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Abstract—Formal models are often used to verify systems and
prove their correctness, and ensure that transformed models
remain consistent to the original system. However, formal tech-
niques can also be used to add reasoning in the engineering of
models, predicting the developers intentions. On a programming

level, a similar approach has been used very successfully in sev-
eral web application frameworks. Promoting formal techniques
to the web application domain is useful as web application
developers increasingly need to abstract from a growing set of
target platforms and technologies.

We address this need and propose model completion, a formal
framework to infer modelling elements. Model completion is a
non-monotonic process and formalises the notion of the intended
model, permitting the web application developer to focus on
application design rather than scaffolding. Benchmarking an
implementation of this process for a platform-independent web
application modelling language illustrates its significant potential
to simplify model-driven development.

Index Terms—model-driven development, non-monotonicity,
rich internet applications

I. INTRODUCTION

Web application frameworks such as Ruby on Rails [1]

and Symfony [2] aim to simplify development of web ap-

plications by providing documented conventions, which allow

the developer to automatically generate much of the required

scaffolding of web applications, yet still offer the developer

rich functionality and flexibility if necessary. Frameworks in

other domains also successfully use this approach [3]. In

the web application field, this scaffolding includes repetitive

steps such as form creation, database initialisation, and cross-

platform scripting.

We propose applying the same approach used by frame-

works to assist a model developer to implement model in-

stances; in particular, we permit the developer to specify a

smaller base model following conventions declared by the

meta-model designer, which can then be expanded in-place

into an intended model. This process adds a flexible level of

abstraction to a modelling language, similar to the abstractness

offered by a framework.

Importantly, we argue that model completion also needs to

be non-monotonic. This means that the introduction of new

modelling artefacts into a system may require the retraction

of previously generated artefacts to reflect this new knowledge.

This retains the flexibility of the original modelling language.

Non-monotonicity also ensures that the base model is never

modified, allowing it to be easily integrated into existing

approaches.

In this paper, we discuss the formal semantics of this process

to show that non-monotonicity is consistent. We implement

the declared conventions into a rule language, and show that a

rule engine can adhere to these defined semantics. This model

completion may then be executed by a rule engine without a

significant performance penalty, despite previous work arguing

this would be impossible.

In Section II we introduce models and model-driven de-

velopment, and illustrate how these concepts can assist in

the development of complex web applications. We discuss

the concepts behind model completion in Section III, and

introduce the formal semantics of this process in Section IV,

along with two examples illustrating the implementation of

non-monotonicity. In Section V, we discuss the implementa-

tion of model completion as part of a CASE tool, which we

then use in Section VI to evaluate model completion against

a rich suite of test models and model completion rules. We

discuss some existing work related to model completion and

its implementation in Section VII. Finally, we conclude with

a discussion of our results and future work in Section VIII.

II. BACKGROUND

A model can encompass a wide range of concepts; for

example, source code can be considered a model, yet the

grammar of the source code can also be considered a model.

The most consistent and agreed-upon definition is that a model

is a simplified abstraction of reality [4]. Models do not need to

be separate; they can coexist in different modelling spaces and

themselves be abstractions, or instances, of other models [5].

In particular, a model representing another model is its meta-

model, and the process involved in translating or integrating

between different models is a model transformation.

In our work we consider a model to be an abstract rep-

resentation of a system under development, which can assist

in implementing the real-world system. For example, UML

class diagrams allow us to design an object-oriented software

system in terms of classes, inheritance, relationships, attributes

and other artefacts [6].



We can also use models to represent different views of a

system; for example, a UML activity diagram can represent

the flow of an operation, and a UML sequence diagram

can represent the flows between different operations. Model-

Driven Engineering (MDE) provides a framework to integrate

different types of models together; this is the approach taken

by UML-based Web Engineering [7].

When designing a modelling language, a key challenge is

balancing the level of detail in its design. Too much abstract-

ness will result in a rigid approach that cannot adapt to many

situations; too much flexibility will result in models which

are large and unmaintainable. In order to add abstractness

without sacrificing flexibility, frameworks add abstraction to

an existing language, yet retain access to its flexibility when

necessary [3].

