
Studying Software Evolution for Taming Software Complexity

Steve D. Suh
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA, U.S.A.
suhsteve@gmail.com

Iulian Neamtiu
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA, U.S.A.
neamtiu@cs.ucr.edu

Abstract—Reducing software complexity is key to reducing
software maintenance costs. To discover complexity-reducing
practices, in this paper we study the evolution of seven sizable
open source programs over a long period of time. We first
measure how software complexity changes as programs evolve,
and identify complexity-reducing releases. We then study the
changes introduced in these releases and extract evolution
patterns (we call them complexity-reducing steps) that lead
to reduced program complexity. Finally, we categorize these
steps and discuss their effectiveness. We believe that bringing
these complexity-reducing measures to light, and encouraging
developers to adopt them, has the potential to improve the state
of practice in software maintenance.

Keywords-software complexity, software evolution, software
metrics, open source, refactoring

I. INTRODUCTION

Software evolution is a fact of life. Multiple studies
estimate that maintenance costs are at least 50%, and
sometimes more than 90% of total costs associated with a
software system [1]. Therefore, a software implementation
that facilitates change is key for reducing maintenance costs.
Prior work has shown that software complexity is an obstacle
to introducing change, and that complex modules tend to be
fault-prone [2], [3]. Our work tries to identify the measures
developers take to tame complexity and, in result, facilitate
software evolution.

Two of Lehman et al.’s software evolution laws stipulate
that “A program [...] must be continually adapted else it
becomes progressively less satisfactory” and “As a program
is evolved its complexity increases unless work is done
to maintain or reduce it.” [4]. These two laws suggest
that program complexity typically grows until it reaches a
“critical value,” at which point introducing change becomes
prohibitively expensive, and steps must be taken to reduce
complexity.

In this paper, we study software evolution from a software
complexity perspective, and try to answer the following
questions: How does software complexity change over time:
does it always grow, or does it decrease as well? How
do evolution trends differ across programs? Are traditional
software complexity metrics good indicators of how easy
it is to change the program? What are some typical steps

programmers take to reduce complexity, and how do these
steps affect complexity metrics values ?

We are now well-positioned to study the evolution of
software complexity: large open source programs, along with
their release histories and change logs, have been available
for 10–20 years. This wealth of data allows us to examine
long streaks in program evolution and, using statistical
analysis, identify trends in program complexity. Moreover,
the myriad of changes available allows us to analyze code
change patterns, and identify complexity-reducing steps.

For this paper, we investigated the complete release his-
tories of Samba, Bind 9, OpenSSH, SQLite, and Vsftpd,
as well as the past 15 years of Sendmail and the past 5
years of Quagga. In total, our study covers 653 official
releases and over 70 years of cumulative program evolution;
an overview of the applications and the methodology we
used are presented in Sections II and III, respectively.

For the first part of our study (Section IV) we perform
a statistical analysis of how the complexity of our study
applications has changed over time. We use a variety of
metrics, e.g., coupling, cyclomatic complexity, and mean
module size, to characterize program evolution from a com-
plexity perspective. We found that programs invariably grow
over time, and that, in absolute terms, software complexity
tends to increase. However, when normalizing software com-
plexity by program size, we found that several programs’
normalized values decrease over time, which suggests that
newly added code has lower complexity, and that developers
take proactive steps to reduce software complexity. To our
knowledge, ours is the first empirical study that focuses
exclusively on the evolution of software complexity.

In the second part of the study (Section V) we focus on
identifying changes that aim towards reducing software com-
plexity. We first use the empirical evidence gathered in the
metrics collection phase to identify complexity-decreasing
releases. We then analyze the source code changes made in
those releases, and determine the impact of these changes
on software complexity. Next, we group those changes
that have notable impact on reducing complexity into a
set of complexity-reducing “steps” (refactoring/restructuring
patterns). For instance, a frequent step consists of factoring
out common code into separate functions; a related step

is factoring out related functionality into separate modules.
While not so common, complete subsystem rewritings can
have a large beneficial impact towards reducing complexity.

In the last part of the paper we discuss the relevance of the
complexity metrics we considered (Section VI), and threats
to validity (Section VII).

In summary, this paper makes the following three main
contributions:

• An empirical study on the evolution of software com-
plexity for large open-source programs over a long
period of time.

• A taxonomy of complexity-reducing steps, based on
analyzing actual releases and the changes developers
made to applications in order to reduce complexity.

• Concrete evidence that steps taken to reduce the value
of one complexity metric necessarily increase the value
of another metric, which underscores the importance of
using multiple metrics for assessing software complex-
ity.

II. APPLICATIONS

We ran our empirical study on seven open source appli-
cations written in C. In selecting the applications, we used
several criteria: long release history, considerable size, and
the availability of release notes or change logs.

Table I presents high-level data on application evolution.
The first column contains the program name, the second
column shows the evolution time frame for that program,
and the third shows the number of releases we considered;
we studied all the official releases. The rest of the columns
present information (version, date and size) for the first and
last releases we considered.

