
Supporting complex work in crowdsourcing platforms: a view
from service-oriented computing

Author:
Xiao, Lu

Publication Date:
2017

DOI:
https://doi.org/10.26190/unsworks/19725

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/58023 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.26190/unsworks/19725
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/58023
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Supporting Complex Work in

Crowdsourcing Platforms: A View from

Service-Oriented Computing

Lu Xiao

A thesis in fulfillment of the requirements for the degree of

Masters of Engineering

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

May 2017

THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Surname or Family name: Xiao

First name: Lu Other name/s:

Abreviation for degree as given in the University calendar: Master

School: School of Computer Science and Engineering Faculty: Faculty of Engineering

Title: Supporting Complex Work in Crowdsourcing Platforms: A View from Service-Oriented Computing

Abstract 350 words maximum

Today, crowdsourcing is changing the way people work and solve problems - from ”in-house working”
to ”public outsourcing”. Many online crowdsourcing platforms allow the requester to advertise their
tasks and help crowd workers find their jobs. However, those platforms mainly focus on the micro-task
market and do not support the complex work consisting of interdependent, professional tasks. To
crowdsource this work, we need a way to model professional workers, define the complex task, and a
coordination mechanism to manage them.

To this end, we propose a service-oriented crowdsourcing framework in this thesis wherein (1). Each
professional crowd worker is modelled as a service that can be self-described, dynamically discovered
and assembled into the complex crowd work; (2). A complex crowd task is defined as a schema
consisting of a set of units of work and their inter-dependencies, which can be used to get multiple
crowd workers involved and guide their work; (3). The whole crowdsourcing lifecycle is divided into
two phases: (i). Plan Phase - where the working plan on the advertised complex task is crowdsourced
to generate the schema as mentioned earlier detailing the original advertising; and subsequently, this
schema is transformed into a web service orchestration specification for the later auto-coordination;
(ii). Execution Phase - where the execution of the planning result is crowdsourced to complete the
original complex work as advertised through coordinating and interacting with multiple crowd workers,
based on coordination and interaction protocol.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis
or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to
the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use
in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International
(this is applicable to doctoral theses only).

Signature Witness Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions
on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of
restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award

ii

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my knowl-
edge it contains no materials previously published or written by another person,
or substantial proportions of material which have been accepted for the award of
any other degree or diploma at UNSW or any other educational institution, except
where due acknowledgement is made in the thesis. Any contribution made to the
research by others, with whom I have worked at UNSW or elsewhere, is explicitly
acknowledged in the thesis. I also declare that the intellectual content of this thesis
is the product of my own work, except to the extent that assistance from others in
the project’s design and conception or in style, presentation and linguistic expression
is acknowledged.’

Lu Xiao
June 12, 2017

Copyright Statement

‘I hereby grant the University of New South Wales or its agents the right to archive
and to make available my thesis or dissertation in whole or part in the University
libraries in all forms of media, now or here after known, subject to the provisions of
the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also
retain the right to use in future works (such as articles or books) all or part of this
thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).

I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not been
granted I have applied/will apply for a partial restriction of the digital copy of my
thesis or dissertation.’

Lu Xiao
June 12, 2017

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred and
if there are any minor variations in formatting, they are the result of the conversion
to digital format.’

Lu Xiao
June 12, 2017

Abstract

Today, crowdsourcing is changing the way people work and solve problems - from
”in-house working” to ”public outsourcing”. Many online crowdsourcing platforms
allow the requester to advertise their tasks and help crowd workers find their jobs.
However, those platforms mainly focus on the micro-task market and do not support
the complex work consisting of interdependent, professional tasks. To crowdsource
this work, we need a way to model professional workers, define the complex task,
and a coordination mechanism to manage them.

To this end, we propose a service-oriented crowdsourcing framework in this thesis
wherein (1). Each professional crowd worker is modelled as a service that can
be self-described, dynamically discovered and assembled into the complex crowd
work; (2). A complex crowd task is defined as a schema consisting of a set of
units of work and their inter-dependencies, which can be used to get multiple crowd
workers involved and guide their work; (3). The whole crowdsourcing lifecycle is
divided into two phases: (i). Plan Phase - where the working plan on the advertised
complex task is crowdsourced to generate the schema as mentioned earlier detailing
the original advertising; and subsequently, this schema is transformed into a web
service orchestration specification for the later auto-coordination; (ii). Execution
Phase - where the execution of the planning result is crowdsourced to complete
the original complex work as advertised through coordinating and interacting with
multiple crowd workers, based on coordination and interaction protocol.

i

Acknowledgements

When I firstly started as a Master of Engineering student at the School of Computer
Science and Engineering in the University of New South Wales (UNSW), I was
hoping to get the real taste of research. Looking backwards, I have found myself
achieved more than what I came for. Many people helped me along the path,
people who I have built a strong relationship over the years both professionally and
personally, and I would like to thank them.

First and foremost, I would like to thank my supervisor, Dr. Hye-Young Paik for
being a great mentor and supporter during all stages of this research. I appreciate all
her hard work and commitment to provide me with everything I needed to complete
this study. Without her support, this work would not have been possible.

I would like to thank Dr. Jing Xu, Dr. Rosita Rastan, Mr. Nima Moghadam, and
Mr. Alireza Mirsadeghi for their friendly supports. We had great times together
sharing the similar painful and enjoyable experience as research students, which
made my life at UNSW much easier.

I also would like to thank my family for always being on my side. Your sacrifices and
encouragements have made my achievement today. Thank you for being there for
me through both the good and bad times. I would not have made this far without
your support and love.

Last but not least, I would like to thank myself who has not given up when encoun-
tering all kinds of difficulties in both life and work. With this milestone, I will be
brave enough to face future challenges and achieve more along my career path.

ii

Publications

Selected content of the thesis was published in:

Lu Xiao, Hye young Paik, Supporting Complex Work in Crowdsourcing Platforms:
A View from Service-Oriented Computing, 23rd Australian Software Engineering
Conference, pp. 11-14, 2014.

iii

Contents

1 Introduction 1

1.1 Motivation . 2

2 Preliminaries 5

2.1 Crowdsourcing . 5

2.2 Service-Oriented Computing . 11

2.2.1 Definition and Terms . 11

2.2.2 Structure and Key Technologies 11

3 Literature Review 20

3.1 Domain-specific Crowdsourcing . 20

3.1.1 Crowd Ideation . 20

3.1.2 Crowd Design . 22

3.1.3 Crowd Funding . 23

3.1.4 Mobile Crowdsourcing . 26

3.2 Crowdsourcing Elements . 28

3.2.1 Crowd Worker . 28

3.2.2 Crowd Task . 30

iv

3.3 Crowdsourcing Complex Work . 32

3.3.1 Requirements for Complex Work 32

3.3.2 Current Approaches . 33

3.3.3 Key Challenges . 36

4 Conceptual Framework for Crowdsourcing Complex Work 38

4.1 Encapsulating Worker – Crowd Workers as Services (CWS) 40

4.2 Encapsulating Work – CCTS (Complex Crowd Task Schema) 43

4.2.1 Task Definition in CCTS . 44

4.2.2 Task Structure in CCTS . 46

4.3 Coordination Protocol of Crowdsourcing 47

4.3.1 Provider Finding . 48

4.3.2 Provider Binding . 48

4.3.3 Task Execution and Provider Orchestration 49

5 SOC4Crowd Data Model 51

5.1 Data Model: CWS . 52

5.1.1 Activity Schema . 53

5.1.2 Service Schema . 56

5.1.3 Populating CWS . 59

5.2 Data Model: CCTS . 63

5.2.1 CCTS Schema . 64

5.2.2 Populating CCTS . 67

v

6 SOC4Crowd Operation Model 68

6.1 Overview . 68

6.1.1 Crowdsourcing Work Plan . 69

6.1.2 Crowdsourcing Work Execution 73

6.2 Plan Phase – Populating and Transforming CCTS Model 76

6.2.1 Human-level Planning: CCTS Population 77

6.2.2 Machine-level Planning: CCTS-to-BPEL Transformation . . . 81

6.3 Execution Phase – CWS Coordination and Interaction 89

6.3.1 Coordination Model . 89

6.3.2 Interaction Protocol . 92

7 Implementation and Use Case 97

7.1 Architecture and Technologies . 97

7.1.1 System Architecture . 97

7.1.2 Implementation Technologies 102

7.2 Implementation Details . 103

7.2.1 CwsClient Web Application 103

7.2.2 Coordination Middleware . 113

7.2.3 RequesterClient Web Application 119

7.3 Use Case Demonstration . 121

7.3.1 Creating and Publishing a Human Service 121

7.3.2 Two-phased Complex Task Crowdsourcing 122

8 Conclusion and Future Work 130

vi

Bibliography 133

vii

List of Figures

1.1 An example of crowdsourcing complex work 3

2.1 Crowdsourcing Classification . 6

2.2 Micro-task example in Amazon Mechanical Turk 7

2.3 Complex task example in Innocentive 8

2.4 Image Recognition in ESP Game . 9

2.5 SOA Structure and Stacks of Technology 12

2.6 concat() operation using WSDL/SOAP 13

2.7 Service Orchestration Pattern . 13

2.8 Service Choreography Pattern . 14

2.9 Loan Approval Process as BPEL . 16

2.10 Loan Approval Process: The BPEL process’ WSDL 17

2.11 Loan Approval Process: The BPEL process (Part 1) 18

2.12 Loan Approval Process: The BPEL process (Part 2) 18

4.1 CWS Conceptual Design . 40

4.2 A conceptual view of a crowd worker profile: an example 42

4.3 An example task . 46

viii

4.4 CCTS Conceptual Design . 46

4.5 Task lifecycle and its execution via service invocation: the above is
task lifecycle and the bottom is service invocation for task execution. 50

5.1 CWS Data Model . 52

5.2 Schema Mapping between Human Activity Model and WSDL 59

5.3 Abstract WSDL elements generation 61

5.4 Human capability reuse through SOAP 62

5.5 CCTS Data Model Schema . 64

6.1 Two-Phase Crowdsourcing Framework Overview 69

6.2 High-level Architecture of SOC4Crowd framework 74

6.3 UML Sequence Diagram Notation . 76

6.4 Advertising sequence at human-level planning stage 77

6.5 Decomposition sequence at human-level planning stage 79

6.6 Selection sequence at human-level planning stage 80

6.7 CCTS-to-BPEL Transformation Process Example 85

6.8 Interactions from the requester to SOC4Crowd 90

6.9 Interactions from the crowd worker to SOC4Crowd 91

6.10 A message example as per protocol 93

6.11 Message processing as per protocol 94

7.1 SOC4Crowd architecture with key modules 98

7.2 A stack of key technologies used for implementation 102

7.3 Activity-to-WSDL mapping rule fragment 104

7.4 WSDL types fragment generated by XSLT 105

ix

7.5 WSDL artifact validation . 105

7.6 CWS Publication Service Request . 106

7.7 A Sample of Root CCTS Instance in JSON 107

7.8 Decomposed CCTS Instance in JSON 108

7.9 SOAP request message sample during the CWS interaction 110

7.10 Callback SOAP message sample during the CWS interaction 112

7.11 BPEL generation process . 120

7.12 CWS definition through CWS Editor 121

7.13 CWS publication through CWS Editor 122

7.14 Advertising a complex crowd task in RequesterClient Application . . 123

7.15 Advertised complex crowd tasks on CWS Dashboard 124

7.16 Original crowd task details prior to decomposition 124

7.17 CCTS decomposition through CCTS Editor 125

7.18 Sub-CCTS definition through CCTS Editor 126

7.19 Plan selection by the requester in RequesterClient 127

7.20 Email notification in execution . 128

7.21 Dashboard notification during the crowdsourcing execution 128

7.22 CWS instance handling . 129

x

Chapter 1

Introduction

Crowdsourcing has been conceptualized as a distributed problem-solving and pro-

duction model for both individuals and organisations [Bra08]. It enables users to

outsource their tasks or problems to the public crowd on a global scale. By utilising

the collective intelligence on demand, it can solve those problems that need more of

human computation and less of machine computation.

Today, there are many online crowdsourcing platforms, such as Amazon Mechanism

Turk 1, acting as brokers between task requesters and distributed crowd workers.

Those platforms allow requesters to advertise tasks with financial compensation,

and help crowd workers find jobs.

However, most of them target at the micro-task market in which the advertised tasks

are simple, independent and small-scale pieces of work, e.g. photo identification,

video or other media content tagging, etc. It is insufficient for those platforms to

support the crowdsourcing of creative, complex, and structured work that needs

various professionals with diverse expertise and coordination of these highly skilled

1https://www.mturk.com/mturk/

1

1. Introduction

individuals [ANM+13]. A software development or testing process, producing an

academic paper or book, can exemplify these sophisticated and professional crowd

work.

On the other hand, Service-Oriented Computing (SOC) has been commonly referred

to as a software development paradigm to build complex and scalable systems in a

distributed environment [PTDL07]. It encapsulates the functionality of each differ-

ent software as a service that, in turn, specifies flexible interactions via binding. This

paradigm regards the heterogeneous applications on the web as the autonomous and

self-described services that can be loosely coupled and assembled.

Therefore, we can create a complex, distributed system by composing these services

on a web scale instead of building it from scratch. We believe that a complex

crowdsourcing platform can be seen as a large distributed system in which each task

requester can be viewed as a service requester and each crowd worker can be treated

as an autonomous service provider. In this sense, we could build a crowdsourcing

platform that is capable of dealing with the complex crowd work mentioned above

by discovering, composing, and coordinating multiple crowd workers.

1.1 Motivation

Here we describe a motivating scenario to highlight the challenges of crowdsourcing

the complex work. In this scenario, a software development team wants to out-

source their testing process to the crowd, due to the lack of certain resources (e.g.

professional testers). As we can see in Fig. 1.1, this crowd work is structured and

consists of several interdependent, professional tasks. Different tasks require differ-

ent professionals. For example, to make test cases, the worker should be capable

of analysing and understanding the business value or objective behind the software

2

1. Introduction

product, and transforming them into the formal description of testing scenarios;

similarly, to perform either functional or non-functional testing, the worker should

be capable of using some testing tools or writing some auto-testing scripts.

Therefore, this crowd work is not one simple task/worker pair; instead, it needs to

have multiple professionals involved and coordinate their outputs, e.g., worker A

cannot start the testing work until the test case specification from worker B.

Figure 1.1: An example of crowdsourcing complex work

By crowdsourcing this process, the requester expects a platform to be capable of:

defining the complex (not simple) crowd work with expected output;

discovering the appropriate workers from the crowd, in terms of their qualification,

reputation, and motivation;

coordinating crowd workers based on the dependencies between their work, e.g.

the control-flow or data-flow dependency;

supervising or monitoring the performance of crowd workers, and controlling the

quality of their work.

3

1. Introduction

We refer to the above as the coordination requirements for the crowdsourcing plat-

form. To our best knowledge, most of current crowdsourcing platforms cannot

meet this requirement comprehensively. Many popular ones, e.g. Mechanical Turk,

Mobile-Works 2, Manpower 3, etc., mainly focus on matching or pairing a spe-

cific task with a particular crowd worker, since they target themselves as an online

marketplace for job advertisers and seekers. They lack a systematic support of

organisational behaviour, i.e. task decomposition, worker allocation, performance

supervision, and quality assurance.

In this thesis, we present our solution to the above coordination requirements from

a Service-Oriented Computing perspective. We propose the conceptual design of a

workflow-based, service-oriented framework to better support the crowdsourcing of

complex work. We show a prototype showcasing the main concepts introduced in

the framework and demonstrate its use by a use case scenario.

The rest of the thesis is structured as follows:

Chapters 2 and 3 introduce some preliminary concepts and explore a wide range of

related work in both industry and academia to envision the future of crowdsourcing.

Chapter 4 introduces a fundamental design of concepts that underpin the framework.

Chapters 5 and 6 present how the foundational concepts are realised in a particular

framework named SOC4Crowd, introducing concrete data and operational models.

Chapter 7 shows the implementation details of the prototype and a use case sce-

nario to demonstrate how the system works. Finally, a conclusion and future work

discussions are presented in Chapter 8.

2http://www.mobile-works.org/

3https://www.manpower.com.au/

4

Chapter 2

Preliminaries

In this chapter, we introduce some basic and broad concepts on the relevant do-

mains of the thesis, namely: crowdsourcing and service-oriented computing. For

the crowdsourcing, we present a separate literature review in Chapter 3, discussing

more detailed and relevant work and systems. In this chapter, we aimed to intro-

duce some generic concepts and common systems. For the SOC concepts, we focus

on summarising the implementation technologies as they are directly applied to our

implementation of a SOC-based crowdsource platform.

2.1 Crowdsourcing

Crowdsourcing is a relatively new term. It was often cited to have been firstly

coined in a Wired magazine article by Jeff Howe[How06], which was derived from

outsourcing. According to him, Crowdsourcing is the act of taking a job traditionally

performed by a designated agent (usually an employee) and outsourcing it to an

undefined, generally large group of people in the form of an open call. There are many

5

2. Preliminaries

other attempts to define crowdsourcing and an extensive list of definitions is available

in both academy and industry. As such, a variety of terminology are currently used

in regard to crowdsourcing, e.g. collective intelligence, human computation, peer

production, mass collaboration, crowd wisdom, etc.

We classify the current online crowdsourcing systems in three different dimensions

- i.e. task complexity, work motivation, and result generation. Particularly, as sum-

marised in Fig. 2.1,

Figure 2.1: Crowdsourcing Classification

Task Complexity Dimension: in this dimension, we categorise the platforms

according to the complexity of crowd tasks advertised;

Micro-tasks are simple and do not require much time, nor skills to perform. Typical

examples can be image tagging or identification, short language translation.

As a well-known platform that supports the micro-tasks, Amazon Mechan-

ical Turk1 (MTurk) provides an online general-purpose marketplace helping

the task requester find crowd workers. MTurk coined the term HITs (human

intelligence tasks). As illustrated in Fig. 2.2, most of HITs are simple, in-

dependent, and only require a small amount of time from the crowd worker.

1https://www.mturk.com/mturk/welcome

6

2. Preliminaries

Figure 2.2: Micro-task example in Amazon Mechanical Turk

Complex tasks often require some level of knowledge and skills, and time to perform.

Examples can vary from creative tasks, e.g. product logo design, academic pa-

per writing, to very professional, complex projects that are often scientifically

or technically challenging, e.g. gold mining, a new medical treatment ap-

proach. For instance, NASA recently announced that it is turning to crowd-

sourcing platform for new open innovation contracts [Nor15]. As a typical

platform that supports the complex, professional tasks, Innocentive2 provides

an online marketplace where any innovation challenge can be advertised by

the solution seeker, while anyone can become the problem solver to post their

solution and compete for a prize. As shown in Fig. 2.3, the problem posted

on Innocentive is expertise-specific and often across multiple disciplines, e.g.

chemistry, engineering, and science as tagged.

Work Motivation Dimension: in this dimension, we consider how the platforms

motivate crowd workers to participate in the open requests.

Paid incentive has been proven as a direct and effective way of motivating people

2https://www.innocentive.com/

7

2. Preliminaries

Figure 2.3: Complex task example in Innocentive

to work in the traditional employment. So it is in many commercial crowd-

sourcing platforms. To financially incentivize crowd workers, there are two

main patterns among most of the commercial crowdsourcing platforms.

In the first pattern, the requester sets a fixed amount of remuneration while

all participating crowd workers compete against each other with their own

solution for it. In the second pattern, when the requester has advertised a

task, the crowd workers can give quotes to the requester. During the quoting

process, each crowd worker can only see their own quote. The requester will

gather all suggested quotes and choose the final worker. Platforms, such as

Freelancer3, oDesk or its rebranded Upwork4, and ServiceSeeking5, are typical

examples of this pattern.

The payment does not have to be money. CrowdFlower6, as an intermediary

between businesses and workers, helps other companies utilise the crowdsourc-

ing and rewards workers with gift certificates or virtual currency.

Unpaid motivation also exists for many people to participate in the crowd work.

3https://www.freelancer.com.au/

4https://www.upwork.com/

5https://www.serviceseeking.com.au/

6https://www.crowdflower.com/

8

2. Preliminaries

Today, there are hundreds of thousands of volunteers performing unpaid tasks

online, such as deciphering scanned text7, discovering new galaxies8, and so on.

In terms of their specific motives, we see altruism, interests or entertainment

as main categories.

There are many examples that show people participate in unpaid crowdwork

out of altruism, one of which is the “Help Find Jim” event [Vog07]. Hellerstein

et. al. reports on the experience and challenges involved in finding a computer

scientist named Jim Gray who went missing during a sailing trip in early 2007

[HT11]. Thousands of online volunteers inspected thousands of satellite images

in order to determine his location. Although unsuccessful in the end, the event

demonstrated that people are willing to spend a significant amount of time and

effort to do good when they can see the good cause.

Figure 2.4: Image Recognition in ESP Game

Some crowdsourcing platforms attract volunteers through appealing to their

interests and bringing in the enjoyment while they are performing the task

[PRM10, FFG+14]. For example, using similar interface shown in Fig. 2.4, ESP

Game or Google Image Labeller has successfully motivated many volunteers to

help them improve the image recognition and search computation. Any player

in the game would be arbitrarily partnered with another participant from

the crowd to label the same input image. Those two bundled participants

7recaptcha.net

8https://www.galaxyzoo.org/

9

2. Preliminaries

are anonymous to each other and they cannot communicate; neither of them

would know the answer given by the other. Only when both of them submit

the same label on the same image, then can they pass the game and continue

to the next image recognition task. The players are ranked by their scores and

the amount of time played.

In fact, the crowdsourcing platforms in these instances are playing a role in

training complex machine learning algorithms. A typical technique for training

AI systems is to feed them a very large number of labelled examples. The

crowdsourcing platforms are designed to effectively generate and collect the

data as training examples from the crowd workers [RH16].

Result Generation Dimension: in this dimension, we consider how the crowd-

sourcing result is generated in the end.

Integration: in this pattern, each crowd worker contributes to part of the final

result. In other words, the working outcome of each crowd worker is integrated

together into the final crowdsourcing result. A typical example can be the

Google Image Labeller platform mentioned above, as to successfully label an

image, it needs the output of both participants.