We are particularly interested in the model-driven develop-

ment of web applications. The latest generation of interactive

web applications named Rich Internet Applications (RIAs)

require complex applications that are scalable, flexible and

platform-independent [8]. Despite the standardisation of im-

plementation technologies such as CSS and SVG, different

platforms often provide incomplete implementations; a signif-

icant portion of time spent in web development is focused on

resolving these differences.

The development of a web application modelling language

to abstract away the technical details of implementation is a

promising idea, and is a strong focus of existing research.

However, the challenge in balancing abstractness and flexibil-

ity of a modelling language for RIAs is particularly evident,

as no existing modelling language supports all fundamental

RIA concepts [9].

A steady stream of new approaches to client-side appli-

cations, such as HTML 5, Google Gears, Mozilla’s Prism,

Microsoft’s Silverlight and Adobe’s AIR, continue to be

published. By developing a platform-independent model, we

can remove the unnecessary technical implementation details

and differences between platforms, and provide an abstract

model focused on the design of web applications. This model

can then be used to generate and deploy the application; this

approach is advocated by the OMG’s Model-Driven Archi-

tecture proposal [10]. Alternatively, virtual machines can be

designed to execute a model on a range of platforms, but

it is difficult to add additional layers to the already limited

capabilities of mobile devices.

Web development for RIAs is particularly difficult due to

the wide range of business ideas, technologies, platforms and

devices that are rapidly emerging. Consequently, web develop-

ment requires an agile, extensible and flexible modelling ap-

proach. Through non-monotonic model completion, we hope

to accommodate abstractness, flexibility and extensibility in

web application design.

By predicting the developers intentions, the meta-model

designer can automatically complete much of the scaffolding

necessary in web application design. The non-monotonicity

of model completion permits the developer to override this

generated scaffolding with their actual intent if necessary,

Fig. 1. Model completion within model development

adding a great deal of flexibility to the design process. We hope

that combining this technique with a rich platform-independent

model will improve reliability, security and efficiency in

designing web applications.

III. MODEL COMPLETION

Our approach takes many of the concepts from framework

development and promotes them into a model-driven envi-

ronment. In our case, the conventions within the framework

are moved into a separate model transformation called model

completion, illustrated in Fig. 1, which operates entirely under

a single meta-model. Essentially, the developer is provided the

task of implementing their system requirements without having

to completely define all details.

A CASE tool takes this initial model and, following these

documented conventions, transforms this model into an in-

tended model complete with all necessary detail. Implementing

this process within a CASE tool is essential in order to

maximise the benefits of using MDE [11]. This model can

then be used as input to other tools within MDE, such as

code generators or analysis tools [12].

This approach also maps well onto iterative or incremental

development processes; once completed, this intended model

may be evaluated in order to obtain feedback. This feedback

can then be used to refine the base model, starting another

development iteration.

In this paper, we only discuss implementations of model

completion provided by the meta-model designers, rather than

the model developers or other third parties. Under most

situations, the developer will be provided predefined model

completion conventions and will not need to deal with the

complexity of defining these conventions. As such, discussing



the requirements for developers to contribute and integrate

their own conventions is well outside the scope of this paper.

Importantly, the process involved in model completion is

usually based on incomplete knowledge of the system under

design – known as non-monotonic reasoning [13]. Applied to

our domain, this states that when we add additional informa-

tion to the system, any information inferred may be retracted

in the presence of new knowledge. This reasoning philosophy

provides a great deal of flexibility.

To illustrate this point, consider a user interface element

representing a boolean property within the system. This inter-

face element is part of a platform-independent model, allowing

us to ignore the technical details of its implementation. It is

reasonable to assume that by default, this property should be

rendered by a checkbox. However, it may be more appropriate

in some cases to represent this property with a drop-down list

with the values yes and no. If the model developer were to add

this new knowledge, the default checkbox should be removed

and no longer be generated nor replace the new design.

If negative existentials are used in defining part of a

convention, non-monotonicity may be a consequence. For

example, this default checkbox rule above can be expressed

non-monotonically as:

IF (there exists a boolean property)

AND (there does not exist an editor for it)

THEN (create a checkbox editor for it)

We restrict the range of retraction within non-monotonic

reasoning to only those facts inferred by the reasoner itself;

that is, the reasoning process can never retract any information

in the base model. This is important to ensure the developers’

effort is never inadvertently discarded.

