
Copyright © 2014 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Duplicate Bug Report Detection Using Clustering

Raj P. Gopalan and Aneesh Krishna

Department of Computing

Curtin University

Perth, Western Australia

{R.Gopalan, A.Krishna}@curtin.edu.au

Abstract— Bug reporting and fixing the reported bugs play a

critical part in the development and maintenance of software

systems. The software developers and end users can

collaborate in this process to improve the reliability of software

systems. Various end users report the defects they have found

in the software and how these bugs affect them. However, the

same defect may be reported independently by several users

leading to a significant number of duplicate bug reports. There

are a number of existing methods for detecting duplicate bug

reports, but the best results so far account for only 24% of

actual duplicates. In this paper, we propose a new method

based on clustering to identify a larger proportion of duplicate

bug reports while keeping the false positives of misidentified

non-duplicates low. The proposed approach is experimentally

evaluated on a large sample of bug reports from three public

domain data sets. The results show that this approach achieves

better performance in terms of a harmonic measure that

combines true positive and true negative rates when compared
to the existing methods.

Keywords- bug report, duplicate detection, clustering,

Bugzilla

I. INTRODUCTION

As software development becomes increasingly complex,
there is also greater pressure to release the products quickly.
This often leads to software with many defects being made
available to users. Software defects have caused loss of
income running into many billions of dollars [17]. Fixing
software defects is one of the most frequent software
maintenance activities which amounted to 70 billion dollars
in US alone [1]. Defect reporting is a vital part of the
software development, testing and maintenance process. The
purpose of a defect report is to state the problem as clearly as
possible so that developers can replicate the defect easily and
fix it. A bug tracking system is designed to help developers
keep track of reported bugs in their software products [6],
[8], [11], [13]. A reporting system like Bugzilla allows users
to report the bugs they encounter in software such as Mozilla
and Eclipse [15]. By promptly processing these bug reports,
the reliability of the software can be improved quickly.
When several users submit bug reports for the same problem,
these reports are called duplicate bug reports. If an incoming
bug report describes a defect not seen before, then it should
be assigned to the developers for fixing the bug. However, if
it is a duplicate, it can be attached to the corresponding

original master bug report. This process is referred to as
triaging [1].

TABLE I. A BUG REPORT FROM MOZILLA BUG TRACKING SYSTEM

Bug Id 259814

Summary Find highlighting disables point-in-text
clicking in input fields

Description If you find text, have the "Hilight" button

turned on, and that text appears within an

input field, you cannot click to place the

input cursor in the middle of the found

text.

Product Mozilla Toolkit

Component Find Toolbar

Version Trunk

Bug reports usually include details such as a bug id, a

summary and a description. It may also contain other details
such as product, component and version. The fields used for
different projects can vary to some extent, though they tend
to be similar in content. Table I shows a sample bug report
with values for different fields from the Mozilla bug tracking
system.

A bug reporting system for a widely used software
product may receive a large number of bug reports,
especially after new releases of the software. Usually, bug
triagers need to manually go through the list of bug reports to
determine if they are duplicates or not. This consumes a
large amount of time and effort by the triagers. For example,
almost 300 bugs a day were reported for Mozilla in 2005 that
overwhelmed the capacity of the programmers available [1].
To mitigate such large demands on triaging and fixing of
defects, there is need for an automated tool that can assist in
determining if a bug report is a duplicate.

So far two main approaches have been proposed for
detecting duplicate bug reports. The first approach attempts
to directly identify duplicates to prevent them from reaching
triagers [5]. The second approach provides a list of top-k
most similar bug reports for each new report from which a
triager needs to identify whether it is a real duplicate [3], [5],
[12]. As some bug reports may not contain sufficient
information for fixing the defect, the top-k similar reports
can often help to provide the missing details. However, the
accuracy of the existing techniques for duplicate bug report
detection is still relatively low [1], [4], [5].

In an early study of duplicate bug report detection,

Runeson et al [4] proposed the use of natural language

processing techniques to rank similar bug reports. However,

they relied only on the textual information without regard to

mailto:R.Gopalan,%20A.Krishna%7d@curtin.edu.au

the other features available in Bugzilla such as component

where the bug resides, product version, report priority, etc.

The accuracy of this approach was relatively low. In

addition to the natural language processing techniques,

Wang et al [3] used execution traces to detect defects.

Execution traces are hard to get for specific bugs and often

unavailable for typical bug reports. Sureka and Jalote [2]

proposed a character N-gram based model for duplicate bug

detection. They evaluated the method using top-N similar

reports on a random sample of 1100 bug reports. However,

their results were not compared with existing approaches in

the literature.