We now provide a brief overview of each application.
Samba is a tool suite that facilitates Windows-UNIX interop-
erability. Sendmail is the leading email transfer agent today.
BIND is the leading DNS server on the Internet. OpenSSH
is the standard open source suite of the widely-used secure
shell protocols. SQLite is a popular library implementation
of an SQL database engine. Vsftpd is the FTP server in
major Unix distributions. Quagga is a tool suite for building
software routers.

As we can see in Table I, with the exception of Quagga,
all programs have grown considerably relative to their initial
versions. We aimed to analyze complete lifespans for each
application, from the first release to the latest. For two
applications, Sendmail and Quagga, we could not analyze
their entire lifespan; their initial versions are so old that we
could not process them with our tools (e.g., pre-process or
compile them) since they use antiquated headers, libraries,
or even rely on old versions of Gcc. As the table indicates,
for these two programs we started the analysis at versions
8.6.4 and 0.96, respectively.

III. METHODOLOGY

For each application, we followed the same procedure.
We first downloaded all publicly available official releases,
starting with the most recent one and going back as far as
we could. We then configured (using configure) and pre-
processed (using gcc -E) the main server in each release,
excluding test programs or various clients that ship with the
server. Finally, we “merged” all the source code that goes
into building the server into a single .c file, using the CIL
merger tool [5], however retaining module information. This
strategy ensured we focused on the evolution of one self-
contained, standalone program. The resulting code contained
no headers, comments, or macros, hence our LOC values
represent non-empty, non-comment, actual lines of code.

To collect data on program evolution, we ran two source
code analysis tools, ASTdiff and RSM, on the preprocessed,
single-file program. ASTdiff is a tool we developed in prior
work that compares C programs by matching their abstract
syntax trees [6]; we used ASTdiff to measure common cou-
pling, function calls per function, and number of modules.
RSM (Resource Standard Metrics [7]) is a commercial tool
that can measure cyclomatic and interface complexity. In
Section IV-A we provide a detailed description of each
metric we used and the way it was computed.

We computed differences in complexity metric values
for each application and identified those releases where
complexity decreased, i.e., the difference between the new
and old values is negative. Complexity-decreasing releases
and those releases identified in the change logs as cleanups
or restructurings constituted our starting point for examining
the source code changes made in those releases. We then
assessed the impact these changes have on code complexity,
and categorized the changes that are likely to have reduced
complexity into patterns/steps. We describe our findings in
Section V.

Parallel evolution. Large, popular open source programs
use a parallel evolution model that consists of stable and
development branches that evolve concurrently. To under-
stand how software complexity evolves on both stable and
development branches, we studied each branch individually.
Since the maintenance branches for all applications but Bind
tend to be short lived or exhibit very little activity, we only
present results for Bind. For example, in Table II we present
separate numbers for each Bind branch.

IV. HOW DOES SOFTWARE COMPLEXITY CHANGE OVER
TIME?

A. Complexity Metrics

We used the full range of complexity metrics provided
by ASTdiff and RSM; if a metric does not appear here, it
is not because we omit it, but rather the tools do not have
that capability. We now present a detailed definition and
computation methodology for each metric we employed.

Program Time frame Releases First release Last release
Version Date Size Version Date Size

(years) (LOC) (LOC)
Samba 15 78 1.5.14 12/08/1993 5,514 3.3.1 02/24/2009 1,045,928
Sendmail 15 55 8.6.4 10/31/1993 25,912 8.14.4a 01/13/2009 87,842
Bind 9 171 9.0.0b1 02/04/2000 169,306 9.6.1b1 03/12/2009 321,689
OpenSSH 9 77 1.0pre2 10/27/1999 12,819 5.2p1 02/22/2009 52,284
SQLite 8 169 1.0 08/17/2000 17,273 3.6.11 02/18/2009 65,108
Vsftpd 8 59 0.0.9 01/28/2001 6,774 2.1.0 01/21/2009 15,711
Quagga 5 23 0.96 08/12/2003 41,623 0.99.11 09/05/2008 47,511

Table I: Application evolution.

Cyclomatic complexity measures the number of inde-
pendent paths in the control flow graph [7]. Each if branch,
case statement or goto adds to the value of this metric. The
rationale for keeping this value low is that each separate
path makes understanding the control flow more difficult. By
keeping number of control flow paths low, functions become
well-structured, easy to understand and easy to change. To
account for changes in program size, we compute both
absolute and normalized values (i.e., the absolute cyclomatic
complexity value, for the entire program, divided by program
size, in LOC) for this metric.

Interface complexity measures the sum of input argu-
ments to, and return states from, a function. The rationale
for using this metric is that many arguments and multiple
return sites makes functions hard to understand and hard
to change. Similar to cyclomatic complexity, we compute
absolute and normalized (divided by program size in LOC)
values.

Mean module size is computed using the geometric
mean over individual module sizes, in LOC. We are using
the geometric mean to account for the large variations we
observed in module size distributions (from a dozen lines
to several thousand lines). We also computed the median
module size, and observed that it tracks the geometric mean
quite closely, hence we omit it from the graphs.

Coupling represents the number of inter-module refer-
ences. If module A has at least one reference to module
B, we count that as a coupling. If B refers back to A,
however, we do not increase the count. To compute the
normalized coupling value, we divide the absolute coupling
by the N(N − 1)/2, since this is the number of possible
inter-module couplings.