In order to prove the consistency and correctness of this

inference process within a model-driven implementation, we

need to investigate the formal semantics of models and the

model completion operation. This definition is essential to

ensure that model completion is a sound transformation step,

remaining consistent with the original model [14]. As shown

in Section V, these semantics can map to a simple implemen-

tation within a commercial rule engine.

IV. SEMANTICS

If we consider a model to consist of a set of model artefacts

M , we can propose that all possible models are within the

universe of possible model artefacts; i.e. model ∈ 2M . To

restrict models to only valid model instances in our domain,

we define a meta-model S to be the valid range of all possible

models, S ⊆ 2M .

For example, consider a model universe 2M consisting of all

possible combinations of properties, property editors and their

relationships. Since it does not make sense to have a property

editor without a property, we restrict the meta-model S to

only those models where each editor is expressing a property.

Any set of model artefacts within this meta-model definition

is therefore a valid model instance.

A model transformation is the process of converting source

models into target models; in this paper, we only consider

transformations from one source model to one target model.

If we are concerned with two meta-models S1,S2, a model

transformation can be portrayed as a function T : S1 → S2.

If the target meta-model is also the source meta-model, then

the transformation can be simplified as a single-model trans-

formation T1 : S → S.

A. Model Completion

Given a meta-model S, we can formally define a model

completion as a function C : S → S operating within the

same meta-model. That is, all completed models will also be

valid models in our domain. If we consider model completion

as an operation C(X) operating on a model X ⊆ S, there are

a number of conditions we need to impose:

1) Extensive: Model completion must not retract any exist-

ing information in the base model, i.e. X ⊆ C(X).
2) Idempotent: Once the intended model has been com-

pleted from a base model, applying model completion on

this intended model will not result in a different model,

i.e. C(X) = C(C(X)).

These two conditions are part of Tarski’s classical axioms

for inference operators [15]. However, we do not require

monotony; in the face of new information within a base model,

previously inferred knowledge may need to be retracted, i.e.

X ⊆ Y 6⇒ C(X) ⊆ C(Y ).
The main idea behind model completion is to infer new

elements and relationships based on the base model, so we

define the concept of a factory function as a function which

introduces a new element or relationship to the model. To

support this, we introduce a ranking function that layers ele-

ments of the domain (universe) to prevent inference problems.

Consequently, we need to introduce additional constraints into

the semantics in order to support this technique.

Models can be portrayed as sets of logical formula if

we consider artefacts and primitive values as constants, and

properties and relationships as relations. This view is very

similar to OWL [16]; here, resources (constants) are typed

using classes defined in OWL (the meta-model), and properties

and relationships are represented as data and object properties,

respectively.

In the following sections, we provide the semantics for the

model completion process. Our definition of the semantics of

model completion is a variant of the standard semantics of

first-order logic. The notation used is based on previous work

by Fitting [17].

B. L-Model

Definition 1 (L-Model): Given a language L(R, F, C, V, =)
that consists of finite, pairwise disjoint sets of relations R,

functions F , constants C and variables V , and a distinguished

binary relation symbol = for equality, we define a L-model

to be a structure M = 〈D, rank, I, eq〉 where D is an non-

empty set, called the domain; eq ⊆ D×D is a binary relation

that is reflexive, symmetric and transitive; rank : D → N



is a function that associates domain elements with non-

negative integer numbers; and I is an interpretation function

that associates:

1) every constant symbol c ∈ C to a element cI ∈ D such

that rank(cI) = 0.

2) every n-place function symbol f ∈ F with a n-

ary injective function f I : Dn → D such that

rank(f I(t1, ..., tn) = 1 + maxi=1..n(rank(ti))).
3) every n-place relation symbol P ∈ R with a n-ary

relation P I ⊆ Dn.

4) = with eq.

The ranking function allows the effective stratification of

terms. Constant terms have a rank 0, and the application of

functions increments the rank of the resulting complex term

by 1. Function symbols represent only injective functions, al-

lowing the creation of new model terms; i.e., if f I : Dn → D

is a n-ary function, and ti 6= t′i holds for some i between 1

and k, then f I(t1, .., tn) 6= f I(t′
1
, .., t′n) is true.

