
Full citation: Licorish, S.A., & MacDonell, S.G. (2013) What can developers’ messages tell us? A

psycholinguistic analysis of Jazz teams’ competencies and behavior patterns, in Proceedings of the 22nd

Australasian Software Engineering Conference (ASWEC2013). Melbourne, Australia, IEEE

Computer Society Press, pp.107-116. doi:10.1109/ASWEC.2013.22

What Can Developers’ Messages Tell Us?

A psycholinguistic analysis of Jazz teams’ attitudes and behavior patterns

Sherlock A. Licorish and Stephen G. MacDonell

SERL, School of Computing and Mathematical Sciences

Auckland University of Technology

Auckland, New Zealand

sherlock.licorish@aut.ac.nz, stephen.macdonell@aut.ac.nz

Abstract

Reports that communication and behavioral issues

contribute to inadequately performing software teams have

fuelled a wealth of research aimed at understanding the

human processes employed during software development.

The increasing level of interest in human issues is

particularly relevant for agile and global software

development approaches that emphasize the importance of

people and their interactions during projects. While mature

analysis techniques in behavioral psychology have been

recommended for studying such issues, particularly when

using archives and artifacts, these techniques have rarely

been used in software engineering research. We utilize these

techniques under an embedded case study approach to

examine whether IBM Rational Jazz practitioners’

behaviors change over project duration and whether certain

tasks affect teams’ attitudes and behaviors. We found

highest levels of project engagement at project start and

completion, as well as increasing levels of team

collectiveness as projects progressed. Additionally, Jazz

practitioners were most insightful and perceptive at the time

of project scoping. Further, Jazz teams’ attitudes and

behaviors varied in line with the nature of the tasks they

were performing. We explain these findings and discuss

their implications for software project governance and tool

design.

Keywords: software development; team evolution;

software tasks; psycholinguistics; Jazz; attitudes and

behaviors

1. INTRODUCTION

Debates over the factors that contribute to or constrain

software systems’ adequacy and have consequential impacts

on project success rates have been longstanding [1]. While

many recommendations to adopt various software

methodologies and tools have been made [2], questions over

the outcomes of software development projects continue to

be asked [3]. Previous evidence suggests that people factors

manifest themselves in communication and behavioral

issues, and these underscore the causes of inadequately

performing software teams [4]. Thus, studying these factors

and issues should provide fruitful avenues for researchers to

better understand the impact of people factors on the

software process and to offer recommendations for

improvements, which may in turn enhance project

performance. In fact, almost irrespective of the reports of

inadequately performing teams [5], studying human-related

issues would seem to be necessary given the emphasis placed

on individuals and interactions [6] and collaboration and

coordination [7] by recent software development approaches,

and the growing body of research studies dedicated to human

interaction, communication and coordination themes [8-9].

Role theories and studies in psychology have shown that

various attitudes and behaviors are prevalent and/or

necessary in some team environments, while other settings

may demand different attitudes for teams to succeed [10].

We are interested in determining whether these findings may

also be applicable to software engineering teams [11].

Presuming these requirements are pertinent to software

teams, their absence may compromise team performance.

Thus, enquiries into software teams’ processes could provide

definitive and concrete recommendations for how to plan for

the staffing of software teams given their development

portfolio. In addition to suggestions for software project

governance, these understandings would also inform the

extension of collaboration and process support tools. We

have therefore extended our preliminary study examining the

effects of team environment on team behaviors [11]. We

extracted and analyzed messages and artifacts associated

with the work of ten IBM Rational agile global teams from

the Jazz repository to examine if these practitioners’

behaviors changed over project duration, and to study the

way software teams’ attitudes and behaviors varied given the

tasks they were undertaking. We found significant

differences in the way Jazz teams interacted over different

project phases and given their portfolio of tasks.

In the next section we present our theoretical background and

survey related works, before stating our specific research

http://dx.doi.org/10.1109/ASWEC.2013.22

questions. We then describe our research methods

and measures in Section 3, introducing our techniques

and procedures in this section. In Section 4 we present

our results and analysis. Section 5 then discusses our

findings and outlines the implications of our results, and in

Section 6 we consider our study’s limitations. Finally, in

Section 7 we draw conclusions and outline further research

directions.

2. THEORETICAL BACKGROUND, RELATED

WORK AND RESEARCH QUESTIONS

The compilation of archives recording the textual

communication activities of software developers has enabled

researchers to study certain aspects of practitioners’ social

behaviors [12]. For instance, Abreu and Premraj [13]

analyzed the Eclipse mailing list and found that increases in

communication coincided with a high number of bug-

introducing changes, and developers communicated most

frequently at release and integration time. Cataldo et al. [14]

employed social network analysis (SNA) during their study

of a large distributed system and found that those who

communicated the most also contributed the most on

software tasks. Similarly, Shihab et al. [15] found

communication activity to be correlated with software

development activity when studying the GNOME project.

Nguyen et al. [16] uncovered that 75% of Jazz’s core team

members actively participated in the project’s

communication, and distance did not delay communication

among team members. Works such as those of Bacchelli et

al. [17] and Antoniol et al. [18] have used more complex

techniques to analyze email and bug description information.

In linking email communications to source code using

regular expressions and other information retrieval

approaches, Bacchelli et al. [17] found that the least complex

approach, considering regular expressions in emails,

outperformed more complex probabilistic and vector space

models. Antoniol et al. [18] used decision trees, naïve Bayes

classifiers and logistic regression to classify bugs based on

specific terms used in the descriptions of such tasks, lending

encouragement to the use of methods leveraging text

analysis.

While such methods and their associated tools have been

used previously to understand and predict some aspects of

software development [19], only a few studies in this domain

have considered examining teams’ internal behavioral

processes from developers’ textual communication. This is in

spite of the fact, as noted by Bacchelli et al. [17], that natural

language analysis techniques have proved to be effective in

generating understanding of software developers’ language

processes. Apart from our recent preliminary work that uses

linguistic analysis techniques to investigate Jazz developers’

communication [11], Rigby and Hassan [20] is the only

other study that was found to examine aspects of team

dynamics using textual communication. In analyzing the

communication of the developers involved in the Apache

project, Rigby and Hassan [20] uncovered that once the two

top developers signaled their intentions to leave the project

their communications became more negative and instructive,

and they spoke mostly in the future tense and communicated

with less positive emotions, when compared to their earlier

communications. This study also found variations in

communicating behavior after releases. In studying two

releases, Rigby and Hassan [20] found that developers’

communication was optimistic after the first release, whereas

the opposite was evident after the second release. These

findings suggest that developers are not committed to such

projects once they have decided to leave, and that challenges

(such as high incidence of defect reports) and how motivated

developers were during development may be responsible for

the different feelings displayed after releases. In our

preliminary work examining three different projects we also

found slight variances in behaviors among those undertaking

different forms of software task [11]. Such findings are

insightful and support the utility of natural language analysis

techniques for understanding human processes, but also point

to the need for further large scale exploratory research.

