this feedback loop

results in ‘more efficient decision making’.

In this section we have shown that the issues identi-

fied during the case study are all addressed if methods and

means to share architectural knowledge meet the proposed

prerequisites. Next to this, the fact that the four prereq-

uisites map onto the three, context-independent, incentives

identified in Section 3, denotes the value of these prerequi-

sites; not only in the context of the case study organization,

but in general. Sharing architectural knowledge is crucial in

any architecting process; creating the necessary incentives

motivates stakeholders to do so in an efficient and success-

ful way.

8. Conclusions and Future Work

Sharing architectural knowledge is crucial to prevent this

knowledge from dissipating. However, successful knowl-

edge sharing can only be achieved if the necessary incen-

tives are created. In this paper we have identified three in-

centives for architectural knowledge sharing. We argue that

these incentives need to be created in order to promote suc-

cessful architectural knowledge sharing.

We have examined how architectural knowledge is

shared in a large software development organization. In

this organization we identified several types of stakehold-

ers with various interests, including a customer organization

that poses constraints on the software architecture. Due to

emerging trends such as globalization, offshoring, and vir-

tual organizations, we believe that settings similar to the one

found in our case study are not limited to the case study or-

ganization alone.

We have modeled the architecting process of the case

study organization using four different perspectives. This

allowed us to diagnose the issues related to architectural

knowledge sharing. Next to acting as a diagnosis instru-

ment, our modeling approach served as an implementation

instrument to help us suggest how the architecting process

of the case study organization should be improved. To-

gether with the management of the case study organization

it has been decided to put effort on implementing these im-

provements, by meeting the four identified prerequisites for

successful architectural knowledge sharing.

Next to assisting the case study organization in improv-

ing their architecting process, we have demonstrated how

the four prerequisites create the three identified incentives

for architectural knowledge sharing. This demonstration in-

dicates that these prerequisites are vital to foster successful

architectural knowledge sharing; not only in the context of

the case study organization, but in general.

Our ongoing research focuses on defining and imple-

menting methods and tools for sharing architectural knowl-

edge. On the long term, we envision a grid-like system

that encompasses all kinds of services to manage and share

architectural knowledge within and between organizations.

The results of this paper indicate that in order to make this

architectural knowledge platform a success, it is important

that these services further enable the proposed prerequisites

for architectural knowledge sharing.

Acknowledgment

This research has been partially sponsored by the Dutch

Joint Academic and Commercial Quality Research & De-

velopment (Jacquard) program on Software Engineering

Research via contract 638.001.406 GRIFFIN: a GRId For

inFormatIoN about architectural knowledge.

References

[1] L. Argote. Organizational Learning : Creating, Retaining,

and Transferring Knowledge. Kluwer Academic, 1999.

[2] M. A. Babar, I. Gorton, and R. Jeffery. Toward a Framework

for Capturing and Using Architecture Design Knowledge.

Technical report unsw-cse-tr-0513, The University of New

South Wales, June 2005.

[3] V. R. Basili, G. Caldiera, and D. H. Rombach. The Expe-

rience Factory. In Encyclopedia of Software Engineering,

volume 2, pages 469–476. John Wiley & Sons Inc., 1994.

[4] R. L. Baskerville. Investigating Information Systems with

Action Research. Communications of the AIS, 2(3es), 1999.

[5] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice. SEI Series in Software Engineering. Addison-

Wesley Pearson Education, Boston, second edition, 2003.

[6] J. Bosch. Software Architecture: The Next Step. In

F. Oquendo, B. Warboys, and R. Morrison, editors, 1st Euro-

pean Workshop on Software Architectures (EWSA), volume

3074, Lecture Notes in Computer Science, pages 194–199,

St. Andrews, UK, 2004. Springer-Verlag.

[7] H. Bresman, J. Birkinshaw, and R. Nobel. Knowledge

Transfer in International Acquisitions. Journal of Interna-

tional Business Studies, 30(3):439–462, 1999.

[8] J. Cummings. Knowledge Sharing: A Review of the Litera-

ture. Technical report, The World Bank Operations Evalua-

tion Department, 2003.