The ranking function is also necessary in order to prevent

inference problems. Consider a rule which creates a new

element only if the element did not yet exist; but by creating

this element, this rule could never have been fired. Ranking

allows us to create new elements within a different space to

the current evaluation, resolving this problem.

Intuitively, these functions represent caching; i.e., whenever

a function is executed the results are unique for a given set

of parameters. The definition of rank for complex terms also

enforces that complex terms cannot be interpreted by the same

domain elements used to interpret their parts, and implies

that functions can only introduce terms with a higher rank.

This technique is similar to the use of stratification in logic

programming with negation [18].

C. Assignment

Definition 2 (Assignment): Given an L-model M =
〈D, rank, I, eq〉 and a language L(R, F, C, V, =), an

assignment A is defined as a mapping that associates

variable symbols v ∈ V with elements vA ∈ D. Given an

interpretation I and an assignment A, we associate terms

with domain elements as follows:

1) cI,A = cI for constants.

2) vI,A = vA for variables.

3) [f(t1, .., tn)]I,A = f I(tI,A
1

, .., tI,A
n ).

D. Validity

Definition 3 (Validity): A formula Φ is valid for an assign-

ment A in an L-model M , written M |=A Φ, iff the following

conditions are satisfied:

1) M |=A P (t1, .., tn) iff 〈tI,A
1

, .., tI,A
n 〉 ∈ P I for atomic

formulas.

2) M |=A Φ1 ∧ Φ2 iff M |=A Φ1 and M |=A Φ2.

3) M |=A Φ1 ∨ Φ2 iff M |=A Φ1 or M |=A Φ2.

4) M |=A ¬Φ iff not M |=A Φ.

5) M |=A ∃x : Φ iff there exists an assignment A′ that

assigns the same values to all variables as A except pos-

sibly x (a so-called x-variant of A) such that M |=A′ Φ

and rank(xA′

) ≤ max(rank(tI,A′

i )), where {ti} is the

set of terms occurring in Φ.

A formula Φ is said to be valid in an L-model M , written

M |= Φ, iff M |=A Φ for all possible variable assignments

A.

The last condition constrains the existential quantifiers,

otherwise their satisfaction would be prevented by the injec-

tive factory functions. Their semantics is only defined with

respect to a certain layer within the domain; this layering is

achieved through the rank function. These formulas allow us

to construct a rule program which we can use to implement

model completion for a particular modelling domain.

E. Inference

Definition 4 (Inference): Given an L-model M =
〈D, rank, I, eq〉 and a language L(R, F, C, V, =), the set of

models of a set of formula is a function Mod : 2L → 2M

defined as follows: Mod(X) = {M |∀Φ ∈ X : M |= Φ}.

The inference operator C : 2L → 2L could then defined as

follows: C(X) = {Φ|∀M ∈ Mod(X) : M |= Φ}.

This is the classical definition of inference, going back to

Tarski [15]. In particular, this definition of C satisfies the three

closure conditions of extensiveness, idempotence and mono-

tonicity. However, monotony is not a desirable feature in our

domain, as discussed earlier. Non-monotony can be achieved

by restricting reasoning to selected models, by defining the

Herbrand model [19].

F. Herbrand Model

Definition 5 (Herbrand Model): An L-model M =
〈D, rank, I, eq〉 is a Herbrand model for the language

L(R, F, C, V, =) if:

1) D is the set of variable-free terms of L.

2) tI = t for each variable free term t.

3) 〈t1, t2〉 ∈ eq iff t1 and t2 are lexically identical.

A better inference operator can then be defined based on

selected model(s) such as the Herbrand model. That is, given

a selection function Σ : 2M → 2M , Σ(m) ⊆ m, inference can

be defined as C(X) = {Φ|∀M ∈ Σ(Mod(X)) : M |= Φ}.

Multiple mechanisms of reasoning based on selected models

have been investigated, including cumulative reasoning based

on models selected by preference functions [13], [20], and

reasoning in logic programming using stable [21] and well-

founded models [18], [22]. Reasoning with these selected

models allows the formal definition of intended models.