Calls per function, computed by averaging the number
of calls per function for all functions, is another frequently-
used metric for characterizing complexity [8]. The rationale
for keeping this value low is that a high number of calls per
function indicates a complex, hard to understand, function.

Application size. While we did not use application size
as a complexity metric per se, this measure is nevertheless
useful for determining how much the program has grown
(or shrunk) between versions and identifying subsystem
rewritings.

Program Module size Calls per
(geom. mean) function

β R2 β R2

Samba -15.58 0.01 -0.06 0.01
Sendmail -97.91 0.51 -0.66 0.33
OpenSSH 17.28 0.50 -1.1 0.43
SQLite -54.29 0.18 -1.69 0.89
Vsftpd 4.15 0.12 0.64 0.82
Quagga 86.00 0.82 -0.28 0.33
Bind
–main (devel.) 23.57 0.81 0.17 0.56
–branch 9.1.X 1.00 0.40 -0.01 0.69
–branch 9.2.X 6.45 0.92 0.14 0.90
–branch 9.3.X 5.82 0.90 0.15 0.84
–branch 9.4.X 2.61 0.67 0.04 0.67

Table II: Complexity trends (I).

B. Complexity Trends

To understand how software complexity evolves over
time, we performed a linear regression analysis using ab-
solute and normalized complexity metrics as the dependent
variable, y. The independent variable, x, was time (in days)
since the first release. The reason we used time, rather than
release number, is to account for widely-varying release
periods characteristic of open-source software; for example,
in some cases, new versions are released within several days
of the previous release, while in other cases the inter-release
interval can be several months.

In Tables II and III we present the results of our statistical
analyses. For each program and each complexity metric, we
show both the slope β and the coefficient of determination
R2. The sign of β for a metric M indicates whether software
complexity, as measured by M , tends to grow (positive β) or
decline (negative β). The magnitude of R2 ranges between
0 and 1, and indicates how well the metric values fit our
linear regression model, i.e., the closer R2 is to 1, the closer
the fit. We now describe the results of our analyses and the
complexity trends we identified.

Mean module size evolves differently for different pro-
grams (column 2 in Table II). Because the R2 values are
small, in Figure 1 we plot the evolution of the geometric
mean of module size, for each application, over time. The
x-axis represents the time in days since the first release,
while the y-axis represents mean module size in LOC (note
that the x-axis scale differs from program to program). Each

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000

(a) Samba

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000

(b) Sendmail

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500

(c) OpenSSH

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500

(d) SQLite

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000

(e) Vsftpd

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000

(f) Quagga

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500

(g) Bind main (devel.)

Figure 1: Evolution of mean module size (in LOC, y-axis) over time (days since first release, x-axis).

Program Coupling Cyclomatic complexity Interface complexity
absolute normalized absolute normalized absolute normalized
β R2 β R2 β R2 β R2 β R2 β R2

Samba 680 0.94 -0.03 0.68 28488 0.81 4.26 0.51 15650 0.84 0.49 0.03
Sendmail 173 0.79 -0.03 0.57 2764 0.94 1.87 0.67 919 0.92 1.59 0.53
OpenSSH 169 0.88 -0.01 0.75 1988 0.90 1.64 0.70 1194 0.88 4.83 0.57
SQLite 118 0.97 -0.02 0.42 2558 0.94 2.37 0.19 1793 0.99 15 0.93
Vsftpd 25 0.81 -0.02 0.81 433 0.86 4.05 0.79 285 0.84 -5 0.67
Quagga 44 0.92 0.004 0.59 518 0.37 -3.09 0.34 624 0.95 2.06 0.05
Bind
–main (devel.) 162 0.91 0 0.22 5732 0.86 0.91 0.31 2610 0.89 -0.32 0.06
–branch 9.1.X 2 0.35 0.00005 0.35 319 0.83 0.46 0.87 24 0.05 -0.28 0.58
–branch 9.2.X 10 0.54 -0.00009 0.24 1105 0.93 0.41 0.57 229 0.86 -1.26 0.90
–branch 9.3.X 2 0.54 -0.00004 0.09 1229 0.91 0.24 0.44 289 0.84 -1.15 0.78
–branch 9.4.X 7 0.60 0 0.19 1373 0.58 0.76 0.62 476 0.59 -0.3 0.18

Table III: Complexity trends (II).

large point on the graph corresponds to a release; we connect
the points to increase legibility. The “dips” in mean module
size represent releases where developers add many new
modules of significantly smaller size than existing modules.
For example, in Sendmail 8.12.0 (the x-value is 2869), 60
modules were added to the existing 36, increasing the LOC
from 56,216 to 73,393 and decreasing the mean module size
from 640 to 189. Similarly, in Samba 1.8.05 (the x-value is
323), 8 modules were added to the existing 6, increasing
the LOC from 18,733 to 24,028 and decreasing the mean
module size from 1307 to 412.

Calls per function shows a more clear direction across all
applications, i.e., the average number of calls per function
tends to decrease. This is illustrated by the negative values
in column 4 of Table II. As we will explain in Section V, we
noticed a general direction toward breaking large functions
into smaller ones, which contributes to reducing this metric.