Selection: in this pattern, each crowd worker contributes their own solution as a

whole to the original request, and only one or some of them will be selected

by the requester as the final crowdsourcing result. As such, many crowdsourc-

ing platforms make use of a competition strategy to get the ‘’best” solution

from the crowd. Examples are ranging from T-shirt design competition in

Threadless crowdsourcing community to the research and development chal-

lenge competition in Innocentive crowdsourcing platform.

10

2. Preliminaries

2.2 Service-Oriented Computing

The thesis discusses many terms and definitions originating from the Service-Oriented

Computing (SOC) field. Here, we start with its definition and some important terms.

Then we discuss a little further about its technical stack.

2.2.1 Definition and Terms

SOC has been commonly referred as a software development paradigm to build scal-

able and flexible distributed systems. In the SOC context, the key term service

is a platform-independent, autonomous computational unit acting as a standalone

software component. It can be self-described, published, discovered, and dynami-

cally composed and assembled into other services. This key term reflects the idea

of Service-Oriented (SO) approach, which aims to build a software system through

discovering and invoking network-available services instead of programming it from

scratch. It shifts the software development paradigm from the traditional in-house

programming to cross-organisational integration [YWZ+04].

2.2.2 Structure and Key Technologies

We summarise the key technologies developed in the SOA domain as follows (shown

in Fig. 2.5): there are two interaction-centric layers – i.e. Service Foundation and

Service Composition, and one management-centric tier, i.e. Service Management, as

a common aspect across the previous two layers.

11

2. Preliminaries

Figure 2.5: SOA Structure and Stacks of Technology

Service Foundations

The Service Foundation layer aims to standardize the basic interaction among the

heterogeneous software systems. The two most important standards in this layer

are: web service description language (WSDL) and Simple Object Access Proto-

col (SOAP). WSDL is an interface description language written in XML, which

enables an automatic machine-processible interface declaration, discovery and bind-

ings. SOAP provides a standard message format for sending and receiving service

requests and responses. The exact content of SOAP messages are prescribed in their

associated WSDL. Typically, the SOAP messages are transported via HTTP with

an XML serialization in conjunction with other web service related standards such

as WS-Security.

WSDL/SOAP example To illustrate how a web service operation is described

in WSDL and what SOAP interaction looks like, we use the following concat() –

string concatenation – operation as an example.

The operation concat() receives two string parameters s1, s2 and returns a string

which is a concatenation of s1 and s2. WSDL description of this functionality is

shown in Figure 2.6 (Left). It shows that the operation named ’concat’ takes one

input message named ’concat’ and one output message named ’contactResponse’. In

turn, each message content is defined in the ’message’ elements. From this, the figure

12

2. Preliminaries

<?xml version='1.0' encoding='UTF-8'?>
<wsdl:definitions xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:ns1="http://soa..>
 <wsdl:message name="concatResponse">
 <wsdl:part name="return" type="xsd:string">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="concat">
 <wsdl:part name="s1" type="xsd:string">
 </wsdl:part>
 <wsdl:part name="s2" type="xsd:string">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="SimpleConcat">
 <wsdl:operation name="concat">
 <wsdl:input message="ns1:concat" name="concat">
 </wsdl:input>
 <wsdl:output message="ns1:concatResponse" name="concatResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

POST http://localhost:8080/SimpleConcatRPC/concatrpc HTTP/1.1
Accept-Encoding: gzip,deflate
Content-Type: text/xml;charset=UTF-8
SOAPAction: "http://soacourse.unsw.edu.au/SimpleConcat/concat"
Content-Length: 288
Host: localhost:8080
Connection: Keep-Alive

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:sim="http://soacourse.unsw.edu.au/SimpleConcat/">
 <soapenv:Header/>
 <soapenv:Body>
 <sim:concat>
 <s1>Hello </s1>
 <s2>World!</s2>
 </sim:concat>
 </soapenv:Body>
</soapenv:Envelope>

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/xml;charset=UTF-8
Content-Length: 224
Date: Fri, 17 Mar 2017 04:07:05 GMT

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="http://soacourse.unsw.edu.au/SimpleConcat/">
 <soapenv:Header/>
 <soapenv:Body>
 <ns1:concatResponse>
 <return>Hello World!</return>
 </ns1:concatResponse>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Request

SOAP Response

Figure 2.6: concat() operation using WSDL/SOAP

also shows that a SOAP request message to this operation is generated (Figure 2.6

Right, Top) and carried to the destination using a HTTP POST request. The

response from the operation comes in a HTTP response containing the corresponding

SOAP response.

Service Composition

Underpinned by the WSDL/SOAP standards, the Service Composition layer pro-

vides a technological solution for advanced web service interactions that involve

multiple services. There are two main patterns of service composition in SOA:

orchestration and choreography. We briefly explain each concept.

Figure 2.7: Service Orchestration Pattern

13

http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://soa
http://localhost:8080/SimpleConcatRPC/concatrpc
http://soacourse.unsw.edu.au/SimpleConcat/concat
http://schemas.xmlsoap.org/soap/envelope/
http://soacourse.unsw.edu.au/SimpleConcat/
http://schemas.xmlsoap.org/soap/envelope/
http://soacourse.unsw.edu.au/SimpleConcat/

2. Preliminaries

Orchestration is often regarded as a means to model and realise a complex busi-

ness process within the enterprise context through composing multiple services.

As shown in Fig. 2.7, there is a central orchestrator (i.e., controller) who con-

trols the way of coordinating the interactions amongst internal and external

services. In this pattern, service composition is always seen from the central

orchestrator perspective, where each participating service provider is aware of

the basic, end-to-end interaction between the orchestrator and itself, and not

aware of other participants.

Choreography is mainly a global perspective of seeing service composition through

multi-party collaboration. As shown in Fig. 2.8, there is no central controller;

instead, each participant needs to properly interact with its direct partners in

order to realise the global composition. To ensure correct interactions, each

participant needs to conform to a common contract that specifies the message

exchanges, rules of interaction and agreements that occur between parties.

Figure 2.8: Service Choreography Pattern

Business Process Execution Language (BPEL): BPEL is one of the stan-

dard languages that implements the Service Orchestration Pattern. In the context

of the thesis, the orchestration pattern provides suitable abstraction and technical

implementation solutions. Hence, we introduce the language BPEL as a service

orchestration language.

14

2. Preliminaries

The language elements in BPEL are defined as XML elements. BPEL models and

realises the programming logic of orchestrating multiple services by including the

following aspects of the process:

Different roles (i.e., services) that take part in message exchanges,

WSDL documents of the services and the BPEL process itself,

Control flows logic describing the coordination requirements,

Any message correlation information that defines how messages can be routed to

the correct instance of the BPEL process.

The control flow definition in a BPEL process is created by combining the basic

process steps called BPEL basic activities with the process structure activities called

BPEL structured activities. The Basic activities are simple tasks and represent

a unit of work/task. The Structured activities define the control flow. The

activities represent the well-known workflow constructs such as AND-split, OR-

split, AND-join, etc. Using the structured activities the explicit control flow of a

BPEL process (the order in which the basic activities are executed) can be expressed.

BPEL allows recursively combining the structured activities to express arbitrarily

complex processes.

Let us walk through a basic BPEL example. We do not present the complete de-

tails, but include some core elements that make up an implementation of BPEL.

Figure 2.9 explains the overall scenario of the example, Loan Approval Process Ser-

vice. The Loan Approval Process Service is a web service that provides a port type:

LoanApprovalPT, which has an operation named approve(). The client is expected

to send an input message called creditInformationMessage and the service to

return approvalMessage.

The internal implementation of Loan Approval Process Service is defined as a BPEL

process that partners with another web service that happens to provide the same

15

2. Preliminaries

Web Service

A Financial
Institution’s
Web Service

<receive>

<reply>

PortType:
LoanApprovalPT

Partner: LoanApprover
<process>

<sequence>

<receive>

<invoke>

<reply>

Web
Service

PortType:
LoanApprovalPT

inside
the Loan Approval Process

Client

Lo
an

 A
pp

ro
va

l P
ro

ce
ss

 S
er

vic
e

Figure 2.9: Loan Approval Process as BPEL

port type and operation: LoanApprovalPT.approve(). The control flow logic of the

BPEL process is as follows: the process, first, receives a creditInformationMessage

from the client; then, invokes the partner’s approve() operation (here, passing on

the same message creditInformationMessage); note that the synchronous invoke

activity will receive the output message approvalMessage from the partner ser-

vice; finally, replies to the client passing on the approvalMessage. To implement

this, first the necessary messages are defined in the WSDLs of BPEL participants.

Now, Loan Approval Process Service, which is a BPEL process, is going to define a

WSDL file to expose itself as a web service. This is shown in Figure 2.10, where: (i)

the import statement brings the definition of the LoanApprovalPT port type into

this WSDL, (ii) a partner link type with a role approver is defined; the partner

that plays this role will support the LoanApprovalPT port type (i.e., will perform

approve()) ; (iii) then, the binding and service definitions for the Loan Approval

Process service are defined. These definitions are directly referenced in the BPEL

code. Let us briefly examine the BPEL code in two parts. First, in Figure 2.11,

there is a partner link definition. There are two partners to represent according to

the scenario depicted in Figure 2.9. One partner link is to represent the interactions

between the client and the Loan Approval Process (the BPEL process). The other

16

2. Preliminaries

Figure 2.10: Loan Approval Process: The BPEL process’ WSDL

link is to represent interactions between the Loan Approval Process (the BPEL pro-

cess) and the partner service. These are declared as two partner links, client and

approver respectively. In the client link, myRole = “approver′′ specifies that it is

the Loan Approval Process that plays the approver role (providing the referenced

port type), whereas in the approver link, it is the partner service that plays the role.

Besides the partner link definition, there are two BPEL variables declared to hold the

input/output messages. The actual control flow part of the BPEL process is shown

in Figure 2.12. The orchestration logic starts with a receive activity (through the

client link), then proceeds with an invoke activity (through the approver link) to

call the partner service, and then with a reply activity (through the client link) to

relay the response message. Thus a single pipeline of three activities is constructed

with the BPEL-structured activity sequence.

In this chapter, we have introduced some basic concepts and technologies in both

17

2. Preliminaries

Figure 2.11: Loan Approval Process: The BPEL process (Part 1)

Figure 2.12: Loan Approval Process: The BPEL process (Part 2)

18

2. Preliminaries

crowdsourcing and service-oriented computing fields. In doing so, we provide an

overview of our problem and solution domains, respectively. Next, we will explore

the state of the art in crowdsourcing.

19

Chapter 3

Literature Review

Crowdsourcing has become an emerging field and attracted the attention from both

academy and industry in recent years. In this chapter, we categorise the related

research work and discuss each category in details. In doing so, we aim to present

the state of the art in crowdsourcing domain and identify the place where our work

resides in.

3.1 Domain-specific Crowdsourcing

The work discussed in this section shows how crowdsourcing, as a problem-solving

model, has been applied to many different application-specific domains.

3.1.1 Crowd Ideation

The scale and diversity of the crowd make it naturally good at generating a great

amount of ideas. As such in industry, there are many online crowdsourcing sites,

20

3. Literature Review

e.g. Quirky1, openIDEO2, etc., which have been built to collect numerous ideas or

solutions to various problems. In academia, there are also some research work that

aims to study and improve the process of crowd-based ideation or innovation.

Ideation Quality

According to [JSD16], the quality of the crowd ideation is not always matched with

its quantity. For instance, there are some duplicated ideas submitted from the

crowd and some of them are too vague to be understood or too impractical to be

implemented. [JSD16] tries to improve the quality of crowd ideation by introducing

a real-time expert guidance. They adapt the expert facilitation strategy from the

face-to-face brainstorming into their crowd ideation system - i.e. IdeaGens, in which

a skilled facilitator can monitor the incoming ideas on a dashboard and identify the

promising ones; then (s)he can provide the high-level guidance, e.g. questions or

provocations, to inspire those ideators further.

Ideation Request Representation

Ideation sometimes can be difficult, especially when the original problem is domain

specific. Some researchers found that people can become more creative at problem

solving, when they are inspired by the relevant examples from the outside of problem

domain. Those domains that can provide inspiring examples are coined as distance

domains. Yet it is difficult to find the outside-the-box inspiration, as people tend

to become fixated on surface-level details when they are seeking the analogy from

other distance domains. [LAK16] has presented a schematic approach to re-represent

the original crowd problem. It abstracts the problem description through removing

1https://www.quirky.com

2http://openideo.com

21

3. Literature Review

the surface-level details, e.g. domain-specific vocabulary, and keeping the problem

structure. In doing so, it reduces peoples fixation on the surface-level features of

original problem and makes it easier to identify the distance domains containing

the solutions to problems with the similar structure. Their follow-up work [LKA16]

improved this crowd problem re-representation approach through eliciting those con-

straints inherent in the original problem from the crowd and abstracting them into

the problem schema.

3.1.2 Crowd Design

Crowdsourcing also can be utilized for feedback generation.This has been studied in

the crowd design topic.

Structured Crowd Feedback

A diverse set of feedback from the crowd can potentially improve the design; yet,

sometimes, it is difficult for the designer to understand the perception of the crowd,

given its unstructured comments. Further, the empirical studies conducted by some

researchers indicate that, the unstructured format tends to generate low-quality

feedback. To improve the quality, [AB14] has presented a system - i.e. Voyant,

which aims to structure the crowd feedback through providing a set of coordinated

views - i.e. Elements, First Notice, Impression, Guidelines, and Goals. Those views

can help the designer understand the perception of crowd on the original design

from different perspectives. Similarly, [KJLW+15] has also presented their web-

based system - i.e. CrowdCrit, to structure design critiques from the crowd through

its own views. Moreover, it also aggregates the diverse crowd critiques and visualizes

the aggregation result for the designers review.

22

3. Literature Review

Crowd as a Part of Design Process

Other than utilizing the crowd for the one-off feedback generation, some research

work has considered the crowd as part of the design process. [AHDB15] has con-

ducted an empirical study to see if the crowd has any effect on the design process.

According to their findings, crowd feedback does prompt the designer to make both

deep, e.g. theme and layout, and cosmetic, e.g. font and color, changes in a design.

As such, they believe that the crowd should be part of the iterative design process

to improve its quality and produce more effective solutions.

When compared with their empirical study, [PKLSH13] has put ‘’crowd as part of

design process” into practice. Specifically, it has proposed a novel design process,

coined as Crowd vs. Crowd (CvC), wherein multiple design teams are formed from

the crowd and compete with each other to produce a high-quality design. According

to [PKLSH13], the nature of design process consists of collaboration and competi-

tion. As such, the crowd can naturally contribute to each of them. In their proposed

CvC process, a design team is formed by a designer and his/her supporters in the

crowd who like his/her original design. Within each team, members share the in-

formation and ideas, and collaborate with each other to produce their own design.

Then those multiple teams compete with each other to select the final design re-

sult. Therefore, CvC allows the crowd to participate in the whole design process,

e.g. ideation, specific design work, feedback, while it also involves the designer to

coordinate and guide them for the output generation.

3.1.3 Crowd Funding

The crowdsouring platform has also been applied to generate funds for projects

[FPO+11]. The term - i.e. Crowdfunding, is often referred to those online platforms

23

3. Literature Review

where the entrepreneur can raise funds from thousands of small investors instead of

the banks or venture capitalists. In industry, there are many websites built to that

end and some typical ones are Kickstarter3, Indiegogo4, Kiva5, DonorsChoose6, etc.

On most of those sites, the entrepreneur, which is often coined as Proposer, proposes

his/her idea or project to raise funds from the crowd. When the amount of funds

meets the target specified by the proposer, (s)he is awarded with the collected funds

and carry out his/her project. Once the project is completed successfully, the crowd

investors are rewarded in the following two forms.

Public value: everyone that is not limited to the investors can get the benefit, e.g.

medical research;

Private value: only the investors can benefit from the project result, e.g. product

pre-order.

In academia, some research work has studied how to increase the chance of crowd-

funding success. Particularly, [MMJ+16] has conducted a quantitative analysis to

link social ties with crowdfunding. Their work shows that multiple co-proposers in

a team are more likely to achieve their crowdfunding goal than those who seldom

propose their project on their own. Given the crowdfunding is a new form of raising

funds, many work has been conducted to study it and provide various suggestions

for its future design from diverse perspectives [BLS14].

3https://www.kickstarter.com/

4https://www.indiegogo.com/

5https://www.kiva.org/

6https://www.donorschoose.org/

24

3. Literature Review

Models for Crowd Funding

Many crowdfunding sites are designed in the well-known ‘’All-or-Nothing” model

along with a given deadline to coordinate the crowdfunding project. All-or-Nothing

style requires the project to hit the funding target before a deadline; otherwise all

collected funds return to donors. However, this design style encourages the potential

donors to withhold their donations, because they often tend to wait for the last

minute to see if others have expressed their interests and values. As such, they send

the mistaken signal to each other about the interests of crowd on the crowdfunding

project, which causes the donation inefficiency and even failure. To mitigate this

side effect, [JWR15] suggests crowdfunding sites designed in All-or-Nothing model

to explore and develop more features to encourage early donations. Some of the

future design suggestions are: i). setting a mandate pace for donations; ii). hiding

the total amount of collected funds and rewarding the early donors with the extra

funds that are beyond the original goal.

Proposer

[EJMG15] has conducted a quantitative study on whether or not the crowdfund-

ing can influence the entrepreneurial self-efficacy (ESE). ESE describes the belief

someone holds in succeeding at their entrepreneurship. According to their study, a

well-designed crowdfunding platform can increase ESE through:

Public validation with both financial and emotional support from the crowd;

Role modelling with the access to examples and lessons of other entrepreneurs;

Mastery with the development of new skills;

Psychological state via the way that the entrepreneur can feel energized.

25

3. Literature Review

Among a variety of proposers on the crowdfunding sites, there is a special group

of them - i.e. scientists. Today, crowdfunding science is a new way of supporting

scientific research, given the traditional research support, e.g. grants and fellowships,

is decreasing. Yet, less is known about how this new way affects scientists and their

work. To this end, [HG15] has conducted a qualitative study on why and how

scientists use crowdfunding to support their research. According to their analysis,

scientists are motivated to use crowdfunding to experience the sense of

Competence through acting as a domain expert;

Relatedness through connecting to other scientists;

Autonomy through the access to financial resources without applying to the tradi-

tional fundings.

Also, they have found the current general-purpose crowdfunding sites cannot suf-

ficiently support scientists. Scientists do not normally communicate their work to

the general public. Unlike the general-purpose crowdfunding project whose out-

come, e.g. products or services, can be tangibly shared and enjoyed by the crowd

supporters, the outcome of scientific research is often furthering knowledge, which

makes it difficult to gain the support from crowd. As such, the authors provide

design suggestions for the science-crowdfunding platforms, e.g. a wide range of data

visualization, communication strategies between scientists and the general public.

3.1.4 Mobile Crowdsourcing

Recently, the crowdsourcing platform has been applied to linking the requester to

physical service providers. Typical examples can be picking up or dropping off

some items at a certain location, reporting the queue time in a restaurant, running

some household errands, etc. Most of those physical services are location-sensitive,

26

3. Literature Review

requiring crowd workers to use their mobile phones. Therefore, they have been

coined as Mobile Crowdsourcing. The platforms such as Gigwalk7 and Taskrabbit8

act as an intermediary between the task requester and mobile users from the crowd.

In academia, [TASF+16] have presented a mobile crowdsourcing platform - i.e.

TA$Ker, to empirically study on how the mobile crowd responds to both Pull and

Push strategies used in the task selection or recommendation. In their work, the

Pull strategy represents the pattern wherein the mobile crowd select the available

task on their own, while the Push strategy denotes the model wherein the mo-

bile crowdsourcing platform recommends a task to an individual worker, based on

his/her current location or movement pattern. According to their analysis, the latter

outperforms the former in terms of not only task selection, but also task completion.

Similarly, [JTB15] proposes a task selection model within mobile crowdsourcing.

Particularly, they try to see if geography could have any impact on the task selection,

e.g. the relationship between the location of a task and its price, as well as the

willingness of mobile crowd performing it. To that end, they have conducted both

quantitative and qualitative analyses to reveal the geographical factors that influence

the mobile crowdsourcing market. In particular, they have found that the distance

to a location and the socioeconomic status (SES) of a task area have a significant

impact on the willingness of mobile crowd accepting the task and its cost.

Crowdsourcing as a problem-solving approach has been applied into a variety of

domains, which are not limited to the aforementioned. For instance, [ERC14] and

[SJ16] have applied crowdsourcing into the natural language process (NLP) field, e.g.

the language grammar and styling error correction, text annotation, etc. [SZX+15]

leverages crowdsourcing for the traditional eye tracking, and [ELMG16] has studied

7http://www.gigwalk.com/

8https://www.taskrabbit.com/

27

3. Literature Review

how the crowd can help the behaviour change plan generation, to name but a few.

3.2 Crowdsourcing Elements

The work in this section studies the foundational components of crowdsourcing

namely: crowd worker and crowd task, regardless of any specific application domain.

3.2.1 Crowd Worker

There is a great amount of research work on crowd workers and most of them view

the crowd from the perspectives of their motivation and productivity.

Motivation

Among those work studying crowd workers, a large portion focus on their motivation.

[CED14] has found the intrinsic enjoyment and competition is a widely-used motiva-

tion strategy to maintain the engagement of crowd volunteers in the volunteer-based

crowdsourcing project. They have also found, while the competition motivates the

high-performing participants, it has a neutral or even demotivating effect on others.

For instance, many mid-level performers would rather prefer to stay at the middle

level and the altruism may be potentially reduced by the competition. As such, they

have proposed an alternative approach coined as normification, through exploring

theories of the social and personal norm. This approach aims to encourage the crowd

to imitate each other and behave similarly. They suggest the crowdsourcing system

designer to consider this approach along with competition together as the motiva-

tion strategy and each of them can be used accordingly, depending on the crowd

and project. For instance, if the crowd consists of a set of exceptional performers

28

3. Literature Review

and the project aims to produce a high-quality result, the competition should be

used to motivate the crowd. Yet, if the crowd is a collection of ordinary members

and they are participating in a general-purpose project only requiring a collective

effort, the normification should be considered instead.

Similarly, [MST+15] also studies the motivation in the volunteer-based crowdsourc-

ing. Yet, their target domain is more specific - i.e. social-purpose crowdsourcing.

Typical crowd work in that domain can be the volunteer service for GLAM - i.e.