These semantics do not explicitly mention primitive types

and their built-in predicates and functions. They can be easily

integrated by using value spaces and lexical-to-value-space

mappings. This technique is used by OWL to implement

primitive types with formal semantics, which uses the facilities

of RDF and XML Schema [23]. Model element types are

implemented as unary relations, and type hierarchies can be

implemented by adding formulas to infer supertype knowledge

based on subtypes.



G. Model Completion Example

To illustrate the model completion process, we will provide

two examples of model completion, based on the running

default checkbox rule example in Section III. We will first

illustrate completion, followed by non-monotonicity.

For this first example, we first define a language

L(R, F, C, V, =) as in Fig. 2. This language is a small sub-

set of our platform-independent modelling language for web

applications, in which we abstract common domain-specific

elements away from their implementation.

R = {property, editor, editorFor, checkbox, dropdown}

F = {newCheckbox}

C = {a}

V = {x}

Fig. 2. Definition of a language L for a model A

We then define our rule program for the completion operator

C(A) as a set of formulas Φ, as in Fig. 3. This rule program is

composed of both the initial model A = {Φ1} and the model

completion rules C = {Φ2, Φ3, Φ4}. In this initial model we

only have one element – a property – which does not yet

have an editor defined.

Φ1 = property(a)

Φ2 = property(x)∧ ¬∃y : editor(y)∧ editorFor(x, y)

→ checkbox(newCheckbox(x))

∧ editorFor(x,newCheckbox(x))

Φ3 = checkbox(x) → editor(x)

Φ4 = dropdown(x) → editor(x)

Fig. 3. Definition of the rule program for C(A)

From this we can obtain a Herbrand model M which

satisfies the completion of this model, as in Fig. 4.

D = {a, newCheckbox(a),

newCheckbox(newCheckbox(a)), ...}

eq = {(a, a), (newCheckbox(a), newCheckbox(a)), ...}

rank = rank(a) = 0,

rank(newCheckbox(a)) = 1,

...

Fig. 4. A Herbrand model M for C(A)

We can summarise the model completion process in Fig.

5. As expected, the completion has inferred a new checkbox

editor for the initial boolean property, and the process is

extensive: A ⊆ C(A).

A = {property(a)}

C(A) = {property(a), checkbox(newCheckbox(a)),

editorFor(a, newCheckbox(a))}

Fig. 5. Model completion C(A)

H. Non-monotonicity Example

In order to illustrate non-monotonicity, we will take the

same example as before and follow the same model completion

process, but add a drop-down list element to the initial model.

This new knowledge will prevent the checkbox element from

being created. We first define the language L(R, F, C, V, =),
as in Fig. 6.

R = {property, editor, editorFor, checkbox, dropdown}

F = {newCheckbox}

C = {a, b}

V = {x}

Fig. 6. Definition of a language L for model B

We then define our rule program for the completion operator

C(B), as in Fig. 7. This rule program is composed of both

the initial model B = {Φ1, Φ2, Φ3}, and the model completion

rules C = {Φ4, Φ5, Φ6}. Importantly, the initial model B ⊇ A,

but the completion rules remain unchanged.

Φ1 = property(a)

Φ2 = dropdown(b)

Φ3 = editorFor(a,b)

Φ4 = property(x)∧ ¬∃y : editor(y)∧ editorFor(x, y)

→ checkbox(newCheckbox(x))

∧ editorFor(x,newCheckbox(x))

Φ5 = checkbox(x) → editor(x)

Φ6 = dropdown(x) → editor(x)

Fig. 7. Definition of the rule program for C(B)

From this we can obtain a Herbrand model M which

satisfies the completion of this model, as in Fig. 8.

D = {a, b, newCheckbox(a), newCheckbox(b), ...}

eq = {(a, a), (b, b),

(newCheckbox(a), newCheckbox(a)), ...}

rank = rank(a) = 0,

rank(b) = 0,

rank(newCheckbox(a)) = 1,

...

Fig. 8. A Herbrand model M for C(B)

The introduction of the new knowledge resulted in a differ-

ent completed model C(B) 6⊇ C(A), illustrated in Fig. 9, due

to the injective nature of functions. This clearly demonstrates

our desired non-monotonicity condition of model completion.