Questions in relation to reliability and validity have also been

raised for studies examining open source software (OSS)

mailing lists due to the way participants’ communications are

managed in this environment (i.e., anyone is able to post

messages and report bugs to such mailing lists [21]).

However, studies such as that of Rigby and Hassan [20] and

our own previous work [11] provide useful discovery to

encourage systematic application of linguistic analysis

techniques to study developers’ communication in other

controlled environments.

Previous work examining similar datasets comprising Jazz

[16] and Microsoft software development artifacts [22] have

tended to employ mathematically-based analysis techniques

(e.g., SNA and its core measures of density and closeness).

These approaches have provided much-needed insights

relating to the way software practitioners work. However,

there still remain several open questions regarding work in

this context – those addressed here consider the way

practitioners’ behaviors change over project duration and

how software teams’ attitudes and behaviors vary given the

tasks they are undertaking during distributed agile projects.

We believe that it is imperative to examine evidence of the

actual interactions and engagements of software practitioners

if we are to fully comprehend the true nature of teams

working in these sorts of environments. Such work is

particularly necessary given the current disposition favoring

individuals and interactions as against an emphasis on

software variations and changes in artifacts such as

requirements documents and code [6]. Evidence in these

interactions should shed light on agile and global

development processes, should help us to test those initial

views that stressed the need for the involvement of highly

motivated members for such teams to succeed [23], and

should enable us to provide definitive and concrete

recommendations on how to plan for the staffing of software

teams given their development portfolio.

Evidence from other fields indicates that certain attitudes and

behaviors are both prevalent and necessary in some

environments or contexts, while other settings demand

different capabilities and conditions for teams to succeed. We

consider these issues in the context of global software

development, at both the project and development phase

level. The absence of these specific attitudes or conditions

may result in challenges to the success of a software project.

Such a position is supported by work on role theories [10]

and in human resource management and psychology [24].

However, apart from our preliminary work [11], our search

of the literature (covering ACM Digital Library, IEEE

Xplore, EI Compendex, Inspec, ScienceDirect and Google

Scholar) did not unearth any studies, exploratory or

otherwise, considering these issues. We therefore answer the

following questions by studying software practitioners’

messages:

A. How do globally distributed agile software

practitioners’ behaviors change over project duration?

B. How does the nature of software tasks affect globally

distributed agile teams’ attitudes and behaviors?

3. METHODS AND MEASURES

We employed an embedded case study design [25] in our

analysis of the IBM Rational Jazz Repository. This approach

is appropriate for understanding complex human processes

by relating them to their context [25], the intent of the work

reported here. During our study, mining methods were used

for data collection (see subsection B) and the extracted data

were then scrutinized using linguistic analysis tools and

statistical techniques (see subsection C). In the following

subsection (subsection A) we provide a description of the

repository used as the data source in our study and then we

elaborate on the techniques and procedures employed during

our research.

A. Study Repository

We examined development artifacts from a specific release

(1.0.1) of Jazz (based on the IBM
R
 Rational

R
 Team

Concert
TM

 (RTC)
1

), a fully functional environment for

developing software and for managing the entire software

development process [26]. The system includes features for

work planning and traceability, software builds, code

analysis, bug tracking and version control. Changes to source

code in the Jazz environment are permitted only as a

consequence of a work item (WI) being created beforehand,

such as a bug report, a new feature request or a request to

enhance an existing feature (and a history log is maintained

for each WI). Team member communication and interaction

around WIs are captured by Jazz’s comment or message

functionality. During development at IBM, project

communication, the content explored in this study, was

enforced through the use of Jazz itself [16].

The Jazz repository comprised a large amount of process

data collected from development and management activities

across the USA, Canada and Europe. In Jazz each team has

multiple individual roles, with a project leader responsible

1 IBM, the IBM logo, ibm.com, and Rational are trademarks or registered

trademarks of International Business Machines Corporation in the United

States, other countries, or both

for the management and coordination of the activities

undertaken by the team (team members also work across

projects). Jazz teams use the Eclipse-way methodology for

guiding the software development process [26]. This

methodology outlines iteration cycles that are six to eight

weeks in duration, comprising planning, development and

stabilizing phases. Builds are executed after project

iterations. All information for the software process is stored

in a server repository, which is accessible through a web-

based or Eclipse-based (RTC) client interface. This

consolidated data storage and enforced project controls make

the Jazz data more complete and representative of the

software process than that in many OSS repositories.

B. Data Pre-processing and Metrics Definition

Although an investigation of data mining (a broad and

vibrant research area in its own right) is beyond the scope of

this work, aspects of data mining supported the activities

involved in this project in terms of extracting, preparing and

exploring the data under observation. Data cleaning,

integration and transformation techniques were utilized to

maximise the representativeness of the data under

consideration and to help with the assurance of data quality,

while exploratory data analysis (EDA) techniques were

employed to investigate data properties and for anomaly

detection. Through these latter activities we were able to

identify all records with inconsistent formats and data types,

for example: an integer column with an empty cell. We wrote

scripts to search for these inconsistent records and tagged

those for deletion. This exercise allowed us to identify and

delete 122 records (out of 36,672) that were of inconsistent

format. We also wrote scripts that removed all HTML tags

and foreign characters (as these would have confounded the

linguistic analysis).

1) Data Extraction

We leveraged the IBM Rational Jazz Client API to extract

team information and development and communication

artifacts from the Jazz repository. These included (in addition

to WIs discussed in subsection A):

1. Project Workspace/Area – each Jazz team is

assigned a workspace. The workspace (or

project/team area) has all the artifacts belonging to

the specific team.