Galleries, Libraries, Archives, and Museums. Just like any other volunteer-based

crowdsourcing projects, it is quite challenging to sustain those volunteer services

in the social-purpose crowdsourcing. As such, [MST+15] has firstly analysed the

characteristics of those participants in the social-purpose crowdsourcing. Then they

have presented a four-quadrant model as metrics to assess the motivation of those

workers in the social-purpose crowdsourcing. According to their findings, senior cit-

izens play a primary role in the social-purpose crowd work and they are often more

dedicated than the young workers. Further, the intrinsic motivations, e.g. the sense

of social contribution, the feeling of community identification, etc., are the main

drivers of those senior citizens participating in the social-purpose crowd work.

Productivity

When compared with the above research on the crowd motivation, other work has

been studying how to increase the work quality and productivity of crowd workers.

To that end, [Har15] has applied the pay-to-quit incentive approach from the tra-

ditional employment into crowdsourcing, in order to encourage those workers who

have a poor performance to withdraw from crowd tasks at the early stage, while

retaining the high-performing crowd workers. This pay-to-quit incentive approach

is on the premise that those who are motivated by the personal finance reward only

would not have the same commitment or dedication as those who are not. Through

29

3. Literature Review

several empirical experiments, [Har15] has found that this approach can separate

the poorly-performing crowd workers from the high-performing ones, which in turn

increase the mean task accuracy and productivity.

Apart from the above motivation and productivity perspectives, some work is view-

ing crowd workers from other interesting angles. For instance, [KMB+15] has been

viewing a special group of crowd workers - i.e. people with disabilities. They explore

the crowd to see if people with disabilities are currently involved and whether or

not the current crowdsourcing platforms are feasible enough for them to effectively

participate in the crowd work. According to their findings, people with disabilities

are currently participating in the crowd work even though with challenges, e.g. ac-

cessibility. As such, they provide some design suggestions, e.g. more login access

options, for the future crowdsourcing platforms that should consider people with

disabilities.

3.2.2 Crowd Task

The work on the crowd task falls into categories of task representation, assignment,

and execution.

Task Representation and Assignment

In terms of the task modelling and selection, [ECRSS16] has found, in most of current

crowdsourcing platforms, the private information of a micro-task is at risk of leakage.

For instance, a malicious crowd worker may be able to decipher the prescription of

a medicine bottle while performing an image labelling task. To mitigate this risk,

they have proposed an approach to split the crowd task into multiple components,

each of which does not leak any private or confidential information and can be

30

3. Literature Review

independently completed by a crowd worker. Further, they also present a hybrid

task assignment approach on top of the traditional PULL and PUSH strategies to

avoid the collusion among crowd workers who try to collectively decipher the private

information of a task.

Task Execution

In terms of the task execution, [PFSM16b] has found, from time to time, the re-

quester experiences the long-tail execution of a crowd task because of the abandoned

task assignment - i.e. some tasks are left unfinished. This happens due to various

reasons, e.g. the crowd worker finds it difficult to proceed or lacks the confidence of

task performance. Those abandoned task assignments result in the task execution

delay, which in turn makes it difficult to predict and analyse the overall execution

time. As such, they have presented an approach named ReLauncher to identify those

abandoned assignments and relaunch them for other crowd workers during runtime.

In doing so, it speeds up the overall task execution.

Future Task Design

Some research work tries to look ahead into the future of crowd work or task de-

sign and many of them believe that future lies in integrating the crowdsourcing

into the organisation setting. [MOS+14] believes the organisation and business can

leverage crowdsourcing in various ways to support their goals and suggests that,

three themes of crowdsourcing - i.e. crowd work, workers, and system, are all worth

being explored. In terms of the crowd work particularly, they believe the future

research should try to answer the question - i.e. How do existing models of crowd

work account for the real nature and inherent complexity of organizational work?.

Similarly, [Obi15] also believes most of current crowdsourcing platforms target at

31

3. Literature Review

the micro-tasks which can hardly represent the complex and rich nature of organi-

sational work. Yet, they try to shed a light on this challenge through outlining ways

wherein researchers can examine and utilize the traditional work design theories for

organisational crowd work.

3.3 Crowdsourcing Complex Work

The need for supporting complex work in crowdsource platforms has been recognised

in both industry and academia. We present some initial work in this section.

In industry, websites like Freelancer9 and Upwork10 allow the requester to advertise

a professional and complex task, e.g. a website development. These sites mainly

aim to match a specific task with a particular crowd worker. Yet, given a complex

task consisting of many interdependent work items that require multiple workers

involved, current systems lack enough features to support such functions.

3.3.1 Requirements for Complex Work

In academia, some researchers try to get a glimpse of the future crowdsourcing

platform in which the complex crowd task is well supported. The work introduced

by [ANM+13] has envisioned the future crowdsourcing at a high level - that is, it

would be a promising online workspace where the next generation would thrive on.

In order to fulfill that promising vision, they have proposed an analytical framework

consisting of several research foci through the analogy from both organisational

behaviour and distributed computing domains. Some of those foci, for instance,

9https://www.freelancer.com.au

10https://www.upwork.com/

32

3. Literature Review

are crowd workflow, task assignment, quality control, job design, worker motivation

and reputation, etc. Through progressing on those foci, they believe this analytical

framework can guide both researchers and practitioners to contribute and build a

future crowdsourcing platform in which the complex and creative task is supported,

as well as the needs of both crowd workers and requester are considered.

Similarly, in [PFSM16a], some concrete requirements have been elicited to support

the structured work crowdsourcing. To be more specific, they firstly have coined

those complex, structured crowd work as Crowdsourcing Process that requires the

coordination of multiple tasks and participants. Then they have elicited and ana-

lyzed a set of concrete requirements that need to be met by the future crowdsourcing

system, e.g. crowdsourcing process definition language, control-flow and data-flow

management, etc.

3.3.2 Current Approaches

To realise the above requirements and vision of future crowdsourcing, some initial

work has been done. A general-purpose framework named as CrowdForge has been

introduced in [ABSK11]. CrowdForge aims to support the complex and interdepen-

dent tasks crowdsourcing in the existing micro-task market. By drawing the analogy

from the distributed computing domain, they have realised their own MapReduce

approach into CrowdForge for the complex crowd task decomposition and combi-

nation. Specifically, they have defined a three-phase crowdsourcing lifecycle for the

complex task as follows.

Partition: in this phase, a complex task is partitioned into a set of micro-tasks by

the market and each of them is simple enough for a crowd worker to complete

in a short amount of time.

33

3. Literature Review

Map: during this phase, each partitioned sub-task has been mapped to a crowd

worker and generated its output.

Reduce: the output of each sub-task is merged into the final result of original

complex task.

Moreover, they have presented a crowd task management tool named as Crowd-

Weaver as their further work in [ASPR12]. CrowdWeaver allows the requester to

monitor the crowdsourcing progress as it can visualize the execution of task flow.

And it can notify the requester when any change occurs in terms of task latency,

price, and quality.

A tool named as Turkomatic has been presented in [AMB12] aiming to improve the

quality of complex crowd task or workflow design. The idea behind Turkomatic is

that responsibility of crowd workflow design should be shared by both crowd workers

and requester. Through enabling them to work together on the workflow design, the

task would be defined more clearly and both parties would be on the same page,

regarding its objective. To that end, Turkomatic has been realised as a collaborative

crowdsourcing workflow design tool. In particular, it firstly allows the requester to

define a crowd task with a broad objective. Then it allows the market to design

the task workflow; in the meantime, it allows the requester to monitor and edit the

workflow design as they produce. Once a particular part of the design process is

altered by the requester, e.g. a sub-task, the updated part and its direct association

would be re-designed automatically.

We draw an inspiration from these task decomposition approaches in the above

research work. However, due to the nature of micro-task market wherein most

crowd workers are unskilled, some complex tasks are not easy to be decomposed

into a set of micro-tasks, as they often require multiple experts with the deep and

domain-specific knowledge.

34

3. Literature Review

With the same concern, the work in [DSA+14] aims to get multiple, distributed

experts from the crowd to form a team for collaboration and coordination. In

general, they introduce their flash teams - i.e. a framework to dynamically assemble

multiple crowd experts into a virtual team for a given complex task. In particular,

they firstly allow the requester to define the complex crowd work as a set of modular

tasks. Those modular tasks are chained with each other, given their input and

output data-flow. Also, each of those modular tasks has a tag to be associated with

multiple experts from the crowd. In doing so, multiple experts are involved for a

given modular task to form what they have coined as block. Given the sequential

data-flow, each block can be connected with another to form an elastic flash team, in

order to tackle the original complex crowd work. To manage a flash team, they have

introduced their Foundry framework to allow the requester to author modular tasks,

automatically manage the data-flow handoff, notify the crowd experts, visualize the

runtime progress of the complex crowd work, etc.

To provide a better coordination which is not limited to the above sequential data-

flow management, the work in [SFPF15] has proposed a prototype solution to view

the Crowdsourcing Process from BPM perspective. In general, their solution consists

of a process modelling language - i.e. BPMN4Crowd, equipped with a visual editor,

and its runtime platform. In particular, their BPMN4Crowd brings the crowd con-

text as an extension into BPMN and it has defined some crowd-specific elements,

e.g. Pick Task, Create Instance, Receive Result, Validate Result, and Reward Result,

etc. Additionally, they have enumerated several crowdsourcing patterns or what

they have coined as Tactics models - e.g. Marketplace, Contest, Auction, etc. Also,

they have enumerated some validation and rewarding logics - e.g. Expert Validat-

ing, Marking, Gold Data, Agreement, etc. Therefore, with those extracted patterns

and provided BPMN4Crowd language, they enable anyone with BPM background

to model a crowdsourcing process. Further, in order to automate that model exe-

cution, they also provide a BPMN4Crowd runtime - i.e. Crowd Computer (CC), to

35

3. Literature Review

manage both control-flow and data-flow dependencies in a crowdsourcing process.

3.3.3 Key Challenges

Through the above initial work stepping into the future crowdsourcing, we have

found three key challenges in order to systematically support the complex work

crowdsourcing. Those challenges are:

How to model the complex crowd task

How to model the professional crowd worker

How to coordinate multiple professional workers to complete the complex task

To our best knowledge, none of the above initial work has tackled all of those

challenges in a comprehensive and systematic manner. For instance, authors of

[ABSK11] and [AMB12] acknowledge that their crowd task decomposition approaches

are limited due to the micro-task market wherein most of crowd workers are un-

skilled. Therefore, due to the lack of professional crowd workers, some complex

tasks requiring a certain amount of domain-specific knowledge cannot be decom-

posed into a set of micro-tasks through their approaches. To involve professional

workers from the crowd, the work in [DSA+14] has utilized the pool of professional

workers in a professional crowd site - i.e. oDesk (re-branded as Upwork11), for the

complex task. Yet, they have simplified the coordination of multiple professionals -

that is, their coordination approach mainly focus on the management of sequential

data-flow dependencies among professional workers and it is limited to other depen-

dencies, e.g. parallelism and branching control-flow dependencies. To better define

the work dependencies, a crowd task modelling language - i.e. BPMN4Crowd, has

been proposed in [SFPF15]. To use BPMN4Crowd language, however, the requester

11https://www.upwork.com/

36

3. Literature Review

is required to have BPM background and knowledge, which raise the threshold to

non-BPM users. Further, they also do not have any approach to model professional

crowd workers. Some research work in the Business Process Management area tried

to address the problem from the view of the users who are not familiar with BPM

technologies. For example, [BBA12] uses mashup techniques, a user-focused Web

technology. [WPB13] employs a visual composition language approach and represent

the control/data flows as documents and linking documents.

To model human workers, a Human-Provided Services (HPSs) concept has been pro-

posed in [DSBB10] and [DFS12] to model human activities in the web service format

- i.e. WSDL. In doing so, they can leverage the mature SOA technologies, e.g. ser-

vice discovery and interaction, for the expert finding and interaction. Similarly, a

Work as a Service (WaaS) concept has been proposed in [RYMOV12] to model the

large and complex human work in a distributed organisation setting. In particular,

they define any piece of work as two parts of information - i.e. payload and coordina-

tion, which provides both data-flow and control-flow for management. Even though

those recent research work does not target at the crowdsourcing domain, we are still

inspired by their lens of looking at professional workers and complex human work

from SOC perspective.

We believe there is an analogy that can be drawn from SOC field to address those

three key challenges as above, in order to better support the complex work crowd-

sourcing. In general, if we could represent each distributed professional worker from

the crowd as a service and utilize this professional crowd to define the complex task

as a set of structural work items that can be linked with those human services,

we then are able to apply the mature SOC technologies to coordinate and manage

multiple professional workers to complete a complex crowd task.

37

Chapter 4

Conceptual Framework for

Crowdsourcing Complex Work

In this chapter, we set out to identify and describe main conceptual ideas that

underpin a crowdsourcing framework for complex work.

To provide a solution to the coordination requirements highlighted in Chapter 1,

we see the following three key elements as the main components in the new crowd-

sourcing domain for complex work. These elements are extensions of the currently

available concepts in crowdsourcing platforms, but re-designed particularly from the

service orientation viewpoints.

We briefly introduce the following key concepts in our approach before detailing

them in the rest of this chapter.

• Crowd Workers: We consider crowd workers as the providers of services in our

framework. Currently, the crowd workers in many of existing platforms are

represented by a simple set of descriptions with a specific focus on representing

38

4. Conceptual Framework for Crowdsourcing Complex Work

historical performance ratings. In our framework, we take a broader view in

crowd worker representations. We propose a concept called Crowd Workers

as Services (CWS) in which we represent each individual crowd worker as

a full fledged service provider with a complete service description profile. The

profile, in turn, is a composition of various data services that provide a more

comprehensive view about the worker. For example, one of such data services

would provide the capabilities of the worker to see what kind of services the

worker can perform. More importantly, by abstracting each provider in the

similar interface, we could draw an analogy from SOC to meet the coordination

requirement above through service discovery and composition.

• Complex Crowd Work: Additionally to a micro task, our framework is able to

express the make up of a complex piece of work. In SOC, single service oper-

ations could be considered ‘a single unit of work’, providing a building block

for achieving more complex application logic. We propose Complex Crowd

Task as a Schema (CCTS) in which we define the complex crowd work

outsourced by the requester using a workflow-based schema. Loosely speak-

ing, the schema contains (i) individual tasks that are considered single units

of work, and (ii) basic workflow constructs that encode the interdependency

amongst the tasks. Using the task and task dependency specifications in the

schema, we are able to find and bind appropriate crowd workers, coordinate

their work and request their services to produce data for the crowd work.

• Work Coordination and Runtime Management: One of the significant chal-

lenges in supporting complex work in crowdsourcing is how to effectively coor-

dinate and monitor the work. We propose a Coordination Protocol which

is designed to address many of the unique issues in crowdsource platforms for

complex work such as discovering a worker, binding a worker to a task and

managing and monitoring the quality of work.

39

4. Conceptual Framework for Crowdsourcing Complex Work

In the rest of this chapter, we elaborate on each of them as main design components

of our system.

4.1 Encapsulating Worker – Crowd Workers as

Services (CWS)

A CWS is a profile documentation of a crowd worker. It consists of a set of data ser-

vices to derive a comprehensive and flexible view of each worker. Fig. 4.1 illustrates

the design of CWS. A crowd worker is depicted in her profile as an entity with ex-

posed service interfaces. Each interface represents an access point to a data service.

The data services grant access to not only the personal details of the worker, but

also her capabilities, basic profile information, track records and work conditions.

We define the following four categories of data services for each crowd worker.

Figure 4.1: CWS Conceptual Design

• Capabilities Service: This service returns a list of human activities the

worker is capable of performing. Each activity in turn contains the name,

input and output data details.

40

4. Conceptual Framework for Crowdsourcing Complex Work

We assume that this information is captured in the system via two ways. First,

the worker can declare the types of activities she is able to perform. Second,

the system can capture the tasks that were performed by the worker in the

past and automatically register them on behalf of the worker. Each task is

translated and mapped to the operation-level details of a service definition in

a service description language, e.g. WSDL. For example, given an activity (or

task) named ‘automate-testing’ and its input document ‘testing specification’

and output document ‘testing results’, we translate it as a service operation

named ‘automate-testing’ which has a request parameter of document type

‘testing specification’ and a response of document type ‘testing results’. This

can be encoded concretely in a WSDL document.

What Capabilities Service returns in the end is a compiled list of the service

operations, which can be used to measure the qualification of a crowd worker.

• Information Service: This service returns the basic profile information of

the worker. Simply put, the types of information available in this service are

those considered relevant to describing a curriculum vitae of a professional

(e.g., contact details, position, experiences, qualifications).

We assume that this information is directly entered and managed by the worker

and exposed to the requester via this service.

• Track Record Service: This service provides a suite of data relating to

the historic performance of the worker. This includes, a historic record of

the activities and their approval ratings; the number of activities requested

by others in the past; the number of activities rejected by the requester; the

number of times the worker was recommended by others, comments on the

work (i.e., activities performed), etc.

The service will provide an aggregated view of the track record, as well as the

details of any individual work carried out by the worker.

41

4. Conceptual Framework for Crowdsourcing Complex Work

We assume that this information is collected and managed by the system.

These types of information in conjunction with the information service can be

used to measure the reputation of a crowd worker.

• Condition Service: This service returns a list of conditions or constraints

the worker wishes to declare on the system. Some typical examples of the

information provided by this service are availability period, preferred contact

method, preferred pay level per activity, etc.

We assume that this information is directly entered and managed by the

worker.

One example can be seen in Fig. 4.2. Notionally, from the profile description, we can

access capabilities of the service provided by Shawn (e.g., automate testing), track

records in terms of the list of services that used Shawn, as well as other information

such as cost and contact details.

Figure 4.2: A conceptual view of a crowd worker profile: an example

By identifying and abstracting the various description aspects of a crowd worker

(e.g., capabilities, track records) as data services, it is possible to have a uniform

42

4. Conceptual Framework for Crowdsourcing Complex Work

interface-driven access to the available crowd workers and relevant information about

them.

More importantly, through modelling a crowd worker as a service (CWS), we can ap-

ply the concepts that are well-established in the Service Oriented Computing domain

such as service discovery. For instance, we could find the appropriate crowd workers

for the appropriate crowd tasks in terms of their qualification and reputation that

can be measured via a service quality and discovery technique [Ran03, YWZ+04].

Also, we could coordinate and interact with the crowd workers who are discovered to

complete the complex crowd work via a service orchestration and interaction tech-

nique [RS05, DS05]. Further, by allowing individuals to autonomously manage their

service-oriented profiles, e.g. add or remove a personal service, it provides a way to

capture the dynamically changing capabilities and information of crowd workers as

their skills and information evolve.

4.2 Encapsulating Work – CCTS (Complex Crowd

Task Schema)

The next concept we propose is a model to represent a complex crowd task. It aims

to encapsulate the necessary information of a complex task for it to be executed on

the crowdsourcing platforms. To this end, we consider the complex task as a piece

of work specification that describes a goal and constraints. The concept of work

specifications is not dissimilar to that of workflow schema or web service composi-

tion documents which are common in the workflow and web services coordination

techniques.1

1Workflow Patterns: http://www.workflowpatterns.com/patterns/resource/workflow structure.php

43

4. Conceptual Framework for Crowdsourcing Complex Work

In this work, instead of proposing a new model to represent the specification, we

utilise a subset of the existing, well-established workflow concepts and add features

that are specific to crowdsourcing (e.g., reward, deadlines). It is noted that our

work specification aims to describe a piece of work in a manner that can be fully

coordinated by the platform with minimal human intervention during the execution

of the work. This means some of the complicated features in the workflow standards

such as loops or non-deterministic splits and joins are not considered [VDAVH04].

Overall, in our model, a piece of work is described using two concepts: (i) individual

tasks where each task represents a unit of work, and (ii) the coordination require-

ments amongst the individual tasks in order to achieve the goal of the work. In the

following, we detail this model further.

4.2.1 Task Definition in CCTS

We consider a complex task as a work specification, which is captured as a Complex

Crowd Task Schema (CCTS). To describe this specification, we first introduce a task

in our model as a way to describe the range of work to be carried out. A task refers

to a single unit of work and there are three distinct types of tasks which are named:

atomic, composite, and root/goal task. An atomic task is one which has a simple,

self-contained definition, meaning it is not described in terms other types of tasks.

In the operational sense, this is the only task that is ’executed’ or ’carried out by

the worker’ when initiated. and only one instance of the task executes when it is

initiated. A composite task whose implementation is described in terms of atomic

tasks. A goal or root task is a unique starting task that contains the descriptions

of the goal of the complex work to be carried out. In our work, we assume that a

goal task has to be broken down into composite or atomic tasks to have a concrete

meaning in the platform.

44

4. Conceptual Framework for Crowdsourcing Complex Work

All types of tasks share the following definition:

Definition 4.2.1. Let Tname be the task name domain, Iname be the input name

domain and Oname the output name domain, Cname be the constrain name domain,

CVvalue be the constrain value domain in a crowdsourcing platform. A task t is a

tuple, t = (tname, workload, constraints), where:

• tname (tname ∈ Tname) denotes the name of the current task. This includes a

description and a collection of keywords. tname can be used by the requester

to search other similar crowd tasks that have been done in the past, which can

help them define the current one.

• workload captures the input (i.e., what is given to the task) and output

data (i.e., what is produced by the task) of the current task, and is de-

scribed as Wrkload = {Wrkinput,Wrkoutput} where Wrkinput consists of a

set {i1, ..., in|ii ∈ Iname}, Wrkoutput consists of a set {o1, ..., on|oi ∈ Oname}.

We assume the input/output data ii (and oi respectively) to be an artefact

(e.g., documents, zip files) whose names are uniquely identified and address-

able within the domains of the crowd platform. This assumption allows us to

effectively identify and manage the data generated within the platform.

• constraints specify any restriction or condition to be met when performing

the current task, e.g. deadline and cost. Constraints is a set of constraint

pairs (cname, cvname) where cname ∈ Cname and cvvalue ∈ CVvalue.

Figure 4.3 shows an example of our model describing a task. In the example, the task

has a name “Write Test cases”, the workload contains input document name “doc:

//soc4crowd/write_test_cases/test_plan” and output document name “doc:

//soc4crowd/write_test_cases/test_cases”. It also specifies a few constraints

such as a deadline and cost.

45

4. Conceptual Framework for Crowdsourcing Complex Work

Figure 4.3: An example task

4.2.2 Task Structure in CCTS

Based on the types of tasks we have, to meet the coordination requirements, we also

define a task structure to provide a skeleton for the crowdsourcing platform to bind

appropriate workers, coordinate them, and request their services for the crowd work.