Coupling (the absolute value) increases for almost all
programs, and the large R2 shows this is a significant trend
(columns 2–3 of Table III). This is not surprising, since,
as more code and more modules are added, they invariably
increase the amount of coupling. However, when analyzing
the normalized coupling values (columns 4–5 in Table III)
we see that β is negative, meaning the per-module coupling
actually decreases, hence software tends to be less coupled
in newer releases. This indicates that newly-added modules
are of better quality (fewer couplings) than existing modules,
and that proactive steps are taken to reduce coupling.

Cyclomatic complexity (the absolute value) increases
for almost all programs, and the large R2 shows this is
a significant trend (columns 6–7 in Table III). Just like
with coupling, this is normal as programs increase in size.
However, in contrast to the normalized coupling value, we
see that, except for Quagga, the normalized complexity does
not tend to decrease. This aspect is problematic, because it
suggests newly-added code is more complex than existing
code, or the modifications made to the old code render
it more complex than prior to the modification. This is
consistent with the source code changes we observed. As

we discuss in Section VI, the majority of changes consist
of modifying existing functions to fix defects and add new
functionality. This invariably increases complexity, because
the newly added code adds more statements or more control
flow paths, e.g., for error checking.

Interface complexity follows the same trends as cyclo-
matic complexity. The explanation is similar: as programs
grow larger, so does the absolute value for interface com-
plexity. As bugs are fixed, more states are added to functions,
which drives up the normalized interface complexity value.
We have not observed an increase in the average number
of function parameters, since interfaces tend to be much
more stable that implementations [9], hence increases in the
normalized values are due almost exclusively to adding new
return states to a function.

Discussion. Positive β values for normalized metrics
indicate programs that become more complex on average;
combining this with programs’ tendency to grow leads us to
conclude that, over time, such programs would become very
difficult to understand and to evolve. A plausible explanation
of why these programs continue to evolve and be suc-
cessful despite their apparently unmanageable complexity
is an increase in developer team size. As pointed out by
Mockus et al. [10], successful open-source programs tend
to gather more and more contributors, which reduces the
per-developer maintenance effort.

C. Correlation Between Complexity Metrics

A criticism of complexity metrics is that they do not
accurately reflect the difficulty of understanding and chang-
ing the code [11]. To find out whether the metrics values
are correlated, i.e., they accurately reflect an underlying
trend, we performed a correlation analysis. For all possible
pairs of metrics 〈M1,M2〉, we computed a Pearson cor-
relation between vectors 〈M1,M2〉, where the vectors M1

and M2 represent the values of M1 and M2, respectively,
for all versions of a program. While we omit presenting
the pairwise correlation values due to lack of space, we
summarize the results here. We found that the values for

Program Total Complexity-reducing releases
number Program Module size Calls Coupling Cyclomatic Interface

of size (geom. mean) per complexity complexity
releases function abs. norm. abs. norm. abs. norm.

Samba 78 5 27 28 7 32 6 29 7 44
Sendmail 55 0 6 15 6 7 0 15 1 27
OpenSSH 77 13 30 33 3 25 10 27 11 36
SQLite 169 18 41 56 12 34 18 73 15 83
Vsftpd 59 5 12 13 2 11 6 21 6 37
Quagga 23 6 5 9 2 2 3 10 2 12
Bind
–main (devel.) 67 12 17 20 6 19 11 25 6 40
–branch 9.1.X 16 6 4 5 0 0 1 3 1 4
–branch 9.2.X 50 7 11 3 2 3 1 9 2 24
–branch 9.3.X 24 5 4 2 1 2 0 4 0 15
–branch 9.4.X 14 1 3 1 1 2 1 4 1 8

Table IV: Number of complexity-reducing releases.

program size, coupling, cyclomatic complexity and interface
complexity are highly correlated (87%–99%, except for
Quagga, where the range is 56%–96%); this is consistent
with other researchers’ findings [12], [13], [14].

On the other hand, we observed no discernible correlation
between mean module size and calls per function, and
between mean module size (or calls per function) and each
of the four aforementioned metrics.

Discussion. Values for mean module size and calls
per function show no correlation—positive or negative—
between themselves or with any other metric. It is unsur-
prising that these two metrics are not correlated with the
absolute values for the other metrics, since the absolute
values tend to increase for all programs, while by definition
mean module size and calls per function are normalized.
What is surprising, at first sight, is that these two metrics
are not correlated with the normalized values of coupling,
or cyclomatic complexity or interface complexity; we found
the explanation for this apparent discrepancy by studying the
source code. In Section V we show that some complexity-
reducing steps have the effect of reducing the value of a
metric while increasing the value of another. For example,
the Extract and Delegate step (Section V-A) reduces mean
module size and complexity but might increase calls per
function and coupling. To conclude, the lack of correlation
between normalized metrics illustrates the multi-faceted
nature of software complexity, i.e., that steps taken to
reduce one complexity facet does not necessarily mean that
other complexity facets are reduced, too. In Section VI we
discuss the relevance of complexity metrics and elaborate
on the relationship between metrics and perceived software
complexity.