[9] T. Dingsøyr, P. Lago, and H. van Vliet. Rationale Pro-

motes Learning about Architectural Knowledge. In 8th In-

ternational Workshop on Learning Software Organizations

(LSO), pages 39–47, Rio de Janeiro, Brazil, 2006.

[10] P. Eeles. Characteristics of a Software Architect.

Technical report, Available online: http://www-

128.ibm.com/developerworks/rational/library/mar06

/eeles/index.html 2006.

[11] R. Farenhorst. Tailoring Knowledge Sharing to the Archi-

tecting Process. In First ACM Workshop on SHaring ARchi-

tectural Knowledge (SHARK), Torino, Italy, 2006.

[12] R. Farenhorst, R. C. de Boer, R. Deckers, P. Lago, and

H. van Vliet. What’s in Constructing a Domain Model for

Sharing Architectural Knowledge? In 18th International

Conference on Software Engineering and Knowledge Engi-

neering (SEKE), San Francisco Bay, USA, 2006.
[13] T. Ghosh. Creating Incentives for Knowledge Sharing.

Technical report, MIT Open Courseware, Sloan school of

management, Cambridge, Massachusetts, USA, 2004.
[14] T. Haldin-Herrgard. Difficulties in Diffusion of Tacit

Knowledge in Organizations. Journal of Intellectual Cap-

ital, 1(4):357–365, 2000.
[15] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran,

and P. America. Generalizing a Model of Software Archi-

tecture Design from Five Industrial Approaches. In 5th

IEEE/IFIP Working Conference on Software Architecture

(WICSA), pages 77–86, Pittsburgh, Pennsylvania, 2005.
[16] IEEE. IEEE Recommended Practice for Architectural De-

scription of Software-Intensive Systems. Standard 1471-

2000, IEEE, 2000.
[17] A. Jansen and J. Bosch. Software Architecture as a Set of

Architectural Design Decisions. In 5th IEEE/IFIP Working

Conference on Software Architecture (WICSA), pages 109–

120, Pittsburgh, Pennsylvania, USA, 2005.
[18] P. Kruchten, P. Lago, and H. van Vliet. Building up and

Reasoning about Architectural Knowledge. In 2nd Interna-

tional Conference on the Quality of Software Architectures

(QoSA), LNCS, pages 43–58, 2006.
[19] W. Kunz and H. Rittel. Issues as Elements of Information

Systems. Technical report, University of California, 1970.
[20] V. Lakshminarayanan, W. Liu, C. L. Chen, S. Easterbrook,

and D. E. Perry. Software Architects in Practice. Report,

Empirical Software Engineering Lab (ESEL), University of

Texas, Austin, USA, October 2005.
[21] I. Nonaka and H. Takeuchi. The Knowledge-Creating Com-

pany. Oxford University Press, 1995.
[22] M. Shaw and P. Clements. The Golden Age of Software

Architecture. IEEE Software, 23(2):31–39, 2006.
[23] A. Tang, M. A. Babar, I. Gorton, and J. Han. A Survey of

the Use and Documentation of Architecture Design Ratio-

nale. In 5th IEEE/IFIP Working Conference on Software

Architecture (WICSA), pages 89–98, Pittsburgh, Pennsylva-

nia, USA, 2005.
[24] J. Tyree and A. Akerman. Architecture Decisions: Demys-

tifying Architecture. IEEE Software, 22(2):19–27, 2005.
[25] J. S. van der Ven, A. Jansen, P. Avgeriou, and D. K. Ham-

mer. Using Architectural Decisions. In C. Hofmeister,

I. Crnkovic, and R. B. S. Reussner, editors, Perspectives in

Software Architecture Quality, 2nd International Conference

on the Quality of Software Architectures (QoSA), Universität

Karlsruhe, Facultät für Informatik, 2006.
[26] J. S. van der Ven, A. Jansen, J. Nijhuis, and J. Bosch. Design

decisions: The Bridge between Rationale and Architecture.

In A. Dutoit, editor, Rationale Management in Software En-

gineering, pages 329–346. Springer-Verlag, 2006.
[27] Z. Wang, K. Sherdil, and N. H. Madhavji. ACCA: An

Architecture-centric Concern Analysis Method. In 5th

IEEE/IFIP Working Conference on Software Architecture

(WICSA), pages 99–108, Pittsburgh, Pennsylvania, USA,

2005.