A typical structure of a CCTS is shown in Fig. 4.4.

Root Task (Goal)

Task 1

Task 1.1 Task 1.2

Task 2

Task 2.1 Task 2.2

Task 3

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Task Name: …
Workload: …
Constraints: …

Figure 4.4: CCTS Conceptual Design

It indicates the tree structure of our CCTS. Specifically, atomic tasks (i.e., tasks with

no children) need to be finished in order to complete the composite task that contains

them. The root task represents the original crowd task advertised by the requester;

then it can be recursively divided or decomposed into a set of composite tasks until

46

4. Conceptual Framework for Crowdsourcing Complex Work

atomic tasks, based on the above workload and constraint in task definition; and

those atomic tasks are the ones that can be bound with a CWS for execution.

When compared with the simple text description used in many of micro-task based

crowdsourcing platforms, our CCTS can better define the complex crowd task, as

its goal and workload define what work needs to be done while its constraint and

structure define how to get the work done. More importantly, it acts as a schema to

get multiple crowd workers involved and coordinate them to complete the complex

crowd work, e.g. each atomic CCTS is bound with a particular CWS and depen-

dencies among those composite or atomic CCTS can be used to orchestrate those

bound CWS to complete the crowd work.

4.3 Coordination Protocol of Crowdsourcing

In this section, we elaborate on a coordination protocol of crowdsourcing in our work

to meet the coordination requirement in Sec. 1. When a requester defines his/her

work in the schema mentioned above and outsources it to the crowd, first we would

find the qualified, trustworthy providers for the requester based on the given schema

and providers’ profiles. Then, we would get the commitment from both sides on

the crowd work performance through their negotiation, and bind each determined

provider to a specific task. After that, we orchestrate these bound providers and

request their services to complete the outsourced crowd work. To be more specific,

this protocol consists of the following phases.

47

4. Conceptual Framework for Crowdsourcing Complex Work

4.3.1 Provider Finding

To find the right provider for the right task in the given schema, we compare the

workload and constraint information of a task with providers’ information via various

services in their profiles. Therefore, we could see if any provider can match the

outsourced task in terms of their qualification, motivation, and reputation.

Specifically, first we could see if a provider is capable of doing a task by matching

the input and output of this task with any capability service definition in one’s

profile. Through one’s condition services, we could speculate that a provider may

be interested in a task if its cost can match his/her required pay, and its deadline is

within his/her availability. After that, we may find multiple candidates; at this point

we can rank them by considering both service quality metrics and social network

metrics, e.g. the average service rate and recommendation from a provider’s track

record services, the common social connections that a provider shares with this

requester via information services, etc. In doing so, we could find and recommend

those candidates who are qualified and trustworthy to a certain extent.

4.3.2 Provider Binding

After finding providers, we need to bind each selected one to a specific task before

requesting them to produce the data. In other words, we need their commitment

on the task performance before its execution, which is represented as an agreement

signed by both the requester and bound provider through their negotiation. This

agreement determines the final constraint information of a task and contains some

detailed terms on task execution (i.e. if..then statements), e.g. if a task is finished,

then its quality must be measured by a third-party service. Therefore, after binding,

this agreement can be used to monitor or supervise the execution, e.g. sending

48

4. Conceptual Framework for Crowdsourcing Complex Work

notification when the deadline is approaching, calling the third-party service for

evaluation when a task is done, etc. Further, a provider can be re-bound during the

execution through re-negotiation with the requester on some agreement terms, e.g.

extending the deadline. At this point, we would check if there is an agreement clash

betweem tasks according to their dependencies in the schema, e.g. for two sequential

tasks, the extended deadline of the first task becomes later than the second.

4.3.3 Task Execution and Provider Orchestration

When all required providers have been found and bound to specific tasks, it comes

to orchestrate them to execute their tasks for the crowdsourced work. Fig. 4.5 shows

the lifecycle of each task, during which its execution consists of:

• service invocation: this stage is to call the bound provider service to pro-

duce data for the task’s output. After binding, each provider is automatically

requested and their response comes asynchronously (as a human service) to

create or update the output. A provider can provide multiple responses to

one request for the output update, and the request can be a reminder without

providers’response.

• evaluation: this stage is to evaluate the task’s output when a task is finished

by the bound provider. According to the binding agreement, evaluation can be

done manually (i.e. by the requester), or automatically (i.e. by our system or

the third-party service). Based on the evaluation result and detailed agreement

terms, the task would be closed or redone.

As the crowd work is defined as a set of interdependent tasks, the execution of

one task may drive another, based on their dependencies. Currently, we consider

the interdependencies among tasks as control-flow that can be expressed by an

49

4. Conceptual Framework for Crowdsourcing Complex Work

Figure 4.5: Task lifecycle and its execution via service invocation: the above is task
lifecycle and the bottom is service invocation for task execution.

executable workflow language. As we represent providers as services, we coordinate

the execution of the whole crowd work in the way of orchestrating providers via a

workflow engine.

In this chapter, we have introduced the concepts that we consider foundational in

supporting complex work crowdsourcing platforms. In proposing those concepts,

what we emphasize is to reflect on what Service-Oriented Computing principles can

offer in terms of representing the work, coordinating the work and executing the

work, and to utilise the existing ideas as much as we can in the platform. This will

also help concretising and implementing the ideas using the existing technologies. In

the following chapters, we will elaborate on the technical design and implementation

of our solution.

50

Chapter 5

SOC4Crowd Data Model

Up to now, we have discussed the conceptual design and requirements of supporting

complex work in crowdsourcing platforms. As of this chapter, we will introduce our

complex crowdsourcing system named SOC4Crowd. The design and implementation

of this system are formed by three main concepts we introduced in the previous

Chapter 4 - namely, CWS, CCTS, and crowdsourcing coordination protocol. In

realising those concepts, we concretely model and implement a subset of those ideas

in Chapter 4 to demonstrate a view - i.e. how employing the existing and mature

SOC technologies to the crowdsourcing domain could potentially provide a feasible

solution framework.

In this chapter, we introduce the technical design of the data model for SOC4Crowd.

In particular, we detail one possible way of realising those two key concepts - i.e.

CWS and CCTS, as follows.

51

5. SOC4Crowd Data Model

5.1 Data Model: CWS

As introduced earlier, CWS allows us to view the crowdsourcing domain from

service-oriented perspective. It aims to encapsulate various human capabilities of

crowd workers into a common and uniform service interface, thereby abstracting

the definition of a piece of work from the actual work (or worker). This also means

that, in a similar way of reusing web service, such interfaces can be reused by the

requester when (s)he needs to advertise a similar piece of work, but perhaps the

work could be carried out by different workers.

Figure 5.1: CWS Data Model

To realise this fundamental concept, we design it as part of our system data model

in Fig. 5.1. Entities are designed to capture the information for the data services,

e.g. capabilities service, in Sec. 4.1. In particular, those entities can be clustered

into the following two categories - i.e. activity schema and service schema. Next,

we will elaborate on each of them.

52

5. SOC4Crowd Data Model

5.1.1 Activity Schema

As a design to realise the subset of our Crowd Workers as Services idea, we mainly

focus on its capabilities service definition and exposure. To that end, we firstly

interpret a capability as an activity, which is performed by a human actor with a

certain amount of time and effort, and whose result produces human artifact.

Then in our vision of human activity in the complex crowdsourcing setting, par-

ticularly, we represent it as the one consisting of several atomic actions instead of

one single description, and each atomic action is composed of a pair of input and

output artifact. For instance, a software testing activity consists of two actions - i.e.

manual test and automation test. Both actions accept the same input - e.g. a test

case document, and produce different output - e.g. manual test action generates a

test report document while automation test outputs an executable script.

To realise the above vision, we design our human activity schema as shown in the

right-hand side of Fig. 5.1. Specifically, it consists of the following entities.

Artifact and HumanArtifact

Artifact entity represents any input or output content that is consumed or pro-

duced by either an end user (i.e. a human requester or crowd worker), or a program

in our system. With this entity designed, we can proceed and store the result of

any program in our system for the crowdsourcing management. More importantly,

it is a building block for us to further model human action and activity. In terms

of its specific definition, each artifact has the following three common properties,

regardless of its actual consumer or producer.

term: this property denotes the unique meaning of an artifact in a specific domain,

53

5. SOC4Crowd Data Model

e.g. Test Plan Specification in software quality assurance domain. It is an

alternative to the traditional name property for the better entity identifica-

tion. Because its value comes from a list of domain-specific dictionary that

is internally maintained within our system, it can avoid the ambiguity. This

also means that we assume a simple but extensible taxonomy of terms that

can sufficiently represent a domain in which our system operates.

location: this property denotes the web location - i.e. URL, of an artifact.

content: this property denotes the binary content of an artifact.

Regarding the artifact consumed or generated by human - i.e. the requester and

crowd workers, we design the HumanArtifact entity extending Artifact to model

the input and output of a human action, e.g. a document, photo, etc. As such,

besides those common properties as above, HumanArtifact also has its own property

- i.e. owner: the human owner of current artifact.

With the above Artifact and HumanArtifact entities defined, we have a building

block to further model human activities and actions as their capabilities.

Activity and Action

As introduced earlier, those two entities are designed to represent a type of human

activity and its concrete actions that a crowd worker declares to be capable of

performing as his or her capability.

In terms of their specific definition, properties composing an Action entity are all

terms of its input and output - i.e. inputTerm and outputTerm, which are similar to

the term property of the above Artifact entity. That means those input and output

terms are domain-specific tags instead of the actual artifact, as the human action is

declared but not instantiated yet. In other words, an Action entity denotes that, a

54

5. SOC4Crowd Data Model

human actor is able to perform a certain type of operation with an expected type of

input and produce a certain type of output. Under this declaration, when an actual

action instance happens, the expected input and output artifact are generated. That

will be explained in the later ActionInstance entity. As to Activity entity here,

it is a container grouping multiple Action entities to represent a type of human

capabilities as a whole.

As exemplified earlier, an Activity can be a Software Testing while its nested

Action can be Manual Test and Automation Test. The inputTerm of both Man-

ual Test and Automation Test are Test Plan Specification, while their outputTerm

are Test Report and Test Script, respectively.

ActivityInstance and ActionIntance

Those two entities are designed to represent the actual instances of a declared hu-

man Activity and its nested Action entities explained as above, since the same

Activity and Action can be requested to perform multiple times.

As to their specific definition, ActionIntance consists of the following properties.

type: this property refers to the type of human action - i.e. the above Action entity

from which the current instance is derived.

inputValue and outputValue: those two properties refer to the actual input and

output HumanArtifact, which are consumed and produced by the current

action instance, respectively.

Likewise, the ActivityInstance entity is composed of the following properties.

type: this property refers to the type of human activity - i.e. the above Activity

entity from which the current instance is derived.

55

5. SOC4Crowd Data Model

actor: this property represents the human actor who actually performs the current

activity instance.

Also similar to the relationship between Action and Activity, one ActivityInstance

contains multiple atomic ActionIntance.

As we can see from the above human activity schema design, we firstly model human

work as artifact consumption and production, given the complex crowdsourcing

context. Then we abstract the human work definition from its instances as one’s

capability for reuse.

5.1.2 Service Schema

Given the above human activity schema, we have introduced a unified way of defining

human capabilities in our work. To further abstract it into a service, we design the

rest of CWS data model entities as follows.

CwsInterface and MachineArtifact

CwsInterface entity is designed to represent the interface of a human service. In

other words, it specifies what a service can offer at human level, and how it can be

accessed at machine level. Specifically, it consists of the following properties.

human: this property refers to a declared Activity entity as the service interface

at human level.

machine: this property refers to a MachineArtifact - i.e. WSDL specification, as

the service interface at machine level. Similar to the above HumanArtifact

entity, here MachineArtifact also extends Artifact entity to represent any

56

5. SOC4Crowd Data Model

programming input and output consumed or produced by our system, e.g.

WSDL or BPEL artifact. As such, it has its own property - i.e. event: the

system event that triggers this artifact generation.

endpoint: this property exposes an endpoint address on the web, e.g. URL, for the

service access.

Given the above definition, each human service is expressed in the same manner -

i.e. what human activity is performed and how it is interacted through the web,

regardless of its actual provider.

CwsProvider

This entity represents the actual human provider of the above CwsInterface, as

there may be multiple crowd workers who are capable of providing the same service.

As such, it has a profile property in JSON format to describe a particular service

provider, e.g. {”name”: ”John Doe”, ”contact”: ”abc@gmail.com”, ...}.

CwsContext

This entity is designed to link one specific CwsInterface with one particular CwsProvider

to denote Who offers What service. Also, it describes the context of a given CWS

for discovery. As such, it consists of the following properties.

interface: this property refers to a CwsInterface entity as the service interface.

provider: this property refers to a CwsProvider entity as the human provider of

the above service interface.

available: this property denotes the service availability - i.e. Boolean values as

TRUE or FALSE.

57

5. SOC4Crowd Data Model

startTime and endTime: those two properties denote the service available period,

if the above available property value is TRUE.

locale: this property denotes the language and region of a service, e.g. en AU.

cost: this property denotes the service charge.

Through defining a CwsContext entity as above, a human service can be better

described with more relevant meta-data, other than its workload information only.

Therefore, it can be better matched with a crowd task for interaction.

CwsInstance

This entity represents one specific service interaction instance under a particular

context. It is designed to capture some runtime information during the service

interaction. Therefore, it consists of the following properties.

context: this property refers to the above CwsContext entity to indicate the context

in which a service is instantiated.

requester: this property denotes the human service requester.

action: this property refers to Action entity from the above human activity model

to indicate what exact human action would be taken to perform the requested

service.

request and response: those two properties are designed to store the raw service

request and response messages at runtime.

rating and comment: those two properties are designed to store feedback informa-

tion from the above requester after service interaction. As its name suggests,

comment property is designed to store the requester’s comment to illuminate

his or her service use experience. Additionally, the requester can also rate a

58

5. SOC4Crowd Data Model

specific service instance through choosing one of five rating constant that is

internally maintained in our system. Those constant are Poor, Average, Good,

Great, and Perfect.

As we can see, those entities designed above express a human service in the WS-*

manner, e.g. WSDL and endpoint, for its discovery and interaction. Further, given

both activity schema and service schema in our CWS data model, we provide a way

of defining human-readable capabilities and exposing them into machine-readable

services for reuse. Next, we will explain how this data model is populated.

5.1.3 Populating CWS

To populate our CWS data model, we introduce the following operations in our

system to instantiate and update different entities designed as above.

Activity-to-WSDL Mapping

Figure 5.2: Schema Mapping between Human Activity Model and WSDL

59

5. SOC4Crowd Data Model

To define a human service, we allow each crowd worker to explicitly declare a hu-

man activity and its concrete actions that they are capable of performing. As a

result, both Activity and Action are instantiated. To that end, the declaration is

done by using those domain-specific terms introduced in Sec. 5.1.1. For instance,

a software quality assurance analyst can declare his or her software testing activity

via Software Testing alike terms; and use Manual test, Automation Test alike terms

to define the concrete actions.

With the above declared Activity and Action, a CwsInterface is instantiated at

its human level. To make it executable at the machine-level for reuse, we design

a schema mapping mechanism to convert the declared human activity and action

to a WSDL artifact. As a result, a MachineArtifact entity will be created and

CwsInterface will be fully instantiated at both human and machine levels.

As shown in Fig. 5.2, the right-hand side is the structure of WSDL schema whose

elements are generated based on the left-hand side, the activity model. Particularly,

we consider the following two aspects of mapping:

abstract WSDL elements generation: as introduced earlier in Sec. 2.2.2, the ab-

stract part of WSDL defines the web service interface representing what it can

do, regardless of how it is implemented. This is similar to our human activity

model. Regarding the specific mapping, a WSDL type is generated based on

the schema of our Artifact entity, while the pair-wise WSDL request mes-

sage and response message are generated based on the pair-wise human action

input and output, respectively. On top of that, each WSDL operation and its

portType wrapper are generated based on a human Action. Given the time

consuming nature of a human activity, we design its service format in the asyn-

chronous manner. That means each human Action generates a pair of service

portType and callback portType for the asynchronous interaction at runtime.

60

5. SOC4Crowd Data Model

Figure 5.3: Abstract WSDL elements generation

As an example of the above mapping, a Manual Test human Action can be

mapped into those corresponding WSDL elements in Fig. 5.3, e.g. man-

ual test pt portType, manual test operation, manual test request and man-

ual test response messages, etc.

concrete WSDL elements generation: also as explained in Sec. 2.2.2, the concrete

part of WSDL defines how a service is accessed and how it is interacted with a

requester, e.g. the request/response message format and its transport protocol

over the network. Given the mature service interaction related technologies, we

auto-generate those concrete elements. Specifically, a WSDL binding is auto-

generated using WS-Addressing/SOAP protocol, while a service is generated

accordingly with a default endpoint given by our system.

As a result of the above Activity-to-WSDL mapping mechanism, we instantiate a

MachineArtifact entity with the generated WSDL and associate it with CwsInterface.

With this machine-level interface, we can later reuse the associated human capa-

61

5. SOC4Crowd Data Model

Figure 5.4: Human capability reuse through SOAP

bilities through the service discovery, invocation and interaction. For example,

when the above Manual Test human action has been exposed as a service, a hu-

man requester can use her client application, which may not know our internal

human activity model, to send a service request according to the mapped WSDL

definition. As shown in Fig. 5.4, the input of Manual Test human action, which

is Test Plan document, is encapsulated into a SOAP request message - i.e. the

<sof:manual_test_request> XML fragment. Then the client application used by

the crowd workers receives and parses this request message to extract the input for

the actual service provider to perform the Manual Test human action. When the

actual work is finished with an output, the client application constructs a SOAP

message containing that output and sends it to that requester as a service response.

In doing so, this software testing human capability is reused in a distributed envi-

ronment.

CWS Publication and CWS Interactions

After defining a human service through instantiating the entities defined in the

CWS data model, a crowd worker needs to publish the content for discovery. To

62

5. SOC4Crowd Data Model

complete the description of a human service, we allow the crowd worker to upload

some profile information and describe other service context, e.g. availability, start

and end time, location, cost, etc. As a result, both CwsProvider and CwsContext

entities in the CWS data model are populated, and ultimately are associated with

the CwsInterface.

Other aspects of the CWS model cover the runtime issues. When a CWS has

been discovered and requested (i.e., the service is now bound to the human worker

behind it), we process this CWS interaction at both machine (software) and hu-

man levels. At machine level, we instantiate a CwsInstance entity to record the

interaction details, e.g. the actual human requester, the request and response

messages, the comment and rating feedback, etc. At human level, we instantiate

ActivityInstance, ActionInstance, and HumanArtifact entities with the infor-

mation from CwsInstance and visualize them on the dashboard of crowd workers.

Therefore, they can view the request details and retrieve their human action input.

And subsequently, they can perform the actual action to produce the output.

5.2 Data Model: CCTS

To meet the coordination requirements in Chapter 1, we propose a data model

named Complex Crowd Task as a Schema (CCTS). We simply refer to this as CCTS

schema or CCTS. The information and structure in CCTS provide a skeleton for

our SOC4Crowd system to find and bind appropriate workers, coordinate them, and

request their services for the advertised task.

63

5. SOC4Crowd Data Model

5.2.1 CCTS Schema

Similar to the above CWS, we also design it as part of our system data model and

its schema can be seen in Fig. 5.5. Next, we will elaborate on those entities in this

schema from the following perspectives - i.e. task definition, task structure, and

task context.

Figure 5.5: CCTS Data Model Schema

Task Definition – the entity CCTS

As explained earlier in Sec. 4.2.1, one essential aspect of our CCTS concept is to

define the crowd task that instructs what needs to be done. Therefore, it has been

designed to consist of those information - i.e. task name or goal, workload, and

constraints. Correspondingly, we design the CCTS entity in Fig. 5.5 and elaborate

on its detailed attributes as follows to encapsulate those information.

Goal of a crowd task is designed to consist of a goal description and a collection

of goal tags attributes. The former is a human-readable attribute and its

64

5. SOC4Crowd Data Model

value can be read by any crowd worker who is interested in this task, while

the latter is a machine-readable attribute and can be used to search other

similar tasks done in history, which in turn helps to define the current one,

and also can be used to match a CWS for binding and execution.

Workload of a crowd task is designed as pairwise input and output attributes.

They are both referring to a collection of Artifact entities, each of which con-

sists of a tag and location attributes, according to our earlier CWS design.

Constraint of a crowd task is designed as deadline and budget attributes. As

their names suggest, they are used to capture the time and cost constraints of

completing a task.

Besides those essential attributes of defining a task as above, our CCTS entity also

has a type attribute to denote the granularity of crowd work in the defined task, i.e.

atomic, composite, or root. Specifically, an atomic CCTS encapsulates a single unit

of the above workload information and cannot be further decomposed or divided,

e.g. a single input and output artifact. Moreover, an atomic CCTS in our system

should be able to be bound with a CWS instance for execution. By contrast, a

composite CCTS should be further decomposed into a set of atomic CCTS for more

meaningful and feasible execution through the proper workload division, while the

root CCTS represents the initial crowd task.

Task Structure – entities Decomposition, AND, OR

Besides the task definition, another important aspect of our CCTS concept is to

represent the work structure, which indicates how to complete a task. As discussed

earlier in Sec. 4.2.2 and from the above type attribute design, our CCTS has a

decomposable tree structure based on its workload and constraint. Within this

65

5. SOC4Crowd Data Model

structure, its root CCTS represents the original crowd task, while its atomic sub-

CCTS represents the single unit of work that needs to be done in order to complete

the original task. To realise this structure, we design the following entities.

Decomposition entity is designed to manifest the tree structure of our CCTS data

model. As such, it consists of the parent and children attributes referring

to a given CCTS and a set of its sub-CCTS after decomposition, respectively.

AND and OR entities represent the specific type of CCTS decomposition. There-

fore they extend the above Decomposition entity to not only manifest the

tree structure, but also to maintain the data flow among children CCTS and

their parent.

Through the above task definition and structure entities, we can have a clearer

description of what needs to be done and how to get it done, when compared with

the simple task description in most of micro-task based crowdsourcing platforms.

Task Context – entities Advertising, Plan, Review

The following entities further add information to the tasks.

Advertising entity represents the original crowd task advertised by the requester.