2. Contributors and Teams – a contributor is a

practitioner contributing to one or more software

features; multiple contributors form teams.

3. Comments or Messages – communication around

WIs is captured by Jazz comment functionality.

Messages ranged from as short as one word (e.g.,

thanks) up to 1055 words representing multiple

pages of communication.

We extracted the relevant information from the Jazz

repository and selected all the artifacts belonging to ten

different project areas (out of 94) for analysis. This formed a

purposive rather than random sample. Table I shows that the

project areas selected represented both information-rich and

information-rare cases in terms of WIs and messages.

Projects ranged from short (59 days) to long (1014 days),

with varying levels of communication density. The selected

project artifacts amounted to 1201 software development

tasks, carried out by a total of 394 contributors working

across the ten teams (and comprising 146 distinct members),

with 5563 messages exchanged around the 1201 tasks. As the

data were analyzed, it became clear that the cases selected

were representative of those in the repository, as we reached

data saturation [27] after analyzing the third project case. Our

use of SNA to initially explore the projects’ communication

showed a similar graph to that in Fig. 1 for all of the ten

project areas (note dense communication segments for

specific developers and tasks). Additionally, all ten projects

had similar profiles for network density (between 0.02 and

0.14) and closeness (between 0 and 0.06).

Figure 1. Directed network graph for sample Jazz project showing

highly dense network segments for practitioners “12065” and

“13664”.

2) Procedures and Metrics

Software tasks were planned in multiple iterations for each

project area (P1 – P10 in Table I). However, the number of

iterations varied for each project (e.g., P3 tasks were

completed in two iterations, whereas P5 tasks were executed

in 17 iterations). To examine whether practitioners’

behaviors changed over project duration we therefore divided

each project’s tasks and artifacts into four quarters (start,

early-mid, late-mid, and end). Teams’ attitudes and behaviors

were studied using linguistic analysis (see subsection C). The

various project areas in P1 to P10 were used to uniquely

identify the nature of the software tasks; e.g., those working

on P1 and P2 in Table 1 were developing UI components and

undertaking usability-related tasks. We used project area and

task type as our units of analysis, and also drew comparisons

over project phases and at the Jazz organization level.

C. Lingisitic Analysis Techniques

Previous research has identified that individual linguistic

style is quite stable over time and that text analysis programs

are able to accurately link language characteristics to

attitudes and behavioral traits (see [28], for example). We

employed the Linguistic Inquiry and Word Count (LIWC)

software tool in our analysis. The LIWC is a software tool

created after four decades of research using data collected

across the USA, Canada and New Zealand [29]. This tool

captures over 86% of the words used during conversations

(around 4500 words). Written text is submitted as input to

the tool in a file that is then processed and summarized based

on the LIWC tool’s dictionary. Each word in the file is

searched for in the dictionary, and specific type counts are

incremented based on the associated word category after

which summary output is provided. These different

dimensions in the summary are said to capture the

psychology of individuals by assessing the words they use

[28-29]. We provide a summary of the LIWC linguistic

categories that were considered, along with brief theoretical

justifications for their inclusion, in Table II.

TABLE I. SUMMARY STATISTICS FOR THE SELECTED JAZZ PROJECTS
P

r
o

je
c
t

ID

W
I

C
o

u
n

t

P
r
o

je
c
t

A
re

a

(n
a

tu
r
e
 o

f
ta

sk
)

T
o

ta
l

C
o

n
tr

ib
u

to
r
s

T
o

ta
l

M
e
ss

a
g
e
s

P
e
ri

o
d

 (
d

a
y

s)

P1 54
User Experience – tasks related to

UI development
33 460 304

P2 112
User Experience – tasks related to
UI development

47 975 630

P3 30
Documentation – tasks related to

Web portal documentation
29 158 59

P4 214
Code (Functionality) – tasks

related to application development
39 883 539

P5 122
Code (Functionality) – tasks

related to application development
48 539 1014

P6 111

Code (Functionality) – tasks

related to development of

application middleware

25 553 224

P7 91

Code (Functionality) – tasks

related to development of

application middleware

16 489 360

P8 210
Project Management – tasks under

the project managers’ control
90 612 660

P9 50
Code (Functionality) – tasks

related to application development
19 254 390

P10 207

Code (Functionality) – tasks

related to development of
application middleware

48 640 520

∑ 1201 - 394 5563 -

For example, consider the following sample comment:

“We are aiming to have all the patches ready by the
end of this release; this will provide us some space for the
next one. Also, we are extremely confident that similar
bug-issues will not appear in the future.”

In this comment the author is expressing optimism that

the team will succeed, and in the process finish ahead of time

and with acceptable quality standards. In this quotation, the

words “we” and “us” are indicators of team or collective

focus, “all”, “extremely” and “confident” are associated with

certainty, while the words “some” and “appear” are

indicators of tentative processes. Words such as “bug-issues”

and “patches” are not included in the LIWC dictionary and

would not affect the context of its use – whether it was to

indicate a fault in software code or a problem with one’s

immunity to, and treatment for, a disease. Although these

omissions may be thought to represent a confounding factor,

we know that the context is software development; and what

is of interest, and is being captured by the tool, is evidence of

attitudes and behaviors. As noted in Section II, previous

work has provided confirmation of the utility of the LIWC

tool for examining behaviors [20], and we have also

uncovered insightful findings in this study. In this work we

examine whether practitioners’ behaviors change over

project duration and how certain tasks affect teams’ attitudes

and behaviors along multiple linguistic dimensions.

TABLE II. SUMMARY OF THE LINGUISTIC DIMENSIONS

L
in

g
u

is
ti

c

C
a

te
g
o

ry

A
b

b
r
e
v
ia

ti
o

n

(A
b

b
r
e
v

.)

E
x
a

m
p

le
s

R
e
a

so
n

 f
o
r

In
c
lu

si
o

n

Pronouns

I I, me, mine, my,

I’ll, I’ve, myself,

I’m

Elevated use of first person

plural pronouns (we) is

evident during shared

situations, whereas, relatively

high use of self references (I)

has been linked to
individualistic attitudes [30].