D. Complexity-reducing Releases

The first step towards identifying complexity-reducing
measures is to find those versions that exhibit a decrease in
complexity. In Table IV we list, for each application, the total
number of releases we studied (column 2), followed by the

number of releases that exhibit a decrease in the value of our
complexity metrics (columns 3–11); that is, the metric value
for release R+1 is smaller than the value for release R. For
example, in the case of Samba, out of 78 releases, 5 releases
show a decrease in program size, 27 releases show a decrease
in mean module size, and 28 releases have lower numbers
of average calls per function than their predecessors; 7
releases exhibit decreases the absolute value of coupling,
and 32 a decrease in the normalized value of coupling.
Finally, there are 6 releases where the absolute cyclomatic
complexity decreases, 19 releases where the normalized
value of cyclomatic complexity decreases, 7 releases where
the interface complexity decreases in absolute terms and 44
releases where it decreases in normalized terms.

As explained in Section III, we list multiple entries for
Bind because its development and maintenance branches
evolve in parallel. We can see that the frequency of
complexity-reducing releases is low on the maintenance
branches. This makes sense because the only purpose of
maintenance releases is to perform small-scale, corrective
maintenance. This is in contrast to the development branch,
where overhauls and subsystem rewritings (which have a
much larger impact on reducing complexity) are common.

Discussion. The high percentage of complexity-reducing
releases can be deceptive. First, the negative differences
that we observed are very small in practice. Second, many
releases bundle complexity-reducing steps with bug fixes
or newly-added functionality, which offsets any complexity
decreases and lead to an overall increase in complexity.

V. COMPLEXITY-REDUCING STEPS

After identifying complexity-reducing releases, we in-
spected the code manually to look for basic, frequent steps
(patterns) that programmers use to reduce complexity; we
now proceed to presenting these steps.

A. Extract and Delegate

The most frequent complexity-decreasing technique we
observed is applying a C language version of the Extract and

1 static int flagPragma(...) {
2 ...
3 sqlite3VdbeSetNumCols(v, 1);
4 sqlite3VdbeSetColName(v, 0, aPragma[i].zName,
5 P3 STATIC);
6 sqlite3VdbeAddOp(v, OP Integer,
7 (db−>flags & aPragma[i].mask)!=0, 0);
8 sqlite3VdbeAddOp(v, OP Callback, 1, 0);
9 ...

10 }
11
12 void sqlite3Pragma(...) {
13 ...
14 sqlite3VdbeAddOp(v, OP Integer, size, 0);
15 sqlite3VdbeSetNumCols(v, 1);
16 sqlite3VdbeSetColName(v, 0, ”cache size”,
17 P3 STATIC);
18 sqlite3VdbeAddOpList(v, ArraySize(getCacheSize),
19 getCacheSize);
20
21 ...
22
23 sqlite3VdbeSetNumCols(v, 1);
24 sqlite3VdbeSetColName(v, 0, ”synchronous”,
25 P3 STATIC);
26 sqlite3VdbeAddOp(v, OP Integer,
27 db−>aDb[iDb].safety level−1, 0);
28 sqlite3VdbeAddOpList(v, ArraySize(getSync), getSync);
29 ...
30 }

1 static int flagPragma(...) {
2 ...
3 returnSingleInt (v, aPragma[i].zName,
4 (db−>flags&aPragma[i].mask)!=0);
5 ...
6 }
7
8
9

10
11
12 void sqlite3Pragma(...) {
13 ...
14 returnSingleInt (v, ”cache size”,
15 pDb−>cache size);
16 ...
17 returnSingleInt (v, ”synchronous”,
18 pDb−>safety level−1);
19 }
20
21
22
23 static void returnSingleInt (Vdbe ∗v,
24 const char ∗zLabel,
25 int value){
26 sqlite3VdbeAddOp(v, OP Integer, value, 0);
27 sqlite3VdbeSetNumCols(v, 1);
28 sqlite3VdbeSetColName(v, 0, zLabel, P3 STATIC);
29 sqlite3VdbeAddOp(v, OP Callback, 1, 0);
30 }

SQLite version 3.0.2 SQLite version 3.0.3

Figure 2: Extract and Delegate example.

Delegate refactoring pattern [15], [16]. Essentially, common
code that appears in one or more functions is factored out
into a separate function.

To illustrate this pattern, in Figure 2 we show an example
taken from SQLite. On the left hand size (version 3.0.2), we
see how the sqlite3Vdbe∗ operations are repeatedly used in
functions flagPragma and slite3Pragma. On the right hand side
(version 3.0.3), we see how the operations were extracted
into a separate function, returnSingleInt . The new versions of
flagPragma and slite3Pragma now use returnSingleInt instead of
the triplicated inline code.

Effect on complexity metrics. By using Extract and
Delegate we reduce mean module and program size, and,
by simplifying the control flow, we reduce cyclomatic and
interface complexity. Depending on the factored-out code,
i.e., whether it contains any function calls or not, this
step can either decrease the value of calls per function (as
illustrated by the SQLite example) or increase it (if the
factored-out code does not contain any function calls). If
the newly-created delegate function (returnSingleInt in our
example) is in the same module as the common code,
coupling is not affected, but if the delegate function resides
in a different module, coupling will increase.