B = {property(a), dropdown(b), editorFor(a,b)}

C(B) = {property(a), dropdown(b), editorFor(a,b)}

Fig. 9. Model completion C(B)



Fig. 10. Recursively creating levels of elements

V. IMPLEMENTATION

As part of a larger research work, we are designing and

implementing a platform-independent modelling language for

RIAs. This domain-specific language is called the Internet

Application Modelling Language, which aims to include fun-

damental web concepts as first-class modelling concepts. This

language is implemented using the Eclipse Modeling Frame-

work (EMF) environment within Eclipse [24], forming a part

of a CASE tool for the design, development, generation and

deployment of RIAs. A full description of this language is far

outside the scope of this paper.

Model completion has been used extensively within our

work to simplify the development of RIAs. In our current

implementation, model completion is executed by the high-

performance JBoss Drools rule engine [25] using individual

rules implemented in the DRL dialect; however, Drools sup-

ports a wide range of rule sources, including from databases,

web services and custom grammars.

Translating our semantics of model completion into this

implementation is straightforward. The only major challenge

is in implementing the rank function. By default, a rule

creating a new model element would be inserted immediately

into the working memory; without this insertion, the new

model element cannot trigger additional rules recursively, as

the inference process is usually only evaluated once.

In our work, we have modified this approach to place newly

inserted elements into an insertion cache, and evaluate our set

of rules repeatedly. In each iteration, the cache is cleared, and

newly created elements are instead stored in this cache. These

elements in this cache are those of the next rank level. Once the

rule evaluation is complete, these new elements are inserted

into the working memory, and the process begins again. This

process is illustrated in Fig. 10.

Implementing this insertion cache into standard Drools rules

is straightforward; a sample implementation of the default

checkbox rule example is illustrated in Fig. 11. A handler

object maps injective functions to the EMF framework, which

instantiates new objects.

rule "Example rule"

when

p : BooleanProperty( )

not ( Editor ( for == p ))

then

Checkbox c = handler.generatedCheckbox(p);

handler.setFor(c, p);

cache.add(c, drools);

end

Fig. 11. Example rule implementation in Drools

We can safely declare that the process has completed once

the insertion cache is empty following an evaluation iteration.

Since our rule program can only insert new elements, and the

model completion process is extensive, the final model cannot

change without the insertion of additional facts into the work-

ing memory. We are also satisfied that our implementation

satisfies the semantics detailed in Section IV.

However, to prove that a given set of rules satisfy ter-

mination is much more difficult. In the worst case, solving

this problem would require a solution to the halting problem,

as rules can recursively generate new elements which trigger

rules later. It is up to the meta-model designer to ensure these

rules eventually terminate; in our work, we limit the number

of iterations to a fixed number, which we investigate in the

next section.

VI. EVALUATION

As part of the process in designing our modelling language,

we have designed a comprehensive suite of test models repre-

senting individual model concepts. Each test model represents

a use case of our modelling language, derived from our earlier

work on investigating the requirements of RIAs [26]. These

test models are used to ensure the modelling language is

expressive; checking for potential conflicts between inference

rules; to assist in meta-model refactoring; for developing a

code generation framework; as input for integration tests; and

as a rich suite of example models for designers and developers.

Each model is serialised by EMF as an XMI file, simplifying

transportation, versioning, and integration with other tools.

At the time of writing, our test model suite consisted of 110

test models. Ideally we would use a suite of model instances

sourced from industry, but such a corpus is not yet available.

However, as part of the evaluation process, this suite of models

attempts to cover every abstraction used in the modelling

process, so this should be a reasonable data set on which to

make observations against. The suite of models used may be

browsed online at http://openiaml.org.

EMF model instances may be interpreted as directed graphs,

allowing us to compare different model instances abstractly.

Object instances are translated into vertices, and references

(including children references) between object instances are

translated into edges between these vertices. This is similar to

translating EMF models into an RDF graph [27].