Therefore, it extends the above CCTS entity to have the same task schema.

Also, it has its own advertising context attributes - i.e. i). requester: the

human who advertises his or her task to the crowd; ii). status: the processing

status of an advertised crowd task, e.g. advertised, planning, executing, etc.

Plan entity is designed to represent the result of task decomposition in our complex

crowdsourcing context. We will explain the task decomposition later in the

next chapter. Here in general, a Plan entity manifests the context - i.e. who

66

5. SOC4Crowd Data Model

has done what planning work on which advertised task. In particular, it consists

of the following attributes - i.e. i). origin: the originally advertised crowd

task referring to the above Advertising entity; ii). planner: the human

who has done the task decomposition and submitted the current plan; iii).

work: the actual planning work whose result is a fully structured CCTS entity;

iv). selected: a flag indicating if the current plan is selected; v). bpel: a

WS-BPEL artifact as the result of a selected plan.

Review entity is designed to capture the feedback on the above task Plan. As

such, it consists of recommended and comment whose value come from the

human reviewer.

Those entities above manifest a task in our complex crowdsourcing context, particu-

larly the task planning phase of our crowdsourcing lifecycle. We will briefly explain

that in the later CCTS model population section.

5.2.2 Populating CCTS

CCTS model underpins our approach for creating and managing the complex work in

the framework. Therefore, populating this model involves explaining the operations

that are involved in various stages of the lifecycle of the complex work represented

in our system. Each stage of the lifecycle is designed to populate a specific part of

our CCTS data model. When the model is fully instantiated, it can be bound with

our CWS instances together for a crowdsourcing process execution. To properly

manage those operations, e.g. their participants, sequence, and result, we design

a two-phased crowdsourcing lifecycle management as the operational model of the

framework. We will elaborate on the design in the next chapter.

67

Chapter 6

SOC4Crowd Operation Model

In this chapter, we specify the design of our operation model, namely Two-Phase

Crowdsourcing Management. In detailing the operational issues of the framework,

we explain how the data models CWS and CCTS are utilised to support the complex

task crowdsourcing.

6.1 Overview

SOC4Crowd framework divides the lifecycle of complex crowdsourcing into two

phases: Plan and Execution. As shown in Fig. 6.1, during the plan phase, the system

allows the requester to use “crowdsourcing” to generate a decomposed working plan

of the advertised task. From this plan, the system will generate an instance of the

CCTS data model. Then in the execution phase, the system allows the requester

to “crowdsource” the execution of the decomposed working plan via orchestration

of the bound human actions and necessary machine-level communications. The de-

tailed design of each phase will be discussed in Sec. 6.2 and Sec. 6.3, respectively,

68

6. SOC4Crowd Operation Model

here we present a quick overview on each phase as follows.

Figure 6.1: Two-Phase Crowdsourcing Framework Overview

6.1.1 Crowdsourcing Work Plan

Plan Phase is a new stage that we add into the crowdsourcing lifecycle. It is

designed to detail the advertised complex task definition and generate a ‘’workable’

plan by decomposing the complex task down into sub tasks that can be directly

bound to known services in the framework. The Plan Phase idea is inspired by

the Crowd Design introduced in Chapter 3, which utilises the crowd wisdom to

create a high-quality design artifact. Similarly, the task plan generation is also a

69

6. SOC4Crowd Operation Model

creative process wherein we can utilise the crowd to brainstorm multiple candidate

plans; then vote and choose the ‘best’ as the final working plan. In other words, we

crowdsource the task plan before its execution.

To this end, we firstly ask the requester to work with the crowd together to generate

a human-readable plan. Then we transform it into a machine-readable schema for

the auto-coordination of crowd workers in the later execution phase.

Human-level Plan Generation

To start with, the requester advertises his/her complex task through our framework,

which is denoted as step 0 in Fig. 6.1. As a result, our CCTS data model gets

initialized. Particularly, an Advertising entity is instantiated as a root CCTS for

the following task plan steps at human level.

Task Decomposition. To generate a work plan on the advertised task, as shown

by step 1 in Fig. 6.1, each distributed crowd worker can participate in this plan

phase through their own task decomposition. Those crowd participants can use

the provided decomposition Operator - i.e. AND and OR, to continuously divide

the root CCTS into a set of atomic sub-CCTS and populate each of them. As

a result, each participant contributes a fully-structured CCTS instance as their

own work plan. Then they can submit it to instantiate a Plan entity for

Selection as follows.

Plan Selection. To guide the later crowd task execution, the requester needs

to select one final plan from those candidates submitted by the crowd, which

is denoted by step 2 in Fig. 6.1. During the selection, each submitted plan

becomes read-only and it can be commented and recommended by any other

crowd workers. As such, multiple instances of Review entity are created and

associated with each plan candidate to help the requester make a final decision.

70

6. SOC4Crowd Operation Model

After going through the reviews, the requester can select one of submissions

as the final work plan; or (s)he can start the planning phase over if none of

them is acceptable.

Through the above steps, the originally advertised task gets detailed and refined

with structure and sub-tasks. Also, thanks to the joint participation in task plan

generation, both the requester and crowd workers are on the same page, in terms

of what needs to be done and how to get it done, which would in turn increase the

crowdsourcing quality.

Machine-level Plan Transformation

As a result of the above human-level plan generation, we have a fully instantiated

CCTS data model. To make it executable at machine level, we need to get multiple

CWS involved and generate a service orchestration specification for the later auto-

coordination. To this end, we auto-allocate each atomic sub-CCTS in the above

human plan to an appropriate CWS; then we auto-transform that fully instantiated

CCTS schema to a web service orchestration schema - i.e. BPEL, in the following

steps.

Allocation. As denoted by step 3 in Fig. 6.1, we try to auto-map an atomic

sub-CCTS to an appropriate CWS in the distributed crowd. To realise that, we design

a matching-filtering-ranking pipeline as follows.

Matching: we try to see if a crowd worker is capable of performing an atomic CCTS

by matching its goal and workload with his/her CWS interface, e.g. human

activity and actions.

71

6. SOC4Crowd Operation Model

Filtering: as a result of the previous matching pipe, we may find multiple qualified

candidates. Here we can filter some of them by considering their CWS context

and the constraint of current CCTS, e.g. we can see if their service cost can

be covered by the budget of current CCTS, and if their service availability is

no later than the deadline of current CCTS, etc.

Ranking: as a result of the previous filtering pipe, we may still have multiple

candidates remaining. Here we rank those candidates and pick up the top

one. To do so, we take into account their personal profile information, e.g.

experience, certificate, etc., and service history, e.g. the average service rates

and recommendation times from the track record.

The detailed design of the above pipeline can be seen in Sec. 6.2.2. As a result, we

can find and bind a particular CWS, which is qualified and trustworthy to a certain

extent, with a particular atomic CCTS.

Transformation. With the bound CWS after the above Allocation step, our

CCTS schema is then auto-transformed into an executable service orchestration

schema (i.e. BPEL) for the auto-coordination in the later execution phase. To

realise that, we design a schema mapping mechanism as follows.

Elements mapping: for instance, we map an atomic CCTS element to a pair of

invoke and receive service elements in BPEL.

Dependencies mapping: we map the data-flow dependencies in CCTS to the control-

flow dependencies in BPEL.

The detailed design of the above transformation mechanism can be seen in Sec. 6.2.2.

As a result, we generate a BPEL artifact for the later auto-coordination at runtime.

72

6. SOC4Crowd Operation Model

Given the complex crowd task instead of the micro-task, we have designed a separate

Plan Phase in the crowdsourcing lifecycle as above to clearly define what needs to

be done, how is it going to be done, and who will do what, before the crowd task

execution. Furthermore, we make the planning result executable to bring the auto-

coordination support from service orchestration perspective.

6.1.2 Crowdsourcing Work Execution

When compared with the traditional crowd work execution, we bring the auto-

coordination of multiple crowd workers into our framework, given the crowdsourcing

work plan result as above. As shown by step 4 in Fig. 6.1, the requester needs to

manually kick off the crowdsourcing execution through sending an initial service

request to our framework. Since then, we coordinate those allocated crowd workers

automatically through executing the service orchestration schema, i.e. BPEL, which

is generated from the above plan phase. As shown by step 5 in Fig. 6.1, this auto-

coordination is reflected as managing interactions at both human and machine levels.

Human-level Interactions are realised as both online and offline Notification in

our framework. Specifically, each crowd worker gets notified by both an online

dashboard message and an offline email, when the input of their allocated

CCTS is ready.

Machine-level Interactions are realised as the asynchronous message Correlation

and service Orchestration. Specifically, when each individual worker fin-

ishes their allocated CCTS, the late response from that individual CWS is

asynchronously correlated to its earlier request; meanwhile, a global service

orchestration is enabled to manage dependencies and route messages among

multiple CWS while running the orchestration schema (i.e. BPEL).

73

6. SOC4Crowd Operation Model

Being inspired by the workflow perspective from SOC domain, we design the above

two-phase lifecycle as our system operation model for the complex work crowd-

sourcing management. Specifically, being motivated by the crowd design pattern,

we add a separate plan phase to crowdsource the work plan of an advertised com-

plex task. Then we bring the auto-coordination of multiple crowd workers into the

crowdsourcing execution phase, with a provided coordination schema from the

earlier plan phase.

Architecture Overview

Here we introduce an overview of our system architecture whose modules are the

participants of our two-phase crowdsourcing lifecycle as above. As shown in Fig. 6.2,

this high-level architecture consists of three key modules - i.e. RequesterClient,

CwsClient, and CoordinationMiddleware.

Figure 6.2: High-level Architecture of SOC4Crowd framework

RequesterClient is an end-user application that helps a human requester partic-

ipate in each crowdsourcing phase, e.g. advertising a crowd task; reviewing

and selecting a crowdsourcing plan; starting and monitoring the crowdsourcing

execution, etc.

74

6. SOC4Crowd Operation Model

CwsClient is an end-user application that allows each crowd worker to create

and publish their human services. Also, it facilitates their participation in

each crowdsourcing phase, e.g. conducting task decomposition during the plan

phase; handling their human service request and response during the execution

phase, etc.

CoordinationMiddleware is an intermediary between the above applications to

coordinate their interactions and manage our two-phase crowdsourcing lifecy-

cle as a whole. For instance, it broadcasts a new crowd task advertised by the

requester to the crowd; it transforms the selected CCTS and Plan instance to a

BPEL specification during the plan phase; it deploys and starts a BPEL pro-

cess to orchestrate and interact with CWS and requester during the execution

phase; etc.

With the above participants, we can later elaborate on the design of each step in

our operation model in Sec. 6.2 and Sec. 6.3. Then we will detail the design and

implementation of the above overall architecture in Chapter 7.

Operation Sequence

To better illustrate the design of each specific step of our operation model in the

following sections, here we introduce some basic elements of UML sequence diagram

as our operation sequence notation. As shown in Fig. 6.3, there are four types of

elements as follows.

Actor element represents the end user who kicks off a specific sequence. In our

case, it represents either a human requester or crowd worker.

Instance/Object element represents an instance or object of the participating sys-

tem module. In our case, it is an instance of either RequesterClient, CwsClient,

75

6. SOC4Crowd Operation Model

Figure 6.3: UML Sequence Diagram Notation

or CoordinationMiddleware applications;

Operation element is a specific service or method provided by one particular

Instance as above, which can be requested by another. It represents the

atomic interaction between those instances. In our case, it is indicated by the

arrow notation and its right-hand side object is the operation provider while its

left-hand side object is the operation caller. Moreover, it can be either a public

operation invoked by another object, or a private operation called internally.

Activation Timeline element shows what happens in sequence (i.e. from top to

bottom) within a particular object when its provided Operation is activated.

Through those elements as our design notation, we can clearly illustrate the design

of a specific step in our operation model from the sequential or timeline perspective.

6.2 Plan Phase – Populating and Transforming

CCTS Model

As discussed earlier, most of micro-task based crowdsourcing platforms define the

crowd work via a simple task description which, though, is not clear enough for the

complex work. Therefore, we design a separate Plan Phase to crowdsource a plan

of the complex crowd task before its execution. As introduced in Sec. 6.1.1, our

76

6. SOC4Crowd Operation Model

plan phase consists of the following two sub-stages - i.e. human-level planning and

machine-level planning.

6.2.1 Human-level Planning: CCTS Population

At this stage, both the requester and crowd work together on the complex task

definition and refinement. As a result, a fully structured CCTS instance is populated

as a task Plan before its execution. As explained in Sec. 6.1, the current stage

consists of the following three concrete steps - i.e. Advertising, Decomposition,

and Selection, in order.

Advertising

This is an initial step to start the whole planning phase - i.e. the human requester

advertises his/her original complex task to the crowd. We design its specific sequence

in Fig. 6.4.

Figure 6.4: Advertising sequence at human-level planning stage

As illustrated, the Advertising sequence is kicked off by the human requester who

triggers the public advertiseTask service of RequesterClient application when

(s)he posts his/her task. Then the private createOrUpdateAdvertising operation

77

6. SOC4Crowd Operation Model

of RequesterClient is called internally to create an instance of Advertising en-

tity in our data model. After that, it invokes the public broadcast operation of

CoordinationMiddleware to broadcast this new advertising to the crowd.

Subsequently, CoordinationMiddleware calls its internal findInterestingCrowd

operation to target at a certain group of crowd workers who may be interested in

the new advertised task. To realise that, it tries to match their human Activity

and Action with the current Advertising in our data model. Particularly, it tries

to see if the term attribute of any Activity or Action entity is matched with the

goal tag attribute of Advertising entity. After finding a group of those crowd

workers, our CoordinationMiddleware then calls its private createOrUpdateCcts

operation to create a root CCTS instance for each of them by copying the information

of new created Advertising. In doing so, each of them can have a crowd task copy

on their dashboard for their own task decomposition later on.

Lastly, our CoordinationMiddleware asks CwsClient to inform those matched

crowd workers about this new advertising, through invoking its public notify opera-

tion. Internally, our CwsClient realise this notification through both dashboardMessage

and email. As notified, they can proceed the follow-up task decomposition.

Decomposition

At this step, each notified crowd worker from above is doing their own planning

work through continuously decomposing a root CCTS, which represents the original

Advertising, into a set of atomic sub-CCTS. We design its specific sequence in

Fig. 6.5.

As illustrated, the Decomposition sequence is kicked off by the crowd worker who

triggers the public decomposeCcts service of CwsClient application. Then inter-

78

6. SOC4Crowd Operation Model

nally, CwsClient calls its private createOrUpdateCcts operation to create multiple

CCTS instances and specify their relationships in our data model. The current crowd

worker can continuously invoke that public decomposeCcts service to generate a

fully structured CCTS instance as his/her own plan.

Figure 6.5: Decomposition sequence at human-level planning stage

Once (s)he finishes his/her planning work and submits it through the public submitPlan

service, CwsClient internally creates an instance of Plan entity in our data model

through its private createOrUpdatePlan operation. Then it fires a PLAN SUBMITTED

event to CoordinationMiddleware who subsequently asks RequesterClient to

notify its end user - i.e. human requester, about a new plan submission.

Selection

At this step, the requester can start a poll to get reviews on each plan submission

from the crowd; then select one of them as the final work plan. We design its specific

sequence in Fig. 6.6.

As illustrated, the Selection sequence is kicked off by the requester who triggers

the public startSelection operation of RequesterClient when (s)he has received

enough plans from the crowd and decided to choose a final one from those candidates.

Internally, our RequesterClient calls its private createOrUpdateAdvertising op-

eration to update the status of original advertised crowd task from planning to

selecting. As such, crowd workers are not allowed to continue their plan work or

79

6. SOC4Crowd Operation Model

submission, as CwsClient disables the above Decomposition sequence due to the

task status transition.

Figure 6.6: Selection sequence at human-level planning stage

Then our RequesterClient asks CoordinationMiddleware to broadcast this plan

selection to the crowd for voting and commenting through its public broadcast oper-

ation. To this end, CoordinationMiddleware calls its private findInterestingCrowd

operation again to find another group of crowd workers excluding those who have

done the above Decomposition sequence for voting. After that, it asks CwsClient

to inform those crowd workers about the plan voting through the public notify

operation. Then the notified crowd workers can give the feedback to any of the

submitted plans through the createOrUpdateReview operation that instantiates

Review entity in our data model.

Once the requester has gone through all reviews from the crowd, (s)he can de-

termine the final plan through invoking the public endSelection operation of

RequesterClient. Again, RequesterClient calls its createOrUpdateAdvertising

operation internally to update the status of original advertising from selecting to

allocating. As a result, crowd workers are not allowed to continue their voting, as

CwsClient disables the review creation due to the task status change. After that,

RequesterClient updates the selected attribute of the chosen Plan entity as true

through invoking its private createOrUpdatePlan operation.

80

6. SOC4Crowd Operation Model

Lastly, it fires a PLAN SELECTED event to CoordinationMiddleware who subse-

quently starts the machine-level planning process whose details will be explained

in the follow-up Sec. 6.2.2.

Through the above detailed sequence design, we demonstrate how our SOC4Crowd

framework realises each step of the Human-level Planning stage through interac-

tions among those key modules or participants, i.e. CwsClient, RequesterClient,

and CoordinationMiddleware, of our system architecture depicted in Fig. 6.2. As a

result of human-level planning stage, we have initialized our CCTS data model, e.g.

Advertising, CCTS, and Plan entities, which in turn are the input of the following

machine-level planning stage and execution phase.

6.2.2 Machine-level Planning: CCTS-to-BPEL Transforma-

tion

In order to auto-coordinate multiple crowd workers in the later execution phase

through the above human plan, we need to bind it with the appropriate CWS and

make it executable. To this end, we design an underlying machine-level planning

stage to auto-allocate each atomic CCTS to an appropriate CWS; then auto-transform

the above human plan result into a service orchestration specification - i.e. BPEL.

Allocation

As recalled from the above Selection sequence design, when a final work plan has

been selected by the requester, our CoordinationMiddleware kicks off the current

machine-level planning process through finding and binding CWS with CCTS - i.e.

its internal cwsFinding and cwsBinding operations in Fig. 6.6, respectively.

81

6. SOC4Crowd Operation Model

To start with cwsFinding, this operation realises that matching-filtering-ranking

pipeline design in Sec. 6.1.1 for CWS discovery as follows.

Matching Pipe: This pipe aims to find those crowd workers who are capable of per-

forming an atomic CCTS. To this end, we match its goal and workload information

with one specific human Action of their CWS Interface.

Specifically, we try to see if:

there is any match between goal tags attribute of current CCTS entity and terms

attribute of Action entity in our data model.

the input tags of CCTS contains all input terms of a CWS, and if the output terms

of CWS contains all output tags of current CCTS. In doing so, we can make

sure that the crowd worker will have enough input to conduct his/her human

action and its output will be sufficient to meet the task requirement.

As per the pipeline design, the matching result will be passed as the input to the

follow-up Filtering pipe, when multiple qualified CWS are found.

Filtering Pipe: This pipe aims to filter those crowd workers who are not available

or suitable to take a given CCTS, even though they are capable of conducting it.

To this end, we compare the constraint information of current CCTS with the

context of a particular CWS.

Specifically, we try to see if:

the deadline attribute of current CCTS entity is no later than the availability

attribute of a CWS.

the budget of current CCTS is greater or equal to the cost of a CWS.

82

6. SOC4Crowd Operation Model

As a result, we can find those crowd workers who are not only capable of performing

the given task, but also able to finish it in time and on budget. Likewise, this

result will be the input of the follow-up Ranking pipe, when there are still multiple

candidate CWS remaining.

Ranking Pipe: This final pipe aims to order those candidate CWS who ‘’survived”

from the above Matching and Filtering and returns the top one as the result of

cwsFinding operation. To this end, we try to measure the human service quality

from the historic perspective and use it as the ranking criteria.

Specifically, we calculate the average rating of each candidate CWS and rank them

in a descending order. The rating attribute of CWS entity is a built-in numeric

constant or enumeration in our system, which is used by the requester to evalu-

ate each CWS instance after their interaction is finished. A typical example can

be: {‘’Poor”:1-3}, {‘’Average”:4-6}, {‘’Good”:7-8}, {‘’Great”:9-10}. After that, we

return the first ranking result as the above cwsFinding operation output.

Now we need to bind the found CWS with its CCTS in order to ensure the proper

data flow from the actual service to the required task. To this end, another operation

- i.e. cwsBinding, is called by CoordinationMiddleware internally to instantiate

the CwsBinding entity as a link between CWS and CCTS in our data model, which

records who will perform what action for what task. In doing so, during the later

execution phase, we can trace and manage the data-flow between CWS and CCTS,

e.g. we can notify or chase the crowd worker up to perform their action to produce

output for their bound CCTS when the input is ready; and then we can populate

the output of CCTS when it is generated in the CWS response.

83

6. SOC4Crowd Operation Model

Transformation

With the bound CWS in our human-level planning result - i.e. CCTS schema, after

the above Allocation, we need further to make it executable in order to auto-

coordinate those involved crowd workers in the later execution phase. To this end,

we transform our human-readable plan to a machine-readable service orchestration

schema - i.e. BPEL, considering the web service format of CWS.

The transformation process is managed by CoordinationMiddleware via its private

cctsToBpel operation at the end of Fig. 6.6. Internally, this operation realises a

mapping algorithm in Algo. 1 for BPEL generation. As shown in the pseudo code,

our CCTS-to-BPEL algorithm is realised through the following three functions - i.e.

Transform, Template, and Traversal.

Transform Function: This function is the starting point of our algorithm and it

aims to outline the transformation sequence. To start with its signature, it takes

the first argument - i.e. the selected human-level Plan entity, as its input, while

it generates a BPEL Artifact for its second argument as its output. Within its

function body,

Line 2: we retrieve the fully structured CCTS instance from the first function argu-

ment - i.e. Plan entity;

Line 3: we call the follow-up Template function with the retrieved CCTS instance

to generate a BPEL template with default elements;

Line 4: we call the follow-up Traversal function to fill the above template with

detailed elements via CCTS traversal;

Next, we will elaborate on Template and Traversal functions, respectively, to detail

the BPEL generation process with a mapping example in Fig. 6.7.