Releases employing the pattern. We found this pat-
tern in all the programs we analyzed. For the interested
reader, we observed this pattern in Vsftpd (versions 0.0.13,

1.1.2, 2.0.0, 2.0.3pre1, 2.0.6, 2.1.0), SQLite (versions 1.0.19,
1.0.28, 1.0.29, 2.3.0, 3.0.3), Sendmail (versions 8.9.2, 8.12.0,
8.14.0), Samba (version 1.9.13).

B. Increased Modularity

This step consists of moving existing methods that provide
related functionality into their own modules. As a result,
code becomes more modular and easier to understand.

For example, in Sendmail prior to version 8.12.0, code
responsible for signal handling resides (with other unrelated
methods) in conf.c. In version 8.12.0, all the signal handling
functions are moved into a newly-created module signal .c. In
several versions we analyzed, this step was combined with
Extract and Delegate, i.e., a code block was extracted into
a function and moved to a newly-created module.

Effect on complexity metrics. Moving related function-
ality from module A into a newly-created module B effec-
tively decreases mean module size. However, this technique
increases module coupling, since references that used to be
local to module A are now cross-module references between
A and B.

Releases employing the pattern. We found applications
of this pattern in all the programs we analyzed. We observed
this pattern in Vsftpd (versions 0.0.13, 2.0.3pre1, 2.1.0),
SQLite (version 1.0.19), Sendmail (versions 8.9.2, 8.12.0,
8.14.0).

1 void ∗OpenDir(char ∗name)
2 {
3 Dir ∗dirp;
4 void ∗p = opendir(name);
5 if (! p) return(NULL);
6 dirp = (Dir ∗)malloc(sizeof(Dir));
7 if (! dirp)
8 {
9 closedir (p);

10 return(NULL);
11 }
12 dirp−>pos = 0;
13 dirp−>dirptr = p;
14 return((void ∗)dirp);
15 }

Figure 3: State abstraction example.

C. Subsystem Rewriting

A drastic complexity-cutting measure is to rewrite a
subsystem (or set of modules). For example, in Bind 9.1.0b1,
a complete library providing the RSA implementation (9981
LOC) was replaced with a similar library from the OpenSSL
suite (7624 LOC), resulting in a net decrease of 2357 LOC.
Furthermore, in Bind 9.2.0a1, the OMAPI protocol handler
(6467 LOC) was replaced with a simpler version (1455
LOC), again for a net decrease of 5012 LOC. Finally, in the
same 9.2.0a1 version, the configuration file parser (18516
LOC) was replaced with a smaller version (6287 LOC),
further reducing LOC by 12229.

Effect on complexity metrics. We observed that, for
the programs we analyzed, subsystem rewritings decrease
complexity, because the new subsystem code is smaller, and
of higher quality than the old subsystem code. We found
that the rewritings in Bind 9.2.0a1 reduced the number
of modules from 218 to 203, the mean module size from
430 LOC to 399 LOC, the number of common couplings
from 1338 to 1214, and the calls per function from 8.63
to 8.18; absolute values for cyclomatic and interface com-
plexity decreased as well. However, the normalized values
for coupling, cyclomatic and interface complexity increased
slightly, from 0.028 to 0.029, 175.21 to 175.42, and 82.76
to 86.90, respectively.

Releases employing the pattern. Besides Bind, we also
found this pattern in Samba 1.9.08 where module dir .c was
extensively rewritten, which reduced program and module
size (according to the change log, this release “totally
rewrote dptr handling to overcome a persistent bug”).

D. State Abstraction

All the programs we analyzed interact with libraries or
the operating system; to provide error handling, developers
can add wrappers around library and system calls. Using
wrappers and dedicated modules for low-level code (rather
than managing the state and dealing with errors inline)
makes code smaller, easier to understand, and increases

portability. For example, Samba versions prior to 1.9.03 use
directory access system calls directly, e.g., opendir. Starting
with version 1.9.03, the directory calls are replaced with
the OpenDir wrapper, shown in in Figure 3; moreover, the
newly-added wrappers are placed into a separate module.
The result is more robust, encapsulated code.

Effect on complexity metrics. This step reduces program
size, calls per function, and program complexity (since the
complex, error handling code resides in the wrapper).

Releases employing the pattern. We observed this pat-
tern in other versions of Samba (e.g., version 1.9.13) and
Sendmail 8.12.0.

VI. DISCUSSION: RELEVANCE OF COMPLEXITY
METRICS

Program evolution, as we observed it by inspecting the
source code and change logs, consisted mainly of corrective
measures, i.e., fixing defects, and adding new functionality,
rather than taking steps to reduce complexity. Moreover,
after analyzing these programs, we feel that complexity
metrics values are not always conclusive evidence for estab-
lishing that developers took complexity-reducing measures.

A reduction in a metric’s value is neither necessary nor
sufficient for identifying a complexity-reducing step. As
explained in Section IV-D, we used negative differences in
complexity metrics values as a starting point for our analysis.
However, we realized that releases exhibiting negative val-
ues do not necessarily take complexity-reducing steps. For
example, many releases that show a decrease in absolute
metrics for coupling or complexity stem from trivial or
uninteresting changes such as removing debug statements.
Moreover, many decreases in normalized values (e.g., for
coupling or mean module size) stem from small modules
being added. While adding small modules reduces the mean
module size and decreases normalized coupling, often these
additions have no beneficial impact on existing modules.