Use of the second person

pronoun (you) may signal the

degree to which members

rely on (or delegate to) other

team members [31].

we we, us, our, we’ve,

lets, we’d, we’re,
we’ll

you you, your, you’ll,
you’ve, y’all,

you’d, yours,

you’re

Cognitive

language

insight think, consider,

determined, idea

Software teams were

previously found to be most

successful when many group

members were highly

cognitive and were natural

solution providers [32]. These

traits are also linked to

effective task analysis and
brainstorming capabilities.

discrep should, prefer,

needed, regardless

tentat maybe, perhaps,
chance, hopeful

certain definitely, always,

extremely, certain

Work and

Achievement

related

language

work feedback, goal,

boss, overtime,

program, delegate,

duty, meeting

Individuals most concerned

with task completion and

achievement are said to

reflect these traits during their

communication. Such
individuals are most

concerned with task success,

contributing and initiating

ideas and knowledge towards

task completion [10].

achieve accomplish, attain,

closure, resolve,

obtain, finalize,

fulfill, overcome,

solve

Leisure,
social and

positive

language

leisure club, movie,
entertain, gym,

party, jog, film

Individuals that are personal
and social in nature are said

to communicate positive

emotion and social words and

this trait is said to contribute

towards an optimistic group

climate [10]. Leisure related

language may also be an

indicator of a team-friendly
atmosphere.

social give, buddy, love,

explain, friend

posemo beautiful, relax,

perfect, glad,

proud

Negative

language

negemo afraid, bitch, hate,

suck, dislike,

shock, sorry,

stupid, terrified

Negative emotion may affect

team cohesiveness and group

climate. This form of

language shows discontent

and resentment [33].

4. RESULTS AND ANALYSIS

A. Changes Over Project Duration

1) Messages - Communication Patterns

First, we consider the way teams’ messages are distributed

over the four project phases: start, early-mid, late-mid, and

end. Fig. 2 shows that practitioners generally communicated

more frequently on project tasks during the beginning and

end phases of their projects. These practitioners tended to

exchange a more stable and consistent mean number of

messages per WI in the early-mid and late-mid stages of their

projects.

Figure 2. Mean messages communicated over project phases.

2) Linguistic Analysis – Behavior Patterns

Second, we report our results for some of the linguistic

dimensions in Table II; due to space limitations we provide

visualizations across the four project phases for five

linguistic dimensions in seven of the ten projects

(representing projects that belong to the four types – user

experience, documentation, coding, and project management)

in Fig. 3 to depict team behaviors spanning the duration of

software projects.

Overall, Fig. 3 shows that while practitioners’ use of self

references (e.g., I, me, my) fluctuated over their projects,

incidence of this type of language generally reduced towards

project completion. Although not included in Fig. 3, we also

observe that measures for collective (e.g., we, our, us) and

reliance (e.g., you, your, you’re) language were slightly

different, tending to be lower overall. Additionally, while

there was more use of delegation type language at the start of

the coding and project management projects (P5, P7, P8 and

P9), the opposite was evident for the user experience and

documentation projects (P1, P2 and P3). These patterns were

then somewhat reversed for collective language use during

these same projects.

We further note that practitioners were most insightful

(using, for example, “think”, “believe”, “consider”) at the

start of their projects, and there was also greater discrepancy

(e.g., should, would, could) in the projects’ initial stages (see

Fig. 3 for illustration). Discrepancy was particularly

pronounced during the early project phases for those working

on coding-intensive tasks. Fig. 3 illustrates that while

practitioners working on user experience related tasks

became less tentative (using “maybe”, “perhaps”,

“apparently”) as their projects progressed, use of this form of

language fluctuated for those working on the other tasks, and

was particularly high at the start and end for those working

on documentation projects. There was less variation over the

different project phases for certainty type language (e.g.,

definitely, extremely, always) which remained low when

compared to the other cognitive dimensions. Fig. 3 shows

that practitioners working on the project management tasks

were consistently focused on work (e.g., feedback, goal,

delegate) and achievement (e.g., accomplish, attain, resolve),

whereas those working on user experience, coding and

documentation tasks were more focused on work and

achievement in the middle and end phases of their projects.

There was no consistent linguistic pattern evident for the

leisure dimension (e.g., club, movie, party) during these

projects, which, although low overall, tended to fluctuate

over the projects.

B. Teams’ Attitudes and Behaviors

Given our intent to unearth variances in attitude and behavior

among those undertaking different forms of software tasks,

we separated the four types of tasks in Table I – user

experience (UE), documentation (Doc), coding (Code) and

project management (PM) – and conducted Kolmogorov-

Smirnov normality tests for the 13 linguistic dimensions

shown in Table II. Results from these tests revealed that our

data violated the normality assumption. We therefore carried

out Kruskal-Wallis tests to check for differences in the 13

linguistic dimensions between those undertaking the four

forms of software tasks (UE, Doc, Code and PM). Table III

provides these results which shows that there were

significant differences (p = 0.000) in language usage for each

of the 13 linguistic dimensions among those working in the

four project areas (UE, Doc, Code and PM). We therefore

conducted paired comparisons using the Mann-Whitney U

test to reveal differences between type pairs (see the results

in Table IV).

Considering the four types of software tasks, Table III shows

that there was higher individualistic language use (e.g., I, me,

my) among those working on coding intensive tasks. We

observed significant differences in Table IV for this form of

language use when we made comparisons with those

working on user experience and project management related

tasks (p = 0.000 and p = 0.000 respectively); a similar pattern

was seen for those working on documentation tasks. Table III

shows that those working on user experience related tasks

used the lowest amount of collective language (e.g., we, our,

us), and Table IV reveals that these differences were

particularly pronounced when compared to those working on

coding and project management related tasks (p = 0.029 and

p = 0.000 respectively). Table III also shows that reliance

language (e.g., you, your, you’re) was highest when

members were working on documentation tasks, and lowest

among those working on project management tasks. Our

Mann-Whitney test results revealed statistically significant

differences for this dimension between those working on

documentation tasks and those working on user experience,

project management and coding tasks (p = 0.004, p = 0.000

and p = 0.008 respectively).

Figure 3. Linguistic measures across project phases for projects P1, P2, P3, P5, P7, P8 and P9.