Minimum Median Mean Maximum Std Dev

Metric Initial Final Initial Final Initial Final Initial Final Initial Final

Elements 2 3 11.5 107 15.1 207.5 76 2,094 13.2 338.9

Attributes 9 9 48 201 58.8 391.7 310 3,934 51.0 635.8

Non-default Attributes 4 6 23 166 28.0 321.8 148 3,219 24.7 520.2

Distinct Attribute Values 6 8 24 135 29.3 240.8 138 2,176 22.7 353.6

References 0 0 12 164 16.5 351.4 112 3,632 21.5 584.7

Children 1 2 10.5 106 14.1 206.5 75 2,093 13.2 338.9

Distinct Types 2 3 9 19 8.9 21.8 19 41 3.7 8.9

Min Degree (References and Children) 0 0 0 0 0.3 0.0 1 1 0.5 0.1

Max Degree (References and Children) 1 1 4 10 5.0 14.0 25 57 3.5 8.6

Children Depth 1 2 3 5 3.2 4.6 4 6 0.7 0.6

Cycles (References and Children) 0 0 2 2 3.0 4.8 20 44 3.6 8.0

Diameter (References and Children) 1 2 5 12 5.6 14.2 16 27 2.9 6.5

Average Completion Time (ms) 0.0 8.6 117.6 5,213.6 696.8

TABLE I
SELECTED MODEL METRICS OF INITIAL AND COMPLETED TEST MODELS (n = 110)

In order to assert that these test models are in fact useful

instances on which to make observations against, we have

investigated each of these test models and their interpreted

graphs against certain complexity metrics. A selection of these

metrics can be found in Table I. In these metrics, we can

identify the degree, depth and diameter of our test models,

illustrating the range of complexity and that these models are

not trivial. We also expect the possibility of reference cycles

in input models.

Since a model instance can be translated into a graph, this

graph can be visualised. In Fig. 12 we take one of the smaller

test models and illustrate the effect of model completion; each

node or edge represents a domain-specific RIA concept. The

elements within the initial model are highlighted, and the root

element of the model – the element which directly or indirectly

contains all other elements in the model – is indicated with a

double line. References are represented with dashed lines, and

children represented with solid lines; attributes are ignored, as

they do not add any useful information to the visualisation.

In this visualisation, we can see that model completion auto-

matically completes much of the repetitive (and structurally

similar) elements of a model.

A. Model Completion

At the time of writing, our model completion implementa-

tion is represented by a suite of 131 model completion rules in

the DRL dialect of Drools. These rules are used to complete

models in our modelling language to the level of detail neces-

sary for code generation. The suite of model completion rules

used may also be browsed online at http://openiaml.org,

illustrating the effort required and techniques used.

Importantly, our suite of test models and completion rules

can be utilised to suggest an upper bound for the fixed

limit of inference iterations to evaluate. By executing model

completion whilst simultaneously keeping track of where new

elements are created, we can record the distribution of the

rank function. The aggregated results of model completion

against our test models is provided in Fig. 13. In particular,

the maximum rank value found from all test models is 9; we

therefore conservatively suggest an iteration limit of 20.

This graph also illustrates an interesting property of our test

models; most elements are usually generated in the second

iteration of model completion. This is a property of the meta-

model and the rules used. For example, in our work, the first

iteration is usually used to declare the signatures of permissible

operations of model elements; in the second iteration, the de-

fault contents of the operation (temporary variables, execution

paths, data flows, conditions, etc.) are defined, and involves

many more elements. It would be interesting to investigate

which types of elements are generated at each iteration.

In Table I, we re-evaluate the same model metrics against

the completed models. As expected, we can see that model

completion consistently increases the complexity of models in

terms of every metric. In particular, the number of elements,

attributes, references and children all increase significantly. It

is interesting to note that none of our completed models have

more than six layers of children (children depth).

We can also use these results to understand the potential

benefits of using model completion. Fig. 14 illustrates that on

average, the intended model contains 1082% more elements

than the base model. This represents a significant saving of

developer effort.

In our implementation, model completion is not a significant

performance hit, with the average time taken on a reasonable

machine well under one second. A summary of the generation

times observed is provided in Table I; each test model was

completed ten times, and the average time selected. Upon

further investigation, we found that the performance of model

completion is mostly dependent on the rules used to complete

the model, rather than the number of elements in the initial



Fig. 12. The test model PropertiesFileWithInputForm; the initial model is highlighted

Fig. 13. Aggregation of rank values from all completed test models

model; in particular, the number of existential clauses used in

each rule. This result is consistent with related work, which

we discuss in the next section.