On the other hand, if in a release the developers both
add new code and restructure existing code, the new release
can exhibit higher complexity values due to the newly-
added code, and this masks the beneficial effects of the
restructuring. This made our task of separating complexity-
reducing measures from code additions quite hard, though
for reasons explained in Section VII we preferred official
releases to individual commits. To get more reliable indica-
tors, we could use per-module values for our metrics, rather
than per-program, a task we leave to future work.

An alternative remedy against artificially low values for
normalized metrics is to measure the complexity of a release
by dividing the complexity of newly-added code by the patch
size, or the number of newly added modules (rather than by
total LOC and total number of modules). This strategy has
been used by Mockus et al. [10] in a different context—for
measuring defect density by dividing the number of bugs
found in a release by patch size, rather than program size.

VII. THREATS TO VALIDITY

We now discuss possible threats to the validity of our
study.

Construct validity relies on the assumption that our met-
rics actually capture intended characteristics, e.g., that LOC
accurately models system size. As discussed in Section VI,
steps can increase one metric while decreasing another; we
used multiple complexity metrics to reduce this threat.

We tried to ensure content validity by only considering
official releases, and analyzing as long a time span in
a program’s lifetime as possible. We believe that con-
sidering individual commits, rather than official releases,
would threaten content validity because it exposes “jitter,”
i.e., experimental features that never make it into official
releases, or debugging statements. We acknowledge that
for Quagga and Sendmail, our inability to process early
versions of the software affects content validity—perhaps in
the early stages of development, these programs’ evolution
trends are different than trends observed later. Moreover,
the low number of program versions for Quagga and Bind’s
maintenance branches affects the statistical significance of
our observations.

Internal validity relies on our ability to attribute any
change in system characteristics such as size, to the time
lapse between releases, rather than accidentally including or
excluding files, modules, etc. We tried to mitigate this threat
by (1) ensuring we could compile and run each release we
analyzed, and (2) manually inspecting the releases showing
large differences in the value of a metric, to make sure the
change stems from code addition, deletion, or restructuring.

External validity (i.e., the results generalize to other
systems) is also threatened in our study. We have only looked
at open-source software written in C. Therefore, it is difficult
to claim that the results generalize to proprietary software,
or software written in other languages.

VIII. RELATED WORK

Our own prior work [9] uses the same programs and time
frame as here, to study whether Lehman’s laws of software
evolution [4], [17] are confirmed for open source software.
In that paper we limit complexity analysis to reporting the
β and R2 for three complexity metrics (calls per function,
cyclomatic complexity and coupling). In this paper we use
more metrics and perform a more thorough statistical anal-
ysis of how complexity evolves, e.g., correlation between
metrics. Moreover, in this paper we actually investigate the
source code to understand complexity-reducing steps, and
try to categorize the steps.

In a fault prediction study, Graves et al. [12] studied a 1.5
million LOC subsystem of a telephone switching software.
Their study computed a variety of complexity metrics (e.g.,
program size, cyclomatic and Halstead complexity, number
of functions) and found high correlation among absolute

metrics values, suggesting that program size is a good com-
plexity predictor. Interestingly, they found that normalized
metric values are not good predictors for faulty code.

Herraiz et al. [13] ran a statistical analysis on a single
version of FreeBSD’s ports (collection of packages) which
corresponds to about 1.7 million files and 409 million LOC.
Their study used some of metrics we used (LOC, cyclomatic
complexity, and a metric akin to our interface complexity)
and metrics we did not use (e.g., number of functions/com-
ment lines/uncomment lines, Halstead complexity metrics).
Their study, just like ours, found that their complexity met-
rics (which overlap with some of our absolute complexity
metrics) correlate well with LOC.

Hassan [18] used per-module-history complexity metrics
(rather than system-wide metrics) to predict future incidence
of faults. Their approach measures the modifications made
to modules during periods of high entropy. As mentioned in
Section VI, we too hypothesize that computing per-module
rather than per-program complexity metrics could be a better
indicator of complexity trends. They divide source code
modifications into fault repairing, general maintenance, and
feature introduction, based on analyzing the commit mes-
sage. For this work we manually analyzed the source code
modifications and found out that some modifications cannot
be easily placed into one of the three categories, and in fact
many modifications contain elements from all categories. As
we mentioned in Section VI, multi-purpose changes makes
identifying complexity-reducing measures harder.

Pearse and Oman [19] used a combination of metrics
(including complexity) to measure code “maintainability”
before and after taking certain maintenance steps. As com-
plexity metrics, they use Halstead and cyclomatic complex-
ity, as well as mean module size. Similar to our study, they
found that restructuring code to split large modules into
smaller ones decreases complexity. They also found that
integrating new code into the system has the potential to
stem or decrease complexity if the developers introduce new,
high-quality modules, or in the process of adding code to
existing modules, the existing code is refactored to control
complexity.