Table III shows that those working on documentation tasks

used the highest level of insightful language (e.g., think,

believe, consider); the Mann-Whitney tests results in Table

IV revealed significant differences for paired comparisons

between these members and those of the user experience,

coding and project management groups (p = 0.000, p = 0.000

and p = 0.003 respectively). On the other hand, Tables III

and IV show that individuals involved with coding intensive

tasks used more discrepancy (e.g., should, would, could) (p =

0.000 and p = 0.000) and tentative (e.g., maybe, perhaps,

apparently) language (p = 0.000 and p = 0.001) than those

working on user experience and project management tasks,

respectively. Tables III and IV show that measures for

certainty type words (e.g., definitely, extremely, always)

were significantly higher for coders and project managers

than user experience members (p = 0.000 and p = 0.000

respectively). Contributors on user experience tasks were

least work (e.g., feedback, goal, delegate) and achievement

(e.g., accomplish, attain, resolve) focused. Tables III and IV

reveal that leisure related language use (e.g., club, movie,

party) was significantly higher among project management

members when compared to those working on user

experience (p = 0.000) and coding (p = 0.000) related tasks.

Social language use (e.g., give, buddy, love) was particularly

low among those working on user experience tasks when

compared to those of the documentation (p = 0.000), coding

(p = 0.000) and project management (p = 0.000) groups. On

the other hand, those working on user experience tasks

utilized significantly more positive (e.g., beautiful, relax,

perfect) language than those working on the documentation,

coding and project management tasks (p = 0.000, p = 0.000

and p = 0.000 respectively). Finally, Tables III and IV also

reveal that those working on coding tasks used significantly

higher amounts of negative language (e.g., afraid, hate,

dislike) when compared to user experience (p = 0.000) and

project management (p = 0.000) members.

TABLE III. MEAN RANKS AND KRUSKAL-WALLIS TEST RESULTS

Linguistic

Category
Abbrev.

Mean Rank Kruskal-Wallis Test

(p-value) UE Doc Code PM

Pronouns

I 2512.210 2946.610 2928.010 2622.210 0.000

we 2706.390 2815.310 2786.560 2980.560 0.000

you 2780.780 3061.150 2808.000 2623.980 0.000

Cognitive

insight 2629.930 3267.150 2815.410 2884.120 0.000

discrep 2448.830 2743.030 2954.110 2679.760 0.000

tentat 2453.850 2963.810 2932.120 2732.170 0.000

certain 2625.400 2786.210 2852.720 2813.260 0.000

Work and

Achievement

work 2627.660 2914.140 2819.320 2959.130 0.000

achieve 2600.950 2601.930 2851.570 2924.690 0.000

Leisure,

social and

positive

leisure 2730.610 2930.270 2764.970 3013.040 0.000

social 2568.760 3131.470 2849.240 2876.220 0.000

posemo 3391.600 2654.940 2591.400 2489.460 0.000

Negative negemo 2568.590 2768.430 2889.090 2750.640 0.000

TABLE IV. MANN-WHITNEY TEST RESULTS

Linguistic

Category
Abbrev.

Mann-Whitney Test (p-value)

UE - Doc UE - Code UE - PM Doc - Code Doc - PM Code - PM

Pronouns

I 0.000 0.000 0.068 0.868 0.009 0.000

we 0.250 0.029 0.000 0.768 0.149 0.000

you 0.004 0.454 0.003 0.008 0.000 0.000

Cognitive

insight 0.000 0.000 0.000 0.000 0.003 0.271

discrep 0.002 0.000 0.000 0.055 0.560 0.000

tentat 0.000 0.000 0.000 0.792 0.058 0.001

certain 0.063 0.000 0.000 0.491 0.793 0.454

Work and

Achievement

work 0.020 0.000 0.000 0.429 0.756 0.032

achieve 0.763 0.000 0.000 0.034 0.010 0.264

Leisure, social
and positive

leisure 0.036 0.315 0.000 0.070 0.472 0.000

social 0.000 0.000 0.000 0.022 0.082 0.645

posemo 0.000 0.000 0.000 0.556 0.169 0.107

Negative negemo 0.017 0.000 0.000 0.228 0.878 0.010

5. DISCUSSION AND IMPLICATIONS

A. How do globally distributed agile software

practitioners’ behaviors change over project

duration?

Jazz team members engage each other most frequently at

project start and project completion. This finding is not

particularly surprising given the need to establish overall

goals and work assignments at the beginning of a project and

then to intensively assess the project at closure to ensure that

the features developed match those requested. More

specifically, we found that Jazz teams became more

collective as their projects progressed, an indicator that these

teams were operating cohesively in the norming and

performing phases of group work [34]. Teams tend to evolve

collectively after overcoming initial differences and conflicts,

and elevated levels of collective behaviors is an indicator of

more shared and established team norms.

In line with the higher volume of messages exchanged, we

also found the highest levels of cognitive language use at the

start of these Jazz projects, when project initiation and

scoping were conducted. Higher levels of cognitive processes

have been linked previously to higher task performance [32].

Practitioners’ intensive involvement in their teams’

knowledge network at this time may be beneficial for

ensuring their individual contextual awareness during the

remaining stages of the project. Additionally, the less

knowledgeable members may benefit the most from these

early exchanges, when the projects’ top members are

available and can readily engage and share their knowledge

with the wider team. The higher levels of engagement

towards project completion (which perhaps comprise urgent

and frequent reminders of work remaining and reflections)

may also aid the less knowledgeable and less aware members

regarding their future involvement, and particularly, those

features that may be potentially reusable. There was

consistent work and achievement language use among those

involved with project management tasks. Work and

achievement focus is said to be a necessary ingredient for

agile practitioners, and particularly for those that need to

perform across roles and self-organize [35]. Project managers

can encourage this approach to work among their wider team

members, which might explain the evidence for consistent

work and achievement focus among those operating on the

project management tasks.

We observe that coders and those involved with project

management tasks relied on each other the most in the early

project stages, while those working in other areas became

more inter-dependent as their projects progressed. We

expected that agile distributed teams employing an iterative

approach (such as those working on/with Jazz) would

establish and firm up project requirements, task priorities and

task assignments in the early stages and then continually as

projects progress. In particular, for documentation and user

experience tasks, we anticipated that these teams would

become most active after the more computationally intensive

features are delivered by the coders. This was evident for the

ten teams studied here. There seems to be more stability in

terms of task assignment at the start of the project for coders

and those working around project management tasks, while

the others tend to be stable after early features are delivered

and the project is properly established. This finding has

implications for human resource management strategies

(discussed below).