84

6. SOC4Crowd Operation Model

Figure 6.7: CCTS-to-BPEL Transformation Process Example

85

6. SOC4Crowd Operation Model

Algorithm 1: CCTS-to-BPEL Transformation

1 Function Transform(Plan plan,Artifact bpel)

2 CCTS root = getRootCcts(plan);

3 Template(root, bpel);

4 Traversal(root, bpel);

5 Function Template(CCTS root, Artifact bpel)

6 Artifact bpelWS = wsdlGenerator(root);

7 defaultBpelElementsGenerator(source, bpelWS, bpel);

8 Function Traversal(CCTS ccts,Artifact bpel)

9 if isAtomic(ccts) then

10 invokeReceiveGenerator(ccts);

11 else

12 List < CCTS > children = getSubCcts(ccts);

13 for each CCTS subCcts in children do

14 Traversal(subCcts, bpel);

15 end for

16 Operator operator = getDecompositionOperator(ccts);

17 switch operator do

18 case OR do

19 ifElseGenerator(operator, bpel);

20 break;

21 end case

22 case AND do

23 if anyDataF lowDependencyIn(children) then

24 sequenceGenerator(children, bpel);

25 else

26 flowGenerator(children, bpel);

27 end if

28 break;

29 end case

30 case default do

31 break;

32 end case

33 end switch

34 end if

86

6. SOC4Crowd Operation Model

Template Function: This function aims to generate a BPEL specification template

with some default elements. Within this function,

Line 6: given the passed root CCTS, we generate a WSDL artifact as a service

interface between the target BPEL process and the requester; therefore, (s)he

can kick off the execution phase via a service request later on. This WSDL

generation process is similar to the Activity-to-WSDL mapping mechanism

explained in Sec. 5.1.3.

Specifically:

abstract WSDL elements generation: WSDL type is generated based on our

human artifact data model, while the pair-wise service request message

and response message are generated based on the CCTS workload -

i.e. the pair-wise input and output, respectively. Besides, each ser-

vice operation and its portType wrapper are generated based on CCTS

goal tag.

concrete WSDL elements generation: WSDL binding is auto-generated based

on WS-Addressing/SOAP protocol, while WSDL service is generated

accordingly with a default endpoint.

Line 7: we generate some default BPEL elements, e.g. the main <bpel:sequence>

in step one of Fig. 6.7.

With a template generated from above, we will fill it with some concrete BPEL

service and control-flow related elements through the following Traversal function.

Traversal Function: This function aims to map our CCTS data model entities, e.g.

AND, OR, and CCTS, into those service and control-flow related elements in BPEL. To

this end, we follow the classic post-order tree traversal - i.e. children nodes first;

87

6. SOC4Crowd Operation Model

then the parent node, to recursively traverse the given fully-structured CCTS tree

for BPEL elements generation. Specifically, within its function body,

Line 9 - 15: during the CCTS tree traversal, we recursively retrieve a list of

atomic sub-CCTS and map each of them into a pair of <bpel:invoke> and

<bpel:receive> elements that will send service request to, and receive service

response from a CWS bound with the current atomic sub-CCTS. The mapping

process can be illustrated by step two and four of Fig. 6.7. For instance, the

key attributes of <bpel:invoke> and <bpel:receive>, e.g. partnerLink,

inputVariable, and outputVariable, are generated based on the bound

CWS interface - i.e. WSDL.

Line 16 - 17: when we finish the traversal of all atomic sub-CCTS and are back

to their parent, we retrieve the decomposition operator that is used to divide

the current CCTS into those atomic ones. Then we map this operator into

the control-flow activities in BPEL accordingly. It is worth noting that we

do not generate a comprehensive list of BPEL control-flow activities. Instead,

we only target at <bpel:sequence>, <bpel:if>, and <bpel:flow> activities,

given the simplicity design of our decomposition operator and the data-flow

dependencies that it brings into CCTS.

Line 18 - 29: we generate <bpel:if> element when it is OR operator. As to AND

operator, we generate <bpel:sequence> or <bpel:flow>, depending on if any

data-flow dependency exists among sub-CCTS, e.g. we generate <bpel:sequence>

if any output of a sub-CCTS is the input of another. The mapping process

can be illustrated by step three and five of Fig. 6.7.

By designing a separate plan phase consisting of both human-level planning and

machine-level planning stages, we can have a clearly-defined task model that details

the requester’s expectation and facilitates the execution management later on. Fur-

ther, through auto-transforming this high-level human task model into a low-level

88

6. SOC4Crowd Operation Model

service orchestration schema, we can help the requester auto-coordinate multiple

crowd workers during the later execution phase.

6.3 Execution Phase – CWS Coordination and

Interaction

During this phase, our SOC4Crowd framework auto-coordinates the crowd and re-

quester for the originally advertised task based on its planning result from the above.

To this end, we design the following Coordination Model and its underlying Inter-

action Protocol.

6.3.1 Coordination Model

As explained earlier, the coordination feature introduced into our SOC4Crowd frame-

work is reflected via the interaction management. From a global perspective, this

interaction management is realised through orchestrating multiple crowd workers

and managing their work dependencies in a BPEL runtime of our system. From the

individual perspective, this interaction management is realised through handling the

service request and response between the requester and our SOC4Crowd framework,

as well as between each crowd worker and SOC4Crowd, respectively. Next, we will

elaborate on each of those individual interactions through sequence design.

Interactions between Requester and SOC4Crowd

As recalled from Sec. 6.1.2, this interaction is started when the requester manu-

ally kicks off the execution phase through sending an initial service request to our

89

6. SOC4Crowd Operation Model

SOC4Crowd framework. Then (s)he will get our system response each time when a

crowd worker finishes his/her human service. The detailed sequence design of this

interaction can be seen in Fig. 6.8.

Figure 6.8: Interactions from the requester to SOC4Crowd

As illustrated, the sequence is started when the public startExecution service of

RequesterClient application is triggered by the requester. Internally, this client

application calls its private createOrUpdateAdvertising operation to update the

status attribute of the original Advertising entity with executing value. As

such, each copy of this Advertising entity - i.e. root CCTS, is removed from the

dashboard of those crowd workers who got involved in the previous plan phase,

since no planning actions are allowed at this stage.

RequesterClient then fires a EXECUTION STARTED event to CoordinationMiddleware

who subsequently deploys and starts a BPEL process whose specification was gen-

erated from the previous plan phase. CoordinationMiddleware calls its private

initiateBpelRuntime to do so, e.g. calling the related APIs of Apache ODE. Since

then, the deployed BPEL process is being executed at runtime to invoke the bound

CWS.

When CwsClient receives a service request from CoordinationMiddleware, it calls

its internal createOrUpdateCwsInstance operation to initialize a CwsInstance en-

tity to record the request details, e.g. request content and its requester information,

90

6. SOC4Crowd Operation Model

for the later response use. Also, it creates an instance of human Action entity

through its private createOrUpdateActionInstance operation. In doing so, the

crowd worker can see the new created action on his/her dashboard and respond it

with the produced content. In the meantime, CwsClient also notify the crowd

worker about the coming request through both a dashboard message and email.

Interactions between Crowd Worker and SOC4Crowd

This interaction occurs when the crowd worker finishes his/her human work and

responds the earlier service request from our system. We design its detailed sequence

in Fig. 6.9

Figure 6.9: Interactions from the crowd worker to SOC4Crowd

As illustrated, the sequence is started when a crowd worker triggers the public

finishHumanWork service of CwsClient application. Internally, this client appli-

cation calls its private createOrUpdateActionInstance operation to instantiate a

HumanArtifact that encapsulates the produced content as the output of current hu-

man ActionInstance. Before it sends a response with this output, it needs to help

CoordinationMiddleware correlate this response with its earlier request, given the

asynchronous service interaction; otherwise CoordinationMiddleware won’t route

the message properly during the BPEL process execution.

91

6. SOC4Crowd Operation Model

To do so, within its private helpCorrelation operation, CwsClient retrieves the

request context, e.g. requester information, the bound CCTS, etc., from the current

CwsInstance; then it constructs the response message accordingly. Then it calls

back CoordinationMiddleware with that message through the provided callback

service and operation referenced in receive BPEL activity.

When our CoordinationMiddleware receives the callback response, it firstly calls its

createOrUpdateCwsInstance operation to record the response details in the current

CwsInstance entity. Then it asks RequesterClient to notify the requester about

an update on the advertised task execution. After that, the requester can view

the produced content and evaluate the finished CWS service by rating it through

createOrUpdateCwsInstance operation.

As we can see from the above sequence designs, human notification and message

correlation play a key role in realising those interactions. To support those two

key features, we design an Interaction Protocol in the following section.

6.3.2 Interaction Protocol

As explained earlier, during the execution phase, the interaction occurs at both hu-

man and machine levels. For the former, it occurs between the human actor (i.e. the

requester and crowd) and our SOC4Crowd system. For the later, it occurs between

system modules - i.e. RequesterClient, CoordinationMiddleware, and CwsClient

applications. To support both, we provide notification and correlation fea-

tures, respectively. To realise those features, here we design a protocol consisting of

a message schema and its processing specification.

92

6. SOC4Crowd Operation Model

Message Schema

Since we are applying the mature WS-* technologies, e.g. WSDL and BPEL, into

crowdsourcing domain, the message schema has been designed as SOAP envelope.

Figure 6.10: A message example as per protocol

Specifically,

Header: we utilize those WS-Addressing elements, e.g. MessageID, ReplyTo,

etc., in SOAP Header for the machine-level callback. Further, to support the

human-level notification, we extend WS-Addressing by adding some of our

SOC4Crowd elements, e.g. CwsProvider.

Body: in order to minimize the payload size of our SOAP message for a sound

system performance in the distributed computing environment, we do not en-

capsulate the binary content of HumanArtifact into the SOAP body. Instead,

93

6. SOC4Crowd Operation Model

we put its web location - i.e. URL, for the later content retrieval by our hu-

man actors themselves. Also, we include the task identity in the body for

correlation.

An example of the above customized SOAP message can be seen in Fig. 6.10.

Message Processing

Here we specify an interaction procedure that instructs how we process the above

message for both notification and correlation support.

Figure 6.11: Message processing as per protocol

This procedure is designed in Fig. 6.11. As illustrated, it specifies the following.

Notification Support. A NotificationInterceptor component needs to be

realised in both CwsClient and RequesterClient applications to handle requests

from CoordinationMiddleware through notifying their end users - i.e. the crowd

worker and requester.

Specifically,

94

6. SOC4Crowd Operation Model

UI Message Notification: when the human actor is logged into our system, our

NotificationInterceptor component parses the incoming message header

to retrieve the user name and identity information. Given that, it constructs a

JSON message, which is front end friendly, and pushes it onto the dashboard

user interface over Web Socket protocol.

Email Notification: NotificationInterceptor component constructs an email

and sends it to the human actor over SMTP protocol when the actor is offline.

The address given in the message header is used.

As notified, our human actor will proceed his/her action to push the execution phase

forward, e.g. the crowd worker will perform the human work and respond the service

request.

Correlation Support. Due to the time-consuming nature of human service, we

cannot design the interaction as a long-lasting, synchronous one; instead, it has to

be asynchronous. That means, after our CoordinationMiddleware sends a request,

it should not get blocked by the late response and it should be able to correlate the

late response with its earlier request to route messages correctly.

To assist CoordinationMiddleware with its correlation, a CorrelationHelper com-

ponent is realised in CwsClient to construct a proper response message with the

required correlation information. Specifically, it keeps polling the human action re-

sult from the content repository to get a human work completed signal. Once it

gets that signal, it retrieves the CCTS or job ID from the earlier request recorded in

CwsInstance entity and put it into the response SOAP body. Then it can be later

used as the correlation identifier by our CoordinationMiddleware while receiving

the callback response.

With this underlying Interaction Protocol, our Coordination Model can be re-

95

6. SOC4Crowd Operation Model

alised throughout the execution phase.

So far, we have specified our operation model - i.e. Two-Phase Crowdsourcing

Management. Particularly, in each phase specification, we have detailed how each

module of the system architecture interacts with others to manipulate the CCTS and

CWS data model through sequence designs. In the next chapter, we will elaborate

on its implementation.

96

Chapter 7

Implementation and Use Case

In this chapter, to demonstrate how the design can be realised using existing tech-

nologies, we present the details of our prototypical implementation.We also illustrate

how the system works by a walk-through of a user case scenario.

7.1 Architecture and Technologies

In this section, we firstly explain our SOC4Crowd system architecture by follow-

ing the design presented in the previous chapters. Then we introduce a stack of

technologies used for implementation.

7.1.1 System Architecture

As introduced in Sec. 6.1, the SOC4Crowd framework consists of three distributed

web-based applications: CwsClient, CoordinationMiddleware, and RequesterClient.

These components use one centralized data repository. The anatomy of its architec-

97

7. Implementation and Use Case

Coordination
Middleware

Plan Manager
- Crowd task advertising
- Work plan selection

RepositoryRequester
Client

Execution Manager
- Execution kickoff
- Progress monitoring

Cws
Client

CWS Editor
- CWS interface definition
- CWS publication and management

CCTS Editor
- CCTS decomposition

CWS Instance Handler
- CWS request visualisation
- CWS response callback

Interaction Protocol Manager
- Notification Interceptor
- Correlation helper

Coordination Services
- Event handling services
- Utility services

Runtime Manager
- Process controller
- Task aggregator

Data Data

Data
Message Message

Figure 7.1: SOC4Crowd architecture with key modules

ture can be seen in Fig. 7.1. Next, we will briefly explain the role of each module in

this architecture.

CwsClient Application

CwsClient is an application designed for the crowd workers. It provides the crowd

workers with custom designed user interfaces to manipulate the CWS and CCTS

data models, and to participate in the two-phase crowdsourcing lifecycle. To support

diverse devices and environments on the client side, it is implemented as a web-based

application consisting of the following modules:

CWS Editor: CWS Editor allows the crowd workers to define and expose their

human services to the public. Using the editor, the crowd workers declare

actions that they are capable of performing. Behind the scene, the declarations

are ‘mapped’ and translated automatically to an appropriate WSDL artifact.

This part of implementation follows the Activity-to-WSDL mapping design in

Sec. 5.1.3. As a result, entities in our CWS data model, such as Activity,

Action, and CwsInterface, are instantiated.

98

7. Implementation and Use Case

Other elements of the editor support richer descriptions of the human ser-

vice such as provider profile uploads, specifying the service availability and

cost, etc. Importantly, the editor also provides a service publication function

whereby the declared human service can be registered with the Coordination-

Middleware application for discovery. As a result, entities in our CWS data

model, such as CwsContext and Provider, are instantiated. Through CWS

Editor, crowd workers can maintain and update their human services as their

capabilities evolve.

CCTS Editor: CCTS Editor is used, during the planning phase of crowdsourcing

lifecycle, to decompose the complex work and ultimately create the CCTS data

model. The user interface provides a simple editor to use AND or OR operators

to create and coordinate sub tasks. The details of each task – description,

deadline, input and output – are defined here as well. In the back end, it

communicates with CoordinationMiddleware to notify RequesterClient about

a new work plan generated.

Through the CCTS Editor, each crowd worker can contribute their own task

plan to the requester in the planning phase. As a result, multiple CCTS

instances are generated and one of them would be later chosen as the final

work plan to guide the execution phase.

CWS Instance Handler: This module is responsible for CWS request and re-

sponse handling during the execution phase of the lifecycle. Through this

module, each crowd worker can have their own ‘’workbench” to handle their

human service request, e.g. receiving the service input and responding with

an output, during the execution phase.

Interaction Protocol Manager: This module manages notifications and mes-

sage correlations during the execution phase of the lifecycle. This module

implements the design of the interaction protocol between CwsClient and Co-

ordinationMiddleware applications, which is presented in Sec. 6.3.2.

99

7. Implementation and Use Case

As we can see from all the above modules, CwsClient application acts as an inter-

face between crowd workers and our SOC4Crowd framework. It empowers crowd

workers to perform many crowdsourcing activities to operate both CWS and CCTS

data models through the whole two-phase crowdsourcing lifecycle, e.g. task decom-

position in the plan phase and service interaction in the execution phase. Next

we will introduce the anatomy of our CoordinationMiddleware to briefly show how

it is implemented to coordinate and interact with those client applications in our

architecture.

Coordination Middleware

Given its role as a coordinator between CwsClient and RequesterClient, the Co-

ordinationMiddleware application is implemented as a server application providing

many runtime services to its two client applications.

Coordination Services: to manage the two-phase crowdsourcing lifecycle as a

whole, CoordinationMiddleware implements an event handling mechanism to

represent and manage any state change during the whole crowdsourcing pro-

cess. It exposes a uniform RESTful service to the two client applications

to communicate the events, such as CWS and CCTS data updates, or work

progress updates. For instance, when a crowd task has been advertised through

RequesterClient application, a TASK ADVERTISED event is triggered and that

uniform RESTful service gets called to update CCTS data model and broad-

cast the new advertising to the crowd.

Runtime Manager: this module implements two important functions during the

execution phase of the lifecycle. It automatically deploys, start, suspend, and

complete a BPEL process, according to the state change of a crowdsourcing

process. For instance, when the requester kicks off the execution phase of a

100

7. Implementation and Use Case

crowdsourcing process, it automatically deploys and starts a BPEL process

whose definition is generated from the plan phase. It also provides Task

Aggregator which aggregates the crowd task results when any of them is

generated as the process executes.

RequesterClient Application

This is a web application serving as an interface between the human requester and

our SOC4Crowd framework. It aims to support the requester to participate in the

planning and execution phases.

Plan Phase Manager This module aims to help the requester initiate and par-

ticipate in the plan phase of a crowdsourcing process. The requester can

advertise a complex crowd task with descriptions, deadline, the input and ex-

pected output, etc. The plan manager then initiate the CCTS data model,

e.g. Advertising entity, and asks CoordinationMiddleware to broadcast this

new advertising to the crowd. Towards the end of the planning phase, it also

provides a feature that allows the requester to review each candidate plan and

make the final selection. The plan manager will update the CCTS data model

and asks CoordinationMiddleware to generate a corresponding BPEL artifact.

Execution Phase Manager This module lets the requester initiate and monitor

the execution phase of a crowdsourcing process. To this end, a user interface

is provided for the requester to kick off the execution with the initial input.

Correspondingly, the back-end program constructs a SOAP message and sends

it to CoordinationMiddleware to initiate a BPEL process at runtime.

101

7. Implementation and Use Case

7.1.2 Implementation Technologies

Here, we introduce the technologies used to realise the above system architecture.

Figure 7.2: A stack of key technologies used for implementation

As shown in Fig. 7.2, first of all, we use PostgreSQL1 as the central data repository

implementation, since we store a mix of schematic content, e.g. CCTS and CWS,

and schema-less documents, e.g. JSON messages and user-generated artifact.

Both RequesterClient and CwsClient are realised as web applications using a Java-

based, RESTful service application development framework, and Javascript/CSS for

front-end development.

In terms of our CoordinationMiddleware, given the designed execution phase wherein

a BPEL process is deployed and executed, we implement it as an extension to a

mature BPEL runtime. We chose Apache ODE2 because it is an open-source and

lightweight solution with a well-formed developer community; also it is more suitable

for the development of this proof of concept in our research, when compared with

other complex commercial products. All SOAP and BPEL based interactions are

implemented using Apache CXF3 framework.

1https://www.postgresql.org/

2http://ode.apache.org

3http://cxf.apache.org/

102

7. Implementation and Use Case

We have chosen a set of open-source frameworks to realise the communications

within and between applications. For instance, within either CwsClient or Requester-

Client, the communication between their front-end and back-end is realised via both

PULL and PUSH strategies. As to PULL strategy, we use AJAX (i.e. asynchronous

JavaScript and XML) call at the front end to pull data from the back end to im-

plement features like displaying a list of crowd tasks or services on the dashboard.

As to PUSH strategy, we choose Atmosphere4 framework that supports WebSocket

protocol at both front and back ends to implement features like push notification.

Next, we will demonstrate how to apply those technologies as above to implement

those features and modules of our system architecture in Sec. 7.1.1.

7.2 Implementation Details

In this section, we introduce some programming code fragments to explain how

we implement those key features and modules of each application in our system

architecture.

7.2.1 CwsClient Web Application

As its name suggests, CwsClient acts as an interface between crowd workers and our

SOC4Crowd framework. Through this interface, crowd workers can participate in

the crowdsourcing process and perform many activities, e.g. decomposing CCTS in

plan phase and handling CWS request in execution phase.

4https://github.com/Atmosphere/atmosphere

103

7. Implementation and Use Case

CWS Editor – CWS Definition via XForm and XSLT

Besides the conventional web application development effort, we have used XForm5

and XSLT6 to ease the transformation of the CWS definition data collected from

the UI to the data model. XForm is a markup language that can be used to enhance

a web form to not only collect the data but also process it at the same time given a

pre-defined data model, while XSLT is a transforming language that is often used to

convert one XML document into another. Essentially, this helps Activity-to-WSDL

mapping mechanism presented in Sec. 5.1.3 in that when a crowd worker uses the UI

to declare his human activity details (e.g., software test activity and its manual test

action), the details are automatically bound to XForm, and the resulting XML

document can be directed to an XSLT program that maps the human actions to

WSDL specification.

Figure 7.3: Activity-to-WSDL mapping rule fragment

A fragment of the XSLT code is shown in Fig. 7.3. It shows that we generate

5www.w3.org/community/xformsusers/wiki/XForms 2.0

6www.w3.org/TR/xslt

104

7. Implementation and Use Case

each WSDL “type” element corresponding to each human action’s input and out-

put. These will be referenced later by WSDL “message” elements that map human

actions.

Figure 7.4: WSDL types fragment generated by XSLT

Further, Fig. 7.5 shows a screen capture of the results of an online WSDL valida-

tor7. The result illustrates that the WSDL artifact generated by CWS Editor is

syntactically correct and complete.

Figure 7.5: WSDL artifact validation

7https://wiki.eclipse.org/Using the WSDL Validator Outside of Eclipse

105

7. Implementation and Use Case

CWS Editor – CWS Publication

Listing 7.1 shows the RESTful service code that publishes a completed CWS from

CWS Editor.

Listing 7.1: Publishing CWS
@Path("/cws/{id}/publication")

@POST

@Consumes(APPLICATION_JSON)

public Response publish(@PathParam("id") long id, CwsContextDTO cxtInfo) {

try {

// validate the input

checkArgument(id > 0, "CWS ID must be greater than 0!");

checkIfCompleteContext(cxtInfo);

// persist cws context and register it in Middleware

CwsContext cxtEntity = instantiateCxtEntityBy(cxtInfo);

long cxtEntityId = repository.save(cxtEntity);

middleware.registerCws(cxtEntityId, cxtInfo);

// redirect crowd workers to their dashboard

return Response.seeOther(new URI("/cws/dashboard")).build();

} catch (Exception e) {

return Response.serverError().build();

}

}

Figure 7.6: CWS Publication Service Request

106

7. Implementation and Use Case

After verifying all input, it saves the given CWS context information into the central

data repository; then registers it to CoordinationMiddleware for service discovery.