Paulson et al. [20] compared the evolution of three open
source programs (Apache, Linux kernel, and Gcc) with
the evolution of three closed-source programs. Just like us,
they found that project size increases continuously. For the
projects they analyzed, the complexity of the open source
software projects was higher than the complexity of closed
source software, although no per-program complexity trends
are presented.

Lawrence [11] analyzed the evolution of seven projects
over 3–9 years. Their goal was to verify Belady and
Lehman’s evolution laws [21]. Using metrics such as mod-
ules changed per release, and number of fixes per 6 months,
their study found that for some systems complexity tends
to increase, while for others no statistically relevant trend

could be found.
Wu and Holt [8] used a linker-based analysis method to

analyze the evolution of PostgreSQL (85 versions over 7
years) and the Linux kernel (368 versions ver 7 years). They
use metrics similar to ours: (common couplings, function
calls per function, and references to global variables) to char-
acterize the evolution of software complexity. They found
that PostgreSQL shows signs of increasing complexity, while
for Linux the results were inconclusive. While one of their
systems (the Linux kernel) was larger than any of the
programs we analyzed, we used a larger variety of programs,
with longer release histories, which can provide additional
insights and a broader perspective.

Refactoring detection [22] is a technique that employs
code metrics and heuristics to identify likely refactor-
ings. This approach is similar to ours, e.g., their Split
Method/Factor Out heuristic is close to our Extract and
Delegate step. However, our pattern identification is manual,
and does not scale very well.

IX. CONCLUSION

In this paper we investigate how software complexity
changes over time, and try to identify steps that developers
take to tame complexity. We analyze changes made to seven
open-source programs over a long period of time (more than
70 years of cumulative releases), using both statistical analy-
sis and reverse-engineering of the changes introduced in new
releases. We find that software complexity mostly increases,
and, excepting those rare releases in which entire subsystems
are rewritten, programmers seem to reduce complexity only
accidentally, as a by-product of some other maintenance
activity, e.g., adding a new feature. We also illustrate the
importance of using multiple metrics for accurately assessing
software complexity. We believe that this study and its
findings have the potential to improve the state of practice
in software maintenance. When developers are aware of
historical data on how program complexity tends to evolve
and the steps available for reducing complexity, they can
take proactive measures in order to make their programs
less complex, easier to understand and easier to change.

REFERENCES

[1] J. Koskinen, “Software maintenance costs,” http://users.jyu.fi/
∼koskinen/smcosts.htm.

[2] N. Schneidewind and H.-M. Hoffmann, “An experiment in
software error data collection and analysis,” IEEE Trans.
Softw. Eng., vol. 5, no. 3, pp. 276–286, 1979.

[3] N. Ohlsson and H. Alberg, “Predicting fault-prone software
modules in telephone switches,” IEEE Trans. Softw. Eng.,
vol. 22, no. 12, pp. 886–894, 1996.

[4] M. Lehman, “Laws of Software Evolution Revisited,” in Eu-
ropean Workshop on Software Process Technology. Springer,
1996, pp. 108–124.

[5] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs,” LNCS, vol. 2304, pp. 213–228, 2002.

[6] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source
code evolution using abstract syntax tree matching,” in Mining
Software Repositories (MSR), May 2005, pp. 1–5.

[7] “M Squared Technologies - Resource Standard Metrics,” http:
//msquaredtechnologies.com/.

[8] J. Wu and R. Holt, “Linker-based program extraction and its
uses in studying software evolution,” in FUSE, 2004.

[9] G. Xie, J. Chen, and I. Neamtiu, “Towards a better under-
standing of software evolution: An empirical study on open
source software,” in ICSM, 2009, pp. 51–60.

[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 3,
2002.

[11] M. J. Lawrence, “An examination of evolution dynamics,” in
ICSE. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1982, pp. 188–196.

[12] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw.
Eng., vol. 26, no. 7, pp. 653–661, Jul 2000.

[13] I. Herraiz, J. Gonzalez-Barahona, and G. Robles, “Towards a
theoretical model for software growth,” May 2007, pp. 21–21.

[14] M. Leszak, D. E. Perry, and D. Stoll, “Classification and
evaluation of defects in a project retrospective,” J. Syst. Softw.,
vol. 61, no. 3, pp. 173–187, 2002.

[15] D. C. Ashmore, The J2EE Architect’s Handbook.

[16] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: improving the design of existing code. Boston,
MA, USA: Addison-Wesley Longman Publ. Co., Inc., 1999.

[17] M. Lehman and J. Ramil, “Rules and Tools for Software
Evolution Planning and Management,” Annals of Software
Engineering, vol. 11, no. 1, pp. 15–44, 2001.

[18] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in ICSE, 2009, pp. 78–88.

[19] T. Pearse and P. Oman, “Maintainability measurements on
industrial source code maintenance activities,” in ICSM, 1995,
p. 295.

[20] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study
of open-source and closed-source software products,” IEEE
Trans. Softw. Eng., vol. 30, no. 4, pp. 246–256, 2004.

[21] L. A. Belady and M. M. Lehman, “A model of large program
development.” IBM Systems Journal, vol. 15, no. 3, pp. 225–
252, 1976.

[22] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refac-
torings via change metrics,” in OOPSLA, 2000, pp. 166–177.