B. How does the nature of software tasks affect

globally distributed agile teams’ attitudes and

behaviors?

Our results show that software team members’ attitudes and

behaviors are influenced by the nature of the tasks they

perform, indicating that recommendations from role theories

[10] and psychology [24] are indeed relevant to software

engineering and may augment human resource strategies

regarding task assignments. Software practitioners were

found to express particular attitudes when working on certain

forms of software features. We also observed consistent

patterns across project areas for some of the linguistic

dimensions, suggesting that Jazz software practitioners

express some distinct attitudes and behaviors regardless of

the localized nature of the work they are performing. As a

group, the IBM Rational Jazz developers were more self-

focused than they were collective, and these practitioners did

not rely excessively on each other. While they expressed

limited certainty, these practitioners were highly task and

achievement focused regardless of the task they were

undertaking. Additionally, although these individuals were

task focused, they also communicated with high amounts of

positive and social language and expressed little frustration

during their discourses. We now examine in detail the

specific behaviors evident among the four groups of

practitioners.

1) Attitudes Among Coders

Jazz practitioners working on coding-intensive tasks were

highly self-focused and, when compared to those addressing

other software features, coders exhibited the highest use of

cognitive processes. Less desirable negative emotion was

also most common among coders. Although there was

evidence of greater individual ownership when practitioners

were working on coding-intensive or computational tasks,

members working on such tasks were more passionate during

their engagement. We observed that coders offered more

suggestions to others, but they were also conservative at

times. At other times these individuals were highly confident,

but equally frustrated. We believe that the more pronounced

use of several language dimensions by Jazz practitioners

involved in coding intensive tasks may be indicative of the

cognitive and mental challenges involved in such activities

[36], and has implications for teams’ task assignments.

Individuals involved in coding may be required to possess

higher levels of cognitive skills than those working on other

tasks. Given our findings, we suspect that individuals who

are eager and able to work independently may also be likely

to favor such tasks.

2) Attitudes Among Documenters

We found Jazz practitioners working on documentation tasks

to be self-focused, but these individuals also delegated and

relied heavily on each other, and demonstrated high levels of

group or collective focus. In addition, those dealing with

documentation were insightful, but showed tentativeness at

times. Those working on documentation tasks maintained

work focus, and were social and positive (somewhat aligned

with the group or people focus noted earlier), tending to

engage in more off-task discussions than other members.

Based on these observations we contend that those involved

in documentation activities may need less help, but they may

also need to possess higher levels of perception and be

intuitive. Those that are extroverted or agreeable [33] may

perform well on documentation tasks.

3) Attitudes Among Usability practitioners

Jazz practitioners working on user experience tasks were the

least self-focused and collective of those studied, and these

individuals also used the lowest levels of cognitive processes.

We also observe the least work and achievement focus

among usability members. However, these practitioners were

extremely positive, tending to show very little frustration,

confirming similar results found in our preliminary analysis

of three different Jazz project areas [11]. In the current work

this pattern is maintained across multiple usability related

projects. Those in Jazz that were working on usability

projects were constructive, tending to be much more

optimistic and upbeat and less negative. Thus, practitioners

that are emotionally stable may perform well on such tasks

[33], particularly in a distributed software team where there

is a need to solicit feedback about software features’ ‘look

and feel’ from unfamiliar team members.

4) Attitudes Among Project Managers

It is commonly held that project managers favoring an

extroverted, confident and inquisitive outlook are most

successful [32]. We found evidence in support of this

position, as we noted the highest use of collective processes

among this group of practitioners. These individuals were

also highly cognitive whenever they communicated and were

achievement driven. We examined the role distribution of

teams and found twice the number of project managers and

team leaders working among those undertaking project

management tasks compared to those working on the other

forms of task. In Jazz, those working on project management

tasks exhibited a team outlook, and were also intuitive and

communicated with confidence. These traits may be helpful

for these individuals, and may promote general staff

(followers’) confidence.

We anticipated that our findings may be linked to the

individuals assigned to these teams, as against the nature of

the problems or features they addressed, such that the

differences in linguistic patterns observed may be due to the

differences in team membership. We therefore checked for

similarities in team membership for those performing the

various software tasks. We found similarities in

practitioners’ participation across the various software tasks.

While 62% and 81% of those working on the user experience

tasks were also involved in the project management and

coding tasks, respectively, 52%, 69% and 93% of those

working on documentation tasks were also working on user

experience, project management and coding tasks,

respectively. Finally, 63% of those working on the project

management tasks were also involved in coding tasks. These

overlaps in the membership of teams performing these tasks

support the statistical findings above that team behaviors

vary given their project environment.

C. Implications for Project Governance and Tool

Design

Agile global practitioners need to possess and draw on

various skills when they are working in a high performing

team such as the Jazz teams studied here (tools created by

Jazz teams are being used (and were positively reviewed) by

over 30,000 companies – see jazz.net). These requirements

may be most critical for distributed teams where the

opportunity to engage face-to-face (F-t-F) is not available. In

line with the early assessment of DeMarco and Boehm [23],

agile practitioners need to possess high levels of intra-

personal, organizational and inter-personal skills if they are

to succeed. Those solving usability related tasks may need to

demonstrate high levels of inter-personal and social skills,

while coders need to show higher level of organizational and

intra-personal skills. Project managers or those engaged in

the project management team need inter-personal,

organizational and intra-personal competence to facilitate

teams’ success.

These requirements have implications for staff placement,

and assigning the right individuals to tasks. One solution is

for project managers to select highly skilled practitioners

possessing a mix of all the necessary skills (inter-personal,

organizational and intra-personal) regardless of the software

tasks being undertaken. A second solution is to assign a mix

of those with specific specialties (inter-personal or

organizational or intra-personal) to each team. Each of these

strategies will have implications for project cost and team

function. In the first instance project managers may be faced

with higher human resource budgets, as those with multiple

talents will likely demand higher remuneration. Moreover,

the availability of across-the-board high performers is

inherently limited. On the other hand, the second scenario

may result in underutilization of human resource, as there

would be times when there is less need for specific expertise

(as was seen for Jazz teams working on user experience and

documentation tasks in this study). Project managers will

need to make definitive decisions, as using a ‘one size fits

all’ model may not be suitable in agile distributed contexts.