Fig. 7.6 shows an example of a request that the above code sends to Coordination-

Middleware for CWS publication.

CCTS Editor – CCTS Decomposition

To enable CCTS decomposition, we implement a user interface to manipulate a

CCTS instance. Fig. 7.7 shows an example of a root CCTS instance prior to any

decomposition on that UI. As demonstrated, this root CCTS instance has a flat

structure without any sub-CCTS.

Figure 7.7: A Sample of Root CCTS Instance in JSON

When it is decomposed, the CCTS instance is updated to have a hierarchical struc-

ture containing the decomposing operators and sub-CCTS details. Fig. 7.8 shows

an example of the decomposed CCTS instance. In the later Sec. 7.3, we illustrate

how the front-end UI enables the decomposition to generate these JSON data.

Listing 7.2: CCTS Validation
private CCTS validateAndTransform(CctsJson cctsJson) {

// ccts value and structure validation

requireNonNull(cctsJson, "Input CCTS must exist!");

checkArgument(ifAnyInvalidSubCCTS(cctsJson), "No CCTS can be both parent and child!");

checkArgument(ifAnyInvalidDeadline(cctsJson), "Any sub-CCTS deadline cannot be later than that

of parent!");

checkArgument(ifAnyInvalidBudget(cctsJson), "Budget sum of sub-CCTS cannot be greater than that

of parent!");

checkArgument(ifAnyInvalidDataFlow(cctsJson), "Data-flow loop among sub-CCTS is detected!");

// data format transform

return CCTS.builder().buildFromJson(cctsJson);

107

7. Implementation and Use Case

Figure 7.8: Decomposed CCTS Instance in JSON

}

Once crowd workers finish their task decomposition and submit it as their plan

through the provided UI, a fully structured CCTS instance in JSON format is posted

to the back end for validation and persistence. Listing 7.2 shows the overall pro-

cess of validating the decomposed CCTS instance passed from the front end and

transforming it to our back-end data structure for persistence.

CWS Instance Handler and Interaction Protocol Manager

From implementation point of view, the main function of CWS Instance Handler

in the framework is to validate and transform the task instance data (input, output)

from its UI data model (JSON) to the matching human activity/action data model.

As we have presented similar concepts previously, we do not repeat the implemen-

tation details of the module. In this section, we present how the Interaction

108

7. Implementation and Use Case

Protocol Manager is implemented to support the actual SOAP communications

between the crowd worker and the coordination middleware.

NotificationInterceptor for human-level notification implementation: This

module supports the communications between the instance handler and the coor-

dination middleware by (i) transforming the incoming SOAP message from Coor-

dinationMiddleware to a human readable service request and notification (ii) con-

structing the outgoing SOAP response and callback CoordinationMiddleware for

the asynchronous message correlation to communication the output of the crowd

worker’s action. To implement that, we use Apache CXF Interceptor related APIs

to intercept each incoming SOAP request from CoordinationMiddleware and pro-

cesses it before being visualized in the above CWS Instance Handler. Listing 7.3

shows an overview of the implementation.

Listing 7.3: SOAP handling in NotificationIncerceptor
@Override

public boolean handleMessage(SOAPMessageContext context) {

// only handle the incoming request message

if (!isOutboundMessage(context)) {

// unmarshalling the incoming SOAP message

CwsInstanceDTO cwsInfo = unmarshalling(context.getMessage(), CwsInstanceDTO.class);

// cws data model update

long activityId = repository.save(buildActivityIntanceBy(cwsInfo));

long actionId = repository.save(buildActionIntanceBy(cwsInfo));

repository.save(buildCwsIntance(cwsInfo, activityId, actionId));

// notification via both WebSocket pushed message and email

Broadcaster broadcaster = getBroadcasterFactory().lookup(cwsInfo.getProviderContact());

broadcaster.broadcast(cwsInfo.getAction());

String mailContent = format(template, cwsInfo.getProviderName(), cwsInfo.getAction());

mailer.sendSimpleMail(cwsInfo.getProviderContact(), mailContent);

}

return true;

}

To illuminate the above code fragment, we take an exemplified SOAP request mes-

sage, as shown in Fig. 7.9, as the input to go through its implementation in the

following order.

109

7. Implementation and Use Case

Figure 7.9: SOAP request message sample during the CWS interaction

• Boundary Checking: we firstly check if the intercepted SOAP message is an

incoming request or outgoing response, since we only handle the former and

ignore the latter.

• Data Unmarshalling: we then extract CWS related information, e.g. the

requested human activity and action, human service provider, etc., from the in-

tercepted SOAP message, e.g. <wsa:Action> and <soc4crowd:cwsContext>

in Fig. 7.9, for the further data persistence and notification usage.

• CWS Data Model Update: with the extracted information from above, we

update our CWS data model - i.e. instantiating CwsInstance, ActivityInstance,

and ActionInstance entities. In doing so, the earlier discussed CWS Instance

Handler module can fetch them from data repository and visualize them for

crowd workers.

• Notification: with the extracted provider and action information from above,

we firstly render it as a push notification on the dashboard of a particular

crowd worker through Broadcaster APIs provided by Atmosphere framework.

110

7. Implementation and Use Case

In general, those APIs transform our back-end information into the front-end

friendly data format, e.g. JSON, and push it onto the front end through

WebSocket protocol. Then we put those information, e.g. human action and

provider, into a pre-defined email template and send it to the target crowd

worker.

CorrelationHelper for machine-level correlation implementation This mod-

ule implements asynchronous interactions between CwsClient and CoordinationMid-

dleware. The implementation of this heavily relies on the callback() approach and

aspect-oriented programming (AOP) technology. We implement a proxy that in-

tercepts the finishHumanWork method of CWS Instance Handler process service

callback and message correlation. The following code fragment demonstrate the

approach (Listing 7.4).

Listing 7.4: callback() and AOP for asynchronous interactions
public Object afterMethodInvocation(MethodInvocation methodInvocation) {

// callback only when finishing human work properly

Response response = (Response) methodInvocation.proceed();

if (response.getStatusInfo() != INTERNAL_SERVER_ERROR) {

// retrieve the request details - i.e. CwsInstance

HumanActionDTO actionInfo = (HumanActionDTO) methodInvocation.getArguments()[0];

CwsInstance cwsInstance = retrieveCwsInstanceBy(actionInfo);

// prepare SOAP response body payload

HumanArtifact humanArtifact = actionInfo.getArtifact();

long cctsId = actionInfo.getCctsId();

// do the callback

doCallback(getCallbackBindingPort(cwsInstance), getCallbackPortType(cwsInstance),

getCallbackOperation(cwsInstance), humanArtifact, cctsId);

}

return response;

}

The above afterMethodInvocation method in our CorrelationHelper would be

auto-invoked prior to the finishHumanWork method invocation in CWS Instance

Handler and its callback processing logic can be detailed as follows.

when to callback: we only do the callback when crowd workers finish their human

111

7. Implementation and Use Case

work properly. To determine so, we firstly allow the finishHumanWork method

to proceed to get its invocation result. Then we continue our callback process

only when the human work response is not at INTERNAL_SERVER_ERROR status.

what to callback: we callback our CoordinationMiddleware with two parts of

information. That is, (i). the Human Artifact from human action output;

(ii). the CCTS ID from the previous CWS request. The former information is

CWS request processing result, while the latter will be used by our Coordi-

nationMiddleware later correlating the response with its early sent request in

order to route messages properly. Both two parts are encapsulated into the

body of SOAP response message.

how to callback: to asynchronously response our CoordinationMiddleware, we

need the callback Binding, PortType, and Operation, since we are utilizing

web service interaction technology. Those key WS-* information is defined

in CWS interface - i.e. WSDL, and can be retrieved from the current CWS

instance. Along with the above payload information - i.e. Human Artifact

and CCTS ID, we can then construct a SOAP message and send it to Coordi-

nationMiddleware as a callback response.

Figure 7.10: Callback SOAP message sample during the CWS interaction

To demonstrate the above implementation result, Fig. 7.10 is the callback SOAP

message corresponding to its earlier request SOAP message in Fig. 7.9. As we can

112

7. Implementation and Use Case

see, the <wsa:To> SOAP header in Fig. 7.10 is derived from the <wsa:ReplyTo>

SOAP header in Fig. 7.9. And the <wsa:RelatesTo> SOAP header in Fig. 7.10

corresponds to the <wsa:MessageID> SOAP header in Fig. 7.9. Additionally, both

SOAP messages share the same <soc4crowd:cctsId> payload information in their

body. As such, those two messages can be correlated to each other from both SOAP

header and body perspective.

As we can see from the above NotificationInterceptor and CorrelationHelper

implementation, it separates the machine-level communication concern, e.g. message

transformation and correlation, from the above CWS Instance Handler and helps it

focus on human action input and output. In doing so, it realises the earlier designed

interaction protocol between CwsClient and CoordinationMiddleware applications

at both human and machine level, which is the underlying and key support for the

execution phase of our crowdsourcing lifecycle.

7.2.2 Coordination Middleware

CoordinationMiddleware acts as a central orchestrator managing the crowdsourc-

ing process as a whole. We implement it as a pure back-end application serving

CwsClient and RequesterClient applications.

Crowdsourcing Lifecycle Management

A critical service interface implemented in this application is Uniform Event-handling

Service, which is developed to track the state change, push the progress forward,

and coordinate both CwsClient and RequesterClient accordingly during the crowd-

sourcing lifecycle.

To be a little more specific, our two-phased crowdsourcing lifecycle consists of a set of

113

7. Implementation and Use Case

important states, e.g. a new complex task being advertised, its final work plan being

selected, etc. Therefore, managing the crowdsourcing lifecycle is realised through

managing the state change. To do so, our Uniform Event-handling Service is

provided for either CwsClient or RequesterClient to trigger the state change with a

specific event. Then the service implementation handles the passed event through

content persistence and participants coordination, e.g. updating CCTS data model

and notifying CwsClient about a new crowd task being advertised by CwsClient.

Next, we will detail the implementation of Uniform Event-handling Service as

a typical coordination service in our CoordinationMiddleware.

Crowdsourcing lifecycle Events We firstly define a base event data structure

whose detailed schema can be seen in the following code fragment (Listing 7.5).

Listing 7.5: Events in SOC4Crowd lifecycle
public abstract class Event<T> {

private final EventType eventType;

private final T content;

protected Event(EventType eventType, T content) {

this.eventType = eventType;

this.content = content;

}

public final EventType getEventType() {

return eventType;

}

public final T getContent() {

return content;

}

public static enum EventType {

TASK_ADVERTISED,

PLAN_SUBMITTED,

PLAN_SELECTED,

EXECUTION_STARTED,

EXECUTION_STOPPED,

EXECUTION_COMPLETED

}

}

As shown above, the abstract Event<T> class is our base event data structure. It

consists of two fields - i.e. eventType and content, which represents the crowd-

114

7. Implementation and Use Case

sourcing state change and specific changing content, respectively. For instance,

the TASK_ADVERTISED event type denotes that a new crowd task has been adver-

tised. As you may notice, the event content here is marked as a generalized type

without any class definition. That is because it needs to be specified by the con-

crete subclass extending the above abstract Event<T>. As an example, the concrete

TASK_ADVERTISED event class is defined as follows (Listing 7.6).

Listing 7.6: A Concrete Event Class
public final class TaskAdvertisedEvent extends Event<TaskAdvertisingContent> {

public TaskAdvertisedEvent(TaskAdvertisingContent content) {

super(EventType.TASK_ADVERTISED, content);

}

public static final class TaskAdvertisingContent {

long advertisedTaskId;

String advertisedTaskName;

Date advertisedTaskDeadline;

String advertisedTaskBudget;

List<Tag> advertisedTaskTags;

}

}

As we can see, the above TaskAdvertisedEvent class extends the base Event<T>,

and specifies its concrete event content as its nested TaskAdvertisingContent

class with the task advertising details, e.g. the identity and name of new advertised

task. These classes are instantiated by either CwsClient or RequesterClient. Then

subsequently, they are delegated to the right event handler to update the new crowd-

sourcing state, notify the corresponding participants, and drive the crowdsourcing

progress forward.

EventHandler: the crowdsourcing progress driver EventHandler accepts

an event and update the crowdsourcing state accordingly. Therefore it is the crowd-

sourcing progress driver that pushes the process forward. We firstly implement a

base handler that defines the skeleton structure. Then each concrete handler that

accepts each concrete event extends that base handler. As an example, a concrete

115

7. Implementation and Use Case

EventHandler class, AdvertisingEventHandler, is shown in Listing 7.7.

Listing 7.7: A concrete EventHandler
public final class TaskAdvertisingEventHandler extends EventHandler<TaskAdvertisedEvent> {

@Override

public void process() {

// event validation

if (event.getEventType() != TASK_ADVERTISED) {

throw new IllegalStateException("Can only handle ’TASK_ADVERTISED’ event !");

}

// CCTS data model update

TaskAdvertisingContent advertisingContent = event.getContent();

Advertising entity = instantiateBy(advertisingContent);

repository.save(entity);

// find a group of interesting CWS and notify them

List<CWS> interestedCWS = findInterestedCwsBy(advertisingContent);

doNotification(interestedCWS);

}

}

As illustrated above, it extends the base EventHandler class with the specified

TaskAdvertisedEvent. Then it implements its own event process method as follows.

Event Validation: to make sure we are handling the right event, here we check

if the passed event is TASK_ADVERTISED type.

Content Persistence: to update the new crowdsourcing state due to the passed

event, we update the data repository with new content from the passed event.

In this particular TASK_ADVERTISED case, we update our CCTS data model

with the new Advertising entity.

CWS Notification: to make CwsClient be aware of the new crowdsourcing state

triggered by RequesterClient, we broadcast the new advertising to the crowd

and notify the potential crowd workers who may have their interests in plan-

ning it later. As such, we coordinate both CwsClient and RequesterClient

participants to be on the same page, regarding the new crowdsourcing state

and follow-up activities. In doing so, we actually push the crowdsourcing

progress forward through the event handler.

116

7. Implementation and Use Case

The lifecycle events and their handlers are the internal building blocks of Coordi-

nationMiddleware coordinating a crowdsourcing process. Besides, it also exposes a

RESTful service as an interface for both CwsClient and RequesterClient participants

to trigger the event and interact with each other.

Runtime Manager: the executing process controller and administrator

For the actual execution of a task, CoordinationMiddleware provides a runtime man-

ager to control and administrate the crowdsourcing process in execution, e.g. deploy,

start, and stop the process. In doing so, we separate the low-level web service and

BPEL process management from the high-level crowdsourcing management for our

requester.

We build CoordinationMiddleware on top of an open-source BPEL runtime Apache

ODE. Therefore, we realise our runtime manager through the APIs provided by

Apache ODE. Next, we take the process deploy and start as an example to detail

its implementation.

In order to separate the low-level WS-BPEL process deployment from the high-level

crowdsourcing management and help our requester focus on crowd task plan and

execution only, our Runtime Manager in CoordinationMiddleware realises the WS-

BPEL process auto-deployment, when the requester kicks off the execution phase.

We can see its specific implementation through the following code fragments.

public void deploy(Plan plan) {

// validate input and retrieve BPEL artifact content

checkNotNull(plan, "The given plan must exist!");

checkArgument(plan.isFinal(), "The given plan must be finalized!");

checkNotNull(plan.getBpel(), "The given plan must be transformed!");

byte[] content = plan.getBpel().getContent();

// init process management API (i.e. ’pmapi’) of apache ODE

OMFactory factory = OMAbstractFactory.getOMFactory();

OMElement root = factory.createOMElement("deploy",

factory.createOMNamespace("http://www.apache.org/ode/pmapi", "pmapi"));

OMElement zipPart = factory.createOMElement("package", null);

OMElement zipElmt = factory.createOMElement("zip", null);

117

7. Implementation and Use Case

// encapsulate BPEL content into zip element to be ready for deploy

OMText zipContent = factory.createOMText(Base64.encode(content), "application/zip", true);

zipElmt.addChild(zipContent);

zipPart.addChild(zipElmt);

root.addChild(zipPart);

// do the process deployment via web service call

new ServiceClientUtil().send(root, MIDDLEWARE_HOST + "/ode/services/DeploymentService");

}

As shown in the above deploy method, we process the following:

BPEL Validation: as usual and a good practice, we firstly validate the given

input prior to any further processing. Particularly, we check if the given crowd

work plan has been finalized and transformed into a BPEL artifact. If so, we

retrieve its byte content for further deploy preparation.

Deploy Preparation: as mentioned earlier, Apache ODE provides BPEL devel-

opers with a set of process management APIs - i.e. pmapi in the above code

fragment. As such, we use part of them, e.g. OMElement and OMText, to

encapsulate our BPEL artifact content to be ready for deployment.

Deploy Web Service Invocation: with the above prepared BPEL payload, we

do the process deployment through calling a built-in web service in Apache

ODE, whose endpoint is /ode/services/DeploymentService.

After deployment, we auto-start the deployed process with the initial input from

our requester when (s)he kicks off the execution phase. To this end, our Runtime

Manager realises the following.

public void start(String processName, String ...initialInput) {

// validate arguments and construct the deployed BPEL process URL

checkArgument(isNotBlank(processName), "Process name must exist!");

checkArgument(initialInput != null && initialInput.length > 0, "Process input must be ready!");

String processUrl = MIDDLEWARE_HOST + "/ode/processes/" + processName;

// construct a SOAP request for BPEL web service invocation

String initialRequest = initProcessRequest(processUrl + "?wsdl", initialInput);

InputStream processInput = new ByteArrayInputStream(initialRequest.getBytes());

// start the BPEL process via Apache ODE axis2 API

HttpSoapSender.doSend(new URL(processUrl), processInput, null, 0, null, null, null);

}

118

7. Implementation and Use Case

As shown in the above start method, we process the following:

Initial Process Request Preparation: given a BPEL process exposes itself

as a web service for invocation, we then need to construct an initial SOAP

request to start it. To do so, we need its web service definition - i.e. WSDL

specification, and its initialization payload. As to the former, we can achieve

it through appending ?wsdl suffix to the process endpoint. As to the latter,

we construct the payload with the passed initialInput argument.

Process Start web Service Invocation: with the above prepared process end-

point and the initial SOAP request, we then start the deployed BPEL process

through hitting its invocation web service via Apache ODE axis2 API, e.g.

HttpSoapSender.

7.2.3 RequesterClient Web Application

RequesterClient is an end-user oriented web application facilitating human requesters

to participate in advertising a crowd task or starting the crowdsourcing execution.

As much of the implementation concerns and event communication mechanisms

are similar to the other web-based module, we do not show the details. One of the

important function of this application though is to finalise the work plan and publish

it to CoordinationMiddleware . When the requester selects the final plan, an event

PLAN_SELECTED is sent to CoordinationMiddleware through the same uniform event-

handling service. CoordinationMiddleware then will ask the corresponding event

handler to retrieve the final plan from the passed event and transform it into a BPEL

artifact as explained earlier. Fig. 7.11 shows a screen capture of the see a successful

BPEL generation log on CoordinationMiddleware after the PLAN_SELECTED event.

When the requester kicks off the execution of a crowd task plan through the front end

119

7. Implementation and Use Case

Figure 7.11: BPEL generation process

of Execution Manager, its back end will handle the process in the startExecution

method (shown in Listing 7.8).

Listing 7.8: Starting the Execution of Chosen Plan
@Path("/requester/execution/{planId}/kickoff")

@POST

@Consumes(APPLICATION_JSON)

public Response startExecution(@PathParam("planId") long planId, List<HumanArtifact> input) {

try {

// input validation

checkArgument(planId > 0, "Invalid plan ID!");

checkArgument(isNotEmpty(input), "Initial input must be ready!");

// prepare ’EXECUTION_STARTED’ event and call Middleware for update

ExecutionStartedEvent event = prepareEvent(EXECUTION_STARTED, planId, input);

middleware.handleEvent(event);

// redirect the front end to requester’s dashboard

return Response.seeOther(new URI("/requester/dashboard")).build();

} catch (Exception e) {

return Response.serverError().build();

}

}

After ensuring the initial input, ExecutionStartedEvent is sent to Coordination-

Middleware and the response directs the human requester to his/her dashboard.

120

7. Implementation and Use Case

7.3 Use Case Demonstration

In this section, we use the motivating scenario in Sec. 1.1, i.e. software testing

process crowdsourcing, as a scenario to do a walk-through demonstration of how

modules work together in our complex task crowdsourcing context.

7.3.1 Creating and Publishing a Human Service

Figure 7.12: CWS definition through CWS Editor

To start with, by using CWS Editor as shown in Fig. 7.12, a tester declares his soft-

ware testing capabilities. He defines a Software Testing activity and its concrete

Automation Test action. It is noted that, in our prototype implementation, the

terms are derived from a lookup list of domain specific term database (i.e., simple

dictionary of software testing domain) that we maintain internally. The concrete

Automation Test action itself has input and output, Test Case and Test Script

artifacts, respectively.

As a result of editing these details, the tester tells SOC4Crowd that, in his software

testing service, an automation test action will be conducted to accept a test case

121

7. Implementation and Use Case

instruction and generate a script for test automation. With other details collected

from the editor, it will instantiate the human activity model and generate a WSDL

artifact as a CWS interface at both human and machine levels, respectively.

Figure 7.13: CWS publication through CWS Editor

After defining the software testing service, the tester needs to publish it for discovery.

To do so, he can describe the service context through another workspace in CWS

Editor as shown in Fig. 7.13. Through this, he can upload his software quality

assurance analyst profile as a software testing service provider (e.g. concrete testing

skill set, the past testing project experience). Then he can specify the availability

and cost of the software testing service. CWS Editor will update CWS data model

and register the new created software testing CWS in CoordinationMiddleware for

discovery.

In this scenario, we assume that there are many other software testing related ser-

vices defined and published this way in the platform.

7.3.2 Two-phased Complex Task Crowdsourcing

When the requester crowdsources a software testing process through our SOC4Crowd

framework, she will go through the following steps.