VII. RELATED WORK

The Tefkat language [28] follows a similar approach to

our work, by defining rules which create model elements.

Tefkat does not support rule patterns based on negative self

existentials however, as this was found to introduce significant

performance cost. In our work this operator did not introduce

a significant performance cost; all of our model completion

rules contain at least one negative existential clause. This is

probably due to the Rete algorithm used in Drools [25].

Fig. 14. Histogram of element generation frequency

Alternatively, one can consider model completion as a series

of incremental model transformations operating recursively.

Triple graph grammars (TGG) permit the decomposition of a

model transformation into a series of incremental model trans-

formations; these can be used in order to realise a performance

benefit within model transformation [29]. Grunske et al uses

the Tefkat language to implement TGG [30], and found that

there was a significant performance cost to match the left-

hand side of the incremental rules. While we also discovered

this relationship in our work, we did not incur any significant

performance costs.

There are many existing implementations of non-monotonic

reasoners within industry. Prolog naturally supports non-



monotonic reasoning by means of negation [31]; the Jena

semantic framework supports non-monotonic inference [32];

and the Pellet reasoner supports the non-monotonic epistemic

operator K [33]. Non-monotonic inference is not limited to

any particular domain; it has been applied to business rules,

contracts, legal reasoning and e-commerce negotiations [34].

The WebML approach offers model-driven web application

development through a single model which must be imple-

mented in full detail [35]. Conversely, UML-based Web Engi-

neering addresses model-driven web application development

by defining at least six computation-independent, platform-

independent and platform-specific meta-models. Instances of

these models are then combined through a model transforma-

tion chain to generate the final web application [7].

Without the support of knowledge inference, different types

of software tools are necessary to support model development.

In the web engineering community, the case tool for WebML

offers reusable modules as a solution to this problem [36],

but this introduces problems with round-trip engineering of

the system. It also presents difficulties with adapting to new

technologies and approaches.

To the extent of our knowledge, no existing work in the

field of model-driven web application development has in-

vestigated the use of non-monotonic reasoning. Implementing

the concepts covered in this paper could provide a simple yet

flexible approach to existing approaches of model-driven web

application development.

VIII. DISCUSSION

In this paper, we have shown that implementing model com-

pletion with industry-standard software has resulted in a high-

performance environment, yet one which adheres to formal

semantics. Existing tools may benefit from integration with

commercial rule engines; for example, the Tefkat language

could be implemented directly in Drools, and we expect this

might increase its performance.

By using model completion, we can automatically adapt to

new technologies and implementations. Since the completed

model does not need to modify the base model, improvements

in model completion rules can be adapted directly without

having to reverse-engineer generated models. As our platform-

independent language encompasses more RIA concepts over

time, we will investigate the stability of model completion

rules over its evolution.

Our implementation provides rich opportunities for model

and platform extensibility. For example, a model developer

or third party could contribute their own inference rules, or

disable existing rules. As mentioned earlier, this discussion is

far outside the scope of this paper, but essentially we expect

that extensions could consist of any combination of meta-

model, inference rules or CASE tool extensions, integrated

by the Eclipse framework.

Within the concept of model spaces [5], the work covered

in this paper may co-exist within any space. For example,

model completion could be used on meta-models instead,

assisting the development of meta-models or ontologies. Our

approach is not limited to any particular environment either,

and only depends on tool support; model completion could be

implemented as part of a UML profile, or as a pre-compilation

step within a model-driven development environment.

One important area that has not been discussed is on how

to document the model completion conventions themselves.

In order for model completion to be effective, model devel-

opers need to have a detailed and authoritative documentation

source, yet one which is still accessible and helpful; merely

providing the source code to the rules used would not suffice.

This is an interesting area of future research.

Model completion does not need to be limited to an op-

eration performed only at the end of the model development

lifecycle; it may be desirable to selectively merge parts of

the completed model into the base model, as part of a rapid

application development environment. This also remains an

area of future research, and a preliminary approach has been

implemented in our CASE tool.

The work described in this paper has been implemented as

free software under an open-source license, as part of a model-

driven CASE tool for modelling RIAs. The interested reader

can learn more online at http://openiaml.org.
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