Additionally, the higher levels of engagement at project

initiation and completion have implications for global agile

team members’ availability and their learning. If team

members are not available at these critical times they stand to

lose contextual awareness information – both knowledge

from project initiation and scoping, and reflections and

evaluations aimed at assessing that features match

requirements at project completion. Information shared at

these times will comprise teams’ ongoing tacit knowledge

that may not be evident or captured in other forms. Project

managers should ensure team member participation during

these key project phases, since this is the time when

members are likely to benefit the most from their teams’

knowledge pools. This has particular significance for

distributed software teams, where distance (both

geographical and temporal) may affect software

practitioners’ availability at these critical moments.

Finally, the inclusion of psycholinguistic analysis and

reporting functionality in Jazz (or similar tools) should help

project managers to monitor team members’ attitudes and

behaviors. Managing this information, like any other process

data (e.g., task assignment and effort), should help a project

manager using Jazz to take appropriate action around task

assignment and team composition, and avoid conflict and

performance issues. In order to be reliable and accurate, such

a tool will need to incorporate data mining principles

(particularly data pre-processing techniques) and tested

natural language processing methods. For instance, in

monitoring the user experience project area for the Jazz

teams studied here, a very high level of negative language

use (e.g., afraid, hate, dislike) not typical of those working on

usability features would be indicative of poor team synergies.

If left unchecked, this may lead to conflict and staff turnover.

Thus, awareness of teams’ frustration supported by the

provision of behavioral or mood visualizations would allow

the project manager to assign new and more flexible

members with high levels of inter-personal skills to these

tasks. Similarly, if those working on the project management

team are highly tentative, this may be a sign to call a project

meeting to promote their confidence, as uncertain project

governance may also lead to inadequate project performance.

6. LIMITATIONS

Measurement Validity: The LIWC language constructs used

to measure teams’ attitudes and behaviors have been used

previously to study this subject, and were assessed for

validity and reliability [28]. However, although the LIWC

dictionary was able to capture 66% of the overall words used

by Jazz practitioners, the adequacy of these constructs in the

specific context of software development warrants further

investigation. Nonetheless, we checked a small sample of the

messages to see what might account for the remaining words

being ignored by the LIWC tool and found that there were

large amounts of highly specialized software development

related language (e.g., J2EE, LDAP, JACC, API, XML,

TAME, JASS, Jazz, URI, REST, HTTP) during Jazz

practitioners exchanges. Moreover, what was of interest, and

was captured by the LIWC tool, was evidence of attitude,

demeanor and behavior. Finally, communication was

assessed based on messages sent around software tasks.

These messages were extracted from Jazz, and may not

represent all of the project teams’ communications.

Offsetting this concern is the fact that, as Jazz was developed

as a globally distributed project, developers were required to

use messages so that all other contributors (irrespective of

their physical location) were aware of product and process

decisions regarding each WI.

Internal and External Validity: Although we achieved data

saturation after analyzing the third project case, the tasks,

history logs and messages from the ten projects (out of 94)

may not necessarily represent all the teams’ processes in the

repository. Additionally, work processes and work culture at

IBM are also specific to that organization and may not be

representative of organization dynamics elsewhere.

7. CONCLUSIONS AND FUTURE WORK

Recent evidence highlights ongoing problems in software

project performance, which is said to be linked to

communication and behavioral issues. Accordingly, there is

growing emphasis on studying human-related processes to

provide recommendations for software process

improvements. This drive to understand the human aspects of

software development is particularly relevant for agile and

global endeavors given these approaches emphasize the

people dimension. We have followed this line of research

and have employed psycholinguistic analysis to study the

way IBM Rational Jazz globally distributed agile

practitioners’ behaviors change over project duration and

how software teams’ attitudes and behaviors vary given the

tasks they were undertaking.

We found the highest levels of project engagement at project

start and completion, and increasing levels of team

collectiveness as Jazz projects progressed. Additionally, we

found that Jazz practitioners expressed the most ideas at the

time of project scoping. However, overall, Jazz teams’

attitudes and behaviors varied given the nature of the tasks

they were performing. Our results have implications for

software project governance, and these findings may also

inform new requirements for extending IBM Rational Jazz or

similar tools.

 Our next step is to examine the way specific project

members (top members and project leaders) contribute to the

dynamics of these teams. In the short term, we also plan to

consider group dynamics at a more granular task level (e.g.,

for bugs, new features and feature enhancements), and to

complement our linguistic analysis with more contextual

bottom-up analysis techniques. Our longer term goal is to

provide tool support for teams’ behavior visualizations.

ACKNOWLEDGMENTS

We thank IBM for granting us access to the Jazz

repository. S. Licorish is supported by an AUT Vice-

Chancellor’s Doctoral Scholarship Award.

IX. REFERENCES

[1] B. Boehm, “A view of 20th and 21st century software
engineering.,” in Proceeding of the 28th international
conference on Software engineering, Shanghai, China, 2006,
pp. 12 - 29.

[2] S. Licorish, A. Philpott, and S. G. MacDonell, “Supporting
agile team composition: A prototype tool for identifying
personality (In)compatibilities.,” in ICSE Workshop on
Cooperative and Human Aspects on Software Engineering
(CHASE '09), Vancouver, Canada, 2009 pp. 66 - 73.

[3] K. El Emam, and A. G. Koru, “A Replicated Survey of IT
Software Project Failures,” IEEE Software, vol. 25, no. 5, pp.
84-90, 2008.

[4] S. Acuna, T, M. Gomez, and N. Juristo, “How do personality,
team processes and task characteristics relate to job
satisfaction and software quality?,” Inf. Softw. Technol., vol.
51, no. 3, pp. 627-639, 2009.

[5] Standish Group, CHAOS Summary 2009, The Standish Group
International Inc, West Yarmouth, MA, 2009.

[6] M. Coram, and S. Bohner, “The impact of agile methods on
software project management.,” in 12th IEEE International
Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS '05. , Greenbelt, Maryland, 2005, pp.
363 - 370.

[7] K. Chang, T, and K. Ehrlich, “Out of sight but not out of
mind?: Informal networks, communication and media use in
global software teams,” in Proceedings of the 2007 conference
of the center for advanced studies on Collaborative research,
Richmond Hill, Ontario, Canada, 2007, pp. 86-97.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt et al., “An empirical
study of global software development: distance and speed,” in
23rd International Conference on Software Engineering,
Toronto, Ontario, Canada, 2001, pp. 81 - 90.