122

7. Implementation and Use Case

Step 1: Complex Crowd Task Advertising

A new crowdsourcing process starts from the requester advertising her complex

crowd task.

As shown in Fig. 7.14, the requester populates the details of her software testing

process task prior to advertising it to the crowd. Specifically, she starts with giving

it a concrete task name - i.e. RMS testing process, along with a further description

that highlights its task goal - i.e. a software acceptance test on their web application

before delivering it to their client. Then she specifies the deadline and budget con-

straints of completing this task. To draw attention of crowd workers in software de-

velopment domain, she tags this task using Software Testing and Quality Assurance

terms from a lookup list.

Figure 7.14: Advertising a complex crowd task in RequesterClient Application

Similarly, she uses other terms to specify the input and expected output to de-

fine the workload of current task, e.g. Business Requirement Specification as input

and Test Plan Specification as output. It is worth noting that, for each input, the

requester also needs to specify its value - i.e. the web location of current input ar-

123

7. Implementation and Use Case

tifact. Yet, for each output, she only needs to define the type of this output artifact

using a proper term, as the current output content has not been produced yet.

A CCTS data model is initiated and a TASK ADVERTISED event is sent to Coordina-

tionMiddleware who broadcasts the RMS testing process task. Subsequently, crowd

workers can see it on their CwcClient dashboard (see Fig. 7.15), and participate in

its planning stage.

Figure 7.15: Advertised complex crowd tasks on CWS Dashboard

Step 2: Plan Phase – Task Decomposition and Plan Selection

In this step, the original RMS Testing Process task will be decomposed by the crowd

workers to generate multiple candidate plans and the requester will choose one of

them as the final working plan for the later execution.

Figure 7.16: Original crowd task details prior to decomposition

124

7. Implementation and Use Case

Task Decomposition by Crowd Workers: From the CwsClient dashboard,

participating crowd workers can initiate the CCTS Editor for task decomposition by

following the Participate action link. As shown in Fig. 7.16, the crowd worker can

firstly view the details of RMS Testing Process task before any operation. Based

on those original information, the crowd worker can proceed with decomposition

operations by specifying AND or OR operators, and the number of sub-tasks that

the current task is divided into.

Figure 7.17: CCTS decomposition through CCTS Editor

Fig. 7.17 and Fig. 7.18 illustrate that the crowd worker decomposes the original

RMS Testing Process task into three sub-tasks, i.e. Test Design, Test Execution,

and Test Report, through the AND operator. Then the worker needs to further

populate each sub-task details. For illustration, let us take Test Design sub-task.

Similar to its parent RMS Testing Process, it is specified with a concrete name and

description, as well as a deadline and cost constraint. To better express its

domain-specific meaning, the crowd worker tags it with test plan, test design, and

test strategy terms.

The input and output, of Test Design sub-task are specified. The names here need to

match that of its respective parent and sibling tasks to establish a proper data flow

125

7. Implementation and Use Case

Figure 7.18: Sub-CCTS definition through CCTS Editor

for execution. Since the sub tasks are created with an AND operator, the input of

Test Design comes from either the input of its parent - i.e. RMS Testing Process, or

the output of its siblings - i.e. Test Execution and Test Report. Regarding its output,

Test Plan Spec is selected as the output of Test Design. Through this workload

definition, when Test Design sub-task is executed, its input will be instantiated

with a Business Requirement artifact passed from its parent. When its output - i.e.

Test Plan Spec artifact, is generated, it will be passed to its parent as part of the

output of RMS Testing Process.

An example of a completed task decomposition can be seen in the tree-structured

diagram in Fig. 7.19. After decomposition, the worker can submit it as a candidate

plan. The CCTS Editor back end will send a PLAN SUBMITTED event to Coordina-

tionMiddleware to notify the requester about a a new work plan from the crowd.

126

7. Implementation and Use Case

Plan Selection by the Requester: When the requester has received a set of

plans she can review each of those plans and select one of them as the final crowd

work plan. As shown in Fig. 7.19, the requester has reviewed three different plans

Figure 7.19: Plan selection by the requester in RequesterClient

and chosen one. At this point, the back-end program of Plan Manager sends a

PLAN SELECTED event to CoordinationMiddleware who subsequently binds each leaf

sub-task in the selected plan with a particular human service and transforms the

selected plan into a BPEL artifact for the later execution phase.

Step 3: Execution Phase – Human Service Interaction

When the requester kicks off the crowdsourcing execution phase, the human services

bound to the plan are called and orchestrated to complete the work. As such, the

typical scenario in this phase is CWS interaction.

As designed and explained earlier, when a leaf sub-CCTS without any children nodes

in its tree-structured plan comes to execution, its bound CWS gets requested and

the target crowd worker gets notified by both an email and a dashboard message.

For instance, when it comes to the Manual Test leaf sub-CCTS execution in our

RMS testing process case, the CoordinationMiddleware firstly sends a request to

its bound CWS whose corresponding human activity is Software Testing and the

127

7. Implementation and Use Case

Figure 7.20: Email notification in execution

concrete action is Manual Testing. This service request is in SOAP format and

can be seen in Fig. 7.9. Then our Interaction Protocol Manager in CwsClient

intercepts it and transforms it into both the email and dashboard notification, which

can be seen in Fig. 7.20 and Fig. 7.21, respectively.

Figure 7.21: Dashboard notification during the crowdsourcing execution

When the crowd worker receives the above notification, as shown in Fig. 7.21, he

can pick up that Manual Testing service request in the CWS Request List section of

his or her dashboard via clicking the Process link. Then he will be directed to an

user interface of our CWS Instance Handler, which is shown in Fig. 7.22, to view

the request details, e.g. Test Plan input artifact.

With those visualized request information, the crowd worker then performs his or her

128

7. Implementation and Use Case

Figure 7.22: CWS instance handling

Manual Testing action outside of our system, e.g. logging into the testing environ-

ment of RMS web application and conducting the actual software testing process by

following the instruction in the given Test Plan artifact. When he finishes the actual

testing work and generates an Issue Report artifact as the output of Manual Test ac-

tion, he can submit this output as his CWS response through the same user interface

as above. Accordingly, our Interaction Protocol Manager converts this human

service response into a callback SOAP message and sends it to CoordinationMiddle-

ware for correlation. At this point, a CWS interaction is completed. Further, our

CoordinationMiddleware would continue initiating another CWS interaction based

on the BPEL specification, until the whole execution has been finished.

As we can see from the above RMS testing process use case walk-through, our pro-

posed concepts and prototypical implementation of SOC4Crowd demonstrate how

the complex task crowdsourcing can be realised through existing technologies. Next,

we will summarize our research and highlight the future work.

129

Chapter 8

Conclusion and Future Work

In this thesis, we have firstly introduced the emerging trend in the crowdsourc-

ing field - i.e. crowdsourcing the complex task. In order to support that in a

systematic manner, we then identified a key feature - i.e. coordination, which is miss-

ing in most of current crowdsourcing platforms and other related work. Therefore,

this thesis aims to bring coordination support into the crowdsourcing domain from

service-oriented computing perspective, after seeing the similarity between crowd-

sourcing and SOC, and being motivated by the potential of applying the mature

service interaction and orchestration technologies into human interaction and coor-

dination.

To that end, first of all, we proposed a conceptual framework to re-design three

key elements in the online crowdsourcing platforms from SOC standpoint. That

is, i). Crowd Worker : in our framework, we proposed a concept called Crowd

Workers as Services (CWS) in which each different, distributed crowd worker

is abstracted into a similar service-oriented profile. In doing so, they can be better

described, easier discovered and composed into the complex crowd work through

the mature SOC technologies, when compared with a simple self-introduction and

130

8. Conclusion and Future Work

the historical performance rating as the worker representation in most of current

crowdsourcing platforms. ii). Crowd Task : in our work, we proposed another con-

cept called Complex Crowd Task as a Schema (CCTS) in which we define the

complex crowd work outsourced by the requester using a workflow-based schema.

This schema consists of a set of units of work - i.e. atomic sub-tasks, along with

their inter-dependencies, which defines the complex crowd task more clearly when

compared with the simple task description in most of current crowdsourcing plat-

forms. More importantly, through those atomic sub-tasks and their dependencies,

this schema provides us with a guideline for the complex crowdsourcing coordination

and management. iii). Crowd Work and Participants Management : when compared

with the one-off task and worker matching process in most of current crowdsourc-

ing platforms, we proposed a more comprehensive Coordination Protocol in our

work to define and refine the complex crowd task, find and bind right crowd workers

with right atomic tasks, coordinate their work and request their services to produce

content, monitor and manage their performance and the quality of their work.

By following this conceptual framework, we then presented its technical design and

implementation - SOC4Crowd, as a prototype realising a subset of those proposed

concepts. To realise our CWS concept, we firstly designed a human activity model

to abstract human capabilities; then with a Activity-to-WSDL mapping mechanism,

we encapsulated those human activities or capabilities into a web service format and

exposed it to the public as human services for the later interaction and coordination.

To realise our CCTS concept, apart from detailing its goal, workload, and constraint

properties, we designed two decomposition operators - i.e. AND and OR, to create a

set of sub-CCTS and define the data-flow dependencies among them. After realising

both CWS and CCTS concepts as the data model in our SOC4Crowd system, we

designed a Two-Phase Crowdsourcing Management as an operation model to realise

the coordination support. During the plan phase, with the human-level planning

design, the requester is able to crowdsource the working plan on his/her advertised

131

8. Conclusion and Future Work

task to get a better refined task definition - i.e. a full CCTS schema, before exe-

cution. Further, with the machine-level planning design, we bind that schema with

multiple CWS and make it executable for the later auto-coordination. During the

execution phase, with the coordination model and interaction protocol design, our

SOC4Crowd can coordinate and manage the interactions between the requester and

crowd workers through the web service interaction and orchestration.

As an initial step of bringing the coordination and management support into the

complex work crowdsourcing area, this thesis proposed a service-oriented framework

mainly focusing on an end-to-end solution to allow both the requester and crowd

workers to interact with each other during the whole complex crowdsourcing life-

cycle. Therefore, some of its detailed stages or steps need to be improved. For

instance, the current matching between CCTS and CWS is realised through the

tagging approach, which is not ideal enough as it requires a quite amount of effort

on maintaining the internal domain-specific terms. To make it better in the future,

we could take the semantics into account.

132

Bibliography

[AB14] Xu Anbang and Brian P Bailey. A system for receiving crowd feedback
on visual designs. In Proceedings of the companion publication of the
17th ACM conference on Computer supported cooperative work & social
computing - CSCW Companion ’14, 2014.

[ABSK11] Kittur Aniket, Smus Boris, Khamkar Susheel, and Robert E Kraut.
CrowdForge. In Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11, 2011.

[AHDB15] Xu Anbang, Rao Huaming, Steven P Dow, and Brian P Bailey. A
classroom study of using crowd feedback in the iterative design process.
In Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing - CSCW ’15, 2015.

[AMB12] Kulkarni Anand, Can Matthew, and Hartmann Björn. Collaboratively
crowdsourcing workflows with turkomatic. In Proceedings of the ACM
2012 conference on Computer Supported Cooperative Work - CSCW
’12, 2012.

[ANM+13] Kittur Aniket, Jeffrey V Nickerson, Bernstein Michael, Gerber Eliza-
beth, Shaw Aaron, Zimmerman John, Lease Matt, and Horton John.
The future of crowd work. In Proceedings of the 2013 conference on
Computer supported cooperative work - CSCW ’13, 2013.

[ASPR12] Kittur Aniket, Khamkar Susheel, André Paul, and Kraut Robert.
CrowdWeaver. In Proceedings of the ACM 2012 conference on Com-
puter Supported Cooperative Work - CSCW ’12, 2012.

[BBA12] Meriem Benhaddi, Karim Bäına, and El Hassan Abdelwahed. A user-
centric mashuped soa. IJWS, 1:204–223, 2012.

[BLS14] Paul Belleflamme, Thomas Lambert, and Armin Schwienbacher.
Crowdfunding: Tapping the right crowd. Journal of business ven-
turing, 29(5):585–609, 2014.

133

Conclusion and Future Work

[Bra08] Daren C Brabham. Crowdsourcing as a model for problem solving:
An introduction and cases. Convergence, 14(1):75–90, 2008.

[CED14] Preist Chris, Massung Elaine, and Coyle David. Competing or aim-
ing to be average? In Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing - CSCW ’14,
2014.

[DFS12] Schall Daniel, Skopik Florian, and Dustdar Schahram. Expert discov-
ery and interactions in mixed Service-Oriented systems. IEEE Trans.
Serv. Comput., 5(2):233–245, 2012.

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services
composition. International Journal of Web and Grid Services, 1(1):1–
30, 2005.

[DSA+14] Retelny Daniela, Robaszkiewicz Sébastien, To Alexandra, Walter S
Lasecki, Patel Jay, Rahmati Negar, Doshi Tulsee, Valentine Melissa,
and Michael S Bernstein. Expert crowdsourcing with flash teams. In
Proceedings of the 27th annual ACM symposium on User interface soft-
ware and technology - UIST ’14, 2014.

[DSBB10] Schall Daniel, Dustdar Schahram, and M Brian Blake. Programming
human and Software-Based web services. Computer, 43(7):82–85, 2010.

[ECRSS16] L Elisa Celis, Sai Praneeth Reddy, Ishaan Preet Singh, and Vaya
Shailesh. Assignment techniques for crowdsourcing sensitive tasks.
In Proceedings of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing - CSCW ’16, 2016.

[EJMG15] Harburg Emily, Hui Julie, Greenberg Michael, and Elizabeth M Ger-
ber. Understanding the effects of crowdfunding on entrepreneurial
Self-Efficacy. In Proceedings of the 18th ACM Conference on Com-
puter Supported Cooperative Work & Social Computing - CSCW ’15,
2015.

[ELMG16] Agapie Elena, Colusso Lucas, Sean A Munson, and Hsieh Gary. Plan-
Sourcing: Generating behavior change plans with friends and crowds.
In Proceedings of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing - CSCW ’16, 2016.

[ERC14] Pavlick Ellie, Yan Rui, and Callison-Burch Chris. Crowdsourcing for
grammatical error correction. In Proceedings of the companion publi-
cation of the 17th ACM conference on Computer supported cooperative
work & social computing - CSCW Companion ’14, 2014.

134

Conclusion and Future Work

[FFG+14] A Facoetti, S Franceschini, O Gaggi, G Galiazzo, S Gori, CE Palazzi,
and M Ruffino. Multiplatform games for dyslexia identification in
preschoolers. In Consumer Communications and Networking Confer-
ence (CCNC), 2014 IEEE 11th, pages 1152–1153. IEEE, 2014.

[FPO+11] Raymond P Fisk, Lia Patŕıcio, Andrea Ordanini, Lucia Miceli, Marta
Pizzetti, and A Parasuraman. Crowd-funding: transforming customers
into investors through innovative service platforms. Journal of service
management, 22(4):443–470, 2011.

[Har15] Christopher G Harris. The effects of Pay-to-Quit incentives on crowd-
worker task quality. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing - CSCW
’15, 2015.

[HG15] Julie S Hui and Elizabeth M Gerber. Crowdfunding science. In Pro-
ceedings of the 18th ACM Conference on Computer Supported Coop-
erative Work & Social Computing - CSCW ’15, 2015.

[How06] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4,
2006.

[HT11] Joseph M. Hellerstein and David L. Tennenhouse. Searching for jim
gray: A technical overview. Commun. ACM, 54(7):77–87, July 2011.

[JSD16] Chan Joel, Dang Steven, and Steven P Dow. Improving crowd innova-
tion with expert facilitation. In Proceedings of the 19th ACM Confer-
ence on Computer-Supported Cooperative Work & Social Computing -
CSCW ’16, 2016.

[JTB15] Thebault-Spieker Jacob, Loren G Terveen, and Hecht Brent. Avoiding
the south side and the suburbs. In Proceedings of the 18th ACM Con-
ference on Computer Supported Cooperative Work & Social Computing
- CSCW ’15, 2015.

[JWR15] Solomon Jacob, Ma Wenjuan, and Wash Rick. Don’t wait! In Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing - CSCW ’15, 2015.

[KJLW+15] Luther Kurt, Tolentino Jari-Lee, Wu Wei, Pavel Amy, Brian P Bailey,
Agrawala Maneesh, Hartmann Björn, and Steven P Dow. Structuring,
aggregating, and evaluating crowdsourced design critique. In Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing - CSCW ’15, 2015.

135

Conclusion and Future Work

[KMB+15] Zyskowski Kathryn, Meredith Ringel Morris, Jeffrey P Bigham,
Mary L Gray, and Shaun K Kane. Accessible crowdwork? In Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing - CSCW ’15, 2015.

[LAK16] Yu Lixiu, Kittur Aniket, and Robert E Kraut. Encouraging “outside-
the- box” thinking in crowd innovation through identifying domains of
expertise. In Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing - CSCW ’16, 2016.

[LKA16] Yu Lixiu, Robert E Kraut, and Kittur Aniket. Distributed analogical
idea generation with multiple constraints. In Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing - CSCW ’16, 2016.

[MMJ+16] Muller Michael, Keough Mary, Wafer John, Geyer Werner, Alberto Al-
varez Saez, Leip David, and Viktorov Cara. Social ties in organiza-
tional crowdfunding: Benefits of Team-Authored proposals. In Pro-
ceedings of the 19th ACM Conference on Computer-Supported Coop-
erative Work & Social Computing - CSCW ’16, 2016.

[MOS+14] Cefkin Melissa, Anya Obinna, Dill Steve, Moore Robert, Stucky Susan,
and Omokaro Osariemo. Back to the future of organizational work. In
Proceedings of the companion publication of the 17th ACM conference
on Computer supported cooperative work & social computing - CSCW
Companion ’14, 2014.

[MST+15] Kobayashi Masatomo, Arita Shoma, Itoko Toshinari, Saito Shin, and
Takagi Hironobu. Motivating Multi-Generational crowd workers in
Social-Purpose work. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing - CSCW
’15, 2015.

[Nor15] Karen Northon. NASA Uses Crowdsourcing for Open Innovation Con-
tracts, 2015.

[Obi15] Anya Obinna. Bridge the gap! In Proceedings of the 18th ACM Con-
ference on Computer Supported Cooperative Work & Social Computing
- CSCW ’15, 2015.

[PFSM16a] Kucherbaev Pavel, Daniel Florian, Tranquillini Stefano, and March-
ese Maurizio. Crowdsourcing processes: A survey of approaches and
opportunities. IEEE Internet Comput., 20(2):50–56, 2016.

136

Conclusion and Future Work

[PFSM16b] Kucherbaev Pavel, Daniel Florian, Tranquillini Stefano, and March-
ese Maurizio. ReLauncher: Crowdsourcing Micro-Tasks runtime con-
troller. In Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing - CSCW ’16, 2016.

[PKLSH13] Cheong Ha Park, Son KyoungHee, Joon Hyub Lee, and Bae Seok-
Hyung. Crowd vs. crowd. In Proceedings of the 2013 conference on
Computer supported cooperative work - CSCW ’13, 2013.

[PRM10] C. E. Palazzi, M. Roccetti, and G. Marfia. Realizing the unex-
ploited potential of games on serious challenges. Comput. Entertain.,
8(4):23:1–23:4, December 2010.

[PTDL07] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank
Leymann. Service-oriented computing: State of the art and research
challenges. Computer, 40(11), 2007.

[Ran03] Shuping Ran. A model for web services discovery with qos. SIGecom
Exchanges, 4(1):1–10, March 2003.

[RH16] Hope Reese and Nick Heath. Inside Amazon’s clickworker platform:
How half a million people are being paid pennies to train AI, 2016.

[RS05] Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service
Composition Methods, pages 43–54. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[RYMOV12] Vaculin Roman, Chee Yi-Min, Daniel V Oppenheim, and Lav R Varsh-
ney. Work as a service meta-model and protocol for adjustable visibil-
ity, coordination, and control. In 2012 Annual SRII Global Conference,
2012.

[SFPF15] Tranquillini Stefano, Daniel Florian, Kucherbaev Pavel, and Casati
Fabio. Modeling, enacting, and integrating custom crowdsourcing pro-
cesses. ACM Transactions on the Web, 9(2):1–43, 2015.

[SJ16] Kairam Sanjay and Heer Jeffrey. Parting crowds: Characterizing di-
vergent interpretations in crowdsourced annotation tasks. In Proceed-
ings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing - CSCW ’16, 2016.

[SZX+15] Cheng Shiwei, Sun Zhiqiang, Ma Xiaojuan, Jodi L Forlizzi, Scott E
Hudson, and Dey Anind. Social eye tracking. In Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work &
Social Computing - CSCW ’15, 2015.

137

Conclusion and Future Work

[TASF+16] Kandappu Thivya, Misra Archan, Cheng Shih-Fen, Jaiman Nikita,
Tandriansyah Randy, Chen Cen, Hoong Chuin Lau, Chander Deepthi,
and Dasgupta Koustuv. Campus-Scale mobile Crowd-Tasking: De-
ployment & behavioral insights. In Proceedings of the 19th ACM Con-
ference on Computer-Supported Cooperative Work & Social Computing
- CSCW ’16, 2016.

[VDAVH04] Wil Van Der Aalst and Kees Max Van Hee. Workflow management:
models, methods, and systems. MIT press, 2004.

[Vog07] Werner Vogels. Help Find Jim Gray, 2007.

[WPB13] Ingo Weber, Hye-Young Paik, and Boualem Benatallah. Form-based
web service composition for domain experts. ACM Trans. Web,
8(1):2:1–2:40, 2013.

[YWZ+04] Kun Yue, Xiao-Ling Wang, Ao-Ying Zhou, et al. Underlying tech-
niques for web services: A survey. Journal of Software, 15(3):428–442,
2004.

138

	Title Page - Supporting Complex Work in Crowdsourcing Platforms: A View from Service-Oriented Computing
	Thesis/Dissertation Sheet
	Abstract
	Acknowledgements
	Publications
	Table of Contents
	List of Figures

	Chapter 1 - Introduction
	Chapter 2 - Preliminaries
	Chapter 3 - Literature Review
	Chapter 4 - Conceptual Framework for Crowdsourcing Complex Work
	Chapter 5 - SOC4Crowd Data Model
	Chapter 6 - SOC4Crowd Operation Model
	Chapter 7 - Implementation and Use Case
	Chapter 8 - Conclusion and Future Work
	Bibliography