[9] D. Damian, L. Izquierdo, J. Singer et al., “Awareness in the
Wild: Why Communication Breakdowns Occur,” in
Proceedings of the International Conference on Global
Software Engineering, 2007, pp. 81 - 90.

[10] K. D. Benne, and P. Sheats, “Functional Roles of Group
Members,” Journal of Social Issues, vol. 4, no. 2, pp. 41-49,
1948.

[11] S. A. Licorish, and S. G. MacDonell, “What Affects Team
Behavior?: Preliminary Linguistic Analysis of
Communications in the Jazz Repository,” in ICSE Workshop
on Cooperative and Human Aspects on Software Engineering
(CHASE '12'), Zurich, Switzerland, 2012, pp. 83 - 89.

[12] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
Mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 3,
pp. 309-346, 2002.

[13] R. Abreu, and R. Premraj, “How developer communication
frequency relates to bug introducing changes,” in Joint
international and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol)
workshops IWPSEEvol 09 Amsterdam, The Netherlands,
2009, pp. 153-158.

[14] M. Cataldo, P. Wagstrom, A, J. Herbsleb, D et al.,
“Identification of coordination requirements: implications for
the Design of collaboration and awareness tools,” in 20th
anniversary conference on Computer Supported Cooperative
Work, 06, Banff, Alberta, Canada, 2006, pp. 353 - 362.

[15] E. Shihab, N. Bettenburg, B. Adams et al., "On the Central
Role of Mailing Lists in Open Source Projects: An
Exploratory Study," New Frontiers in Artificial Intelligence,
Lecture Notes in Computer Science, pp. 91-103, Heidelberg:
Springer Berlin, 2010.

[16] T. Nguyen, T. Wolf, and D. Damian, “Global Software
Development and Delay: Does Distance Still Matter?,” in
IEEE International Conference on Global Software
Engineering, 2008. ICGSE 2008. , Bangalore, India, 2008, pp.
45-54.

[17] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and
source code artifacts,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
1, Cape Town, South Africa, 2010.

[18] G. Antoniol, K. Ayari, M. D. Penta et al., “Is it a bug or an
enhancement?: a text-based approach to classify change
requests,” in Proceedings of the 2008 conference of the center
for advanced studies on collaborative research: meeting of
minds, Ontario, Canada, 2008, pp. 304-318.

[19] M. C. Junior, M. Mendonca, M. Farias et al., “OSS developers
context-specific Preferred Representational systems: A initial
Neurolinguistic text analysis of the Apache mailing list,” in
Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on MSR, 2010, pp. 126-129.

[20] P. Rigby, and A. E. Hassan, “What Can OSS Mailing Lists
Tell Us? A Preliminary Psychometric Text Analysis of the
Apache Developer Mailing List,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories,
Minneapolis, MN, 2007, pp. 23-32.

[21] A. Bachmann, and A. Bernstein, “Software process data
quality and characteristics: a historical view on open and
closed source projects,” in joint international and annual
ERCIM workshops on Principles of software evolution
(IWPSE) and software evolution (Evol) workshops,
Amsterdam, The Netherlands, 2009, pp. 119-128.

[22] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical case
study,” in Proceedings of the 30th international conference on
Software engineering, Leipzig, Germany, 2008, pp. 521-530.

[23] T. Demarco, and B. Boehm, “The agile method fray.,”
Computer, vol. 36, no. 6, pp. 90-92, June, 2003, 2003.

[24] J. Downey, "Designing Job Descriptions for Software
Development," Information Systems Development:
Challenges in Practice, Theory, and Education., pp. 447-460,
USA: Springer US, 2009.

[25] R. Yin, Case Study Research: Design and Methods, Third ed.,
Thousand Oaks, CA: Sage Publications, Inc, 2002.

[26] R. Frost, “Jazz and the Eclipse Way of Collaboration,” IEEE
Softw., vol. 24, no. 6, pp. 114-117, 2007.

[27] B. G. Glaser, and A. L. Strauss, The Discovery of Grounded
Theory: Strategies for Qualitative Research, Chicago: Aldine
Publishing Company, 1967.

[28] F. Mairesse, M. Walker, M. R. Mehl et al., “Using linguistic
cues for the automatic recognition of personality in
conversation and text,” J. Artif. Int. Res., vol. 30, no. 1, pp.
457-500, 2007.

[29] J. W. Pennebaker, and L. A. King, “Linguistic Styles:
Language Use as an Individual Difference,” Journal of
Personality & Social Psychology, vol. 77, no. 6, pp. 1296-
1312, 1999.

[30] J. W. Pennebaker, and T. C. Lay, “Language Use and
Personality during Crises: Analyses of Mayor Rudolph
Giuliani's Press Conferences,” Journal of Research in
Personality, vol. 36, no. 3, pp. 271-282, 2002.

[31] J. W. Pennebaker, M. R. Mehl, and K. G. Niederhoffer,
“Psychological Aspects of Natural Language Use: Our Words,
Our Selves,” Annual Review of Psychology, vol. 54, no. 1,
pp. 547-577, 2003.

[32] M. Andre, M. G. Baldoquin, and S. T. Acuna, “Formal model
for assigning human resources to teams in software projects,”
Information and Software Technology, vol. 53, no. 3, pp. 259-
275, 2011.

[33] L. R. Goldberg, “Language and individual differences: The
search for universals in personality lexicons,” Review of
Personality and Social Psychology, vol. 2, no. 1, pp. 141-165,
1981.

[34] B. W. Tuckman, “Developmental sequence in small groups.,”
Psychological Bulletin, vol. 63, no. 6, pp. 384 - 399, 1965.

[35] N. B. Moe, T. Dingsoyr, and T. Dyba, “Understanding Self-
Organizing Teams in Agile Software Development,” in
Proceedings of the 19th Australian Conference on Software
Engineering, Perth, WA, 2008, pp. 76- 85.

[36] R. Feldt, L. Angelis, R. Torkar et al., “Links between the
personalities, views and attitudes of software engineers,” Inf.
Softw. Technol., vol. 52, no. 6, pp. 611-624, 2010.

https://www.researchgate.net/publication/261465592