Jalbert and Weimer [5] proposed a method that uses

surface features, textual semantics and graph clustering to

predict duplicate status of bug reports. They were able to

filter up to 8% of duplicates while allowing every real

defect to reach the developers. Sun et al [1] developed a

discriminative model for bug report retrieval using a support

vector machine (SVM). The reports were modeled as bags

of words and the similarity between a pair of reports was

computed as the sum of the inverse document frequencies

for the words in common. The method is based on

identifying the top-k similar reports from which the most

probable duplicate pair is determined using SVM. In [7],

Sun et al extended BM25F to a new similarity measure

which is a linear combination of textual and categorical

features. Tian et al [6] improved the methods described in

[1], [7] by refining the similarity measure in [7] and used

SVM to identify the duplicates. They improved the

identification of duplicates to 24% compared to only 8% in

[5]. However, the true negative rate declined by 9%

compared to [5].
In this paper, we investigate whether a clustering based

approach can improve the accuracy of duplicate detection.
The proposed method uses the textual information contained
in the summary and description fields of the bug reports.
Pairs of bug reports are compared using Cosine similarity. A
threshold is specified to determine whether the similarity
between two bug reports is significant enough for them to be
clustered together. A new bug report is compared with the
cluster representatives of existing clusters and will be added
to the cluster with which it is most similar. If its similarity is
below the threshold for all clusters, it is added to a new
cluster. We have evaluated our approach on three large data
sets of bug reports from Mozilla, Eclipse and Open Office
projects. The results are compared against the best
performing approach from the literature.

The previous work closest to our approach is that of

Jalbert and Weimer [5] who also used cosine similarity to

compare pairs of bug reports along with a graph clustering

algorithm to detect duplicates. We also use cosine similarity

in this paper, though other similarity measures such as

Jaccard coefficient and Pearson correlation coefficient [18]

could be substituted in our clustering algorithm. Instead of

the graph clustering approach used in [5], but we adapt the

INCLUS algorithm which was originally proposed for

clustering high dimensional sparse transactional data [18].

Tian et al. [6] followed a similar approach to [5] in

formulating the evaluation measures for their duplicate bug

report detection method and therefore could compare their

results with that of [5]. In this paper, we compare our results

with those in both [5] and [6].
The remaining sections of this paper are organized as

follows: Section 2 presents our approach for duplicate bug
report detection. Section 3 describes the experiments, results
and evaluation of the approach. We conclude the paper and
present the future directions in Section 4.

II. PROPOSED APPROACH TO DETECTING DUPLICATE

BUG REPORTS

Bug reports normally include free form textual
descriptions and titles and duplicate bug reports may share
the same words. A bug report always contains two important
fields: summary and description along with its bug id as
shown in Table I. It may also contain other features such as
product, component, version and priority. Similarity between
two bug reports may be considered based on the summary
field alone, the description field alone or the union of these
two. Besides textual similarity, we may also consider
product, component, version and priority fields in
determining whether two bug reports are duplicates.

A. Document Similarity Measure

In this paper, we consider the document similarity
between two bug reports only within the same corpus. A
corpus may consist of bug reports of a particular project such
as Mozilla, Open Office or Eclipse. In our experiments, the
summary and description fields of the bug report are
considered as part of one corpus. We adapt the cosine
similarity measure presented in [5] for comparing two bug
reports. We consider the set of n unique words that are
present in the entire corpus. Each bug report in the corpus is
represented by a vector v of size n, where v[i] is the number
of occurrences of the word i in that report.

For vectors v1 and v2 that represent two bug reports, the
cosine similarity is computed using Equation (1) where
v1v2 represents the dot product:

 similarity = cos(θ) = (v1.v2)/(v1v2) (1)

The smaller the value of θ, the two vectors are closer to

being collinear, and hence more weighted words are shared
by the two reports.

B. Duplicate Detection

Clustering is used in our approach to group bug reports

that are similar based on the cosine similarity measure. Two

bug reports that share a high proportion of common words

in their summary and description fields have a greater

probability of being duplicates. The input bug reports are

treated as if they are separate data streams based on distinct

values of product ID and component ID. Only bug reports of

the same product and component are clustered together. Bug

reports that share few common words could also describe

the same defect, but the proposed approach based on the bag

of words representation is not suitable for detecting such

duplicates.
The bug reports in the repository are organized in an

ascending order of bug ID’s. As bug reports are
consecutively numbered, the duplicate reports will always
follow the first report of a given defect. Each report is
represented as a set of fields that includes summary and
description containing a set of words and their frequencies of
occurrence. For a given pair of reports, cosine similarity is
computed separately for the summary and description fields.
These values are then combined by applying a suitable
weighting w in the range 0-1 chosen by experimentation. The
weighted similarity of a pair of bug reports is computed as
(sw + d(1-w)), where s and d are the similarity values for the
summary and description fields. If the weighted similarity is
above a threshold, the two reports are considered to be
potentially duplicates. The choice of threshold and the
relative weighting of summary and description fields are
determined experimentally by clustering a sample of the bug
reports in a given repository in which the actual duplicates
have been previously identified. These parameters are
chosen such that the clustering results match most closely
with the actual.

C. Clustering Algorithm

The Clustering algorithm we use is an adaptation of the
INCLUS algorithm proposed in [18]. Unlike INCLUS, our
algorithm uses the first report in a cluster as its representative
and requires as the input parameters a similarity threshold
and a weighting factor to be applied to the similarity of
summary and description fields. INCLUS uses a set of
frequent items in each cluster as the representative with
which to compare new transactions and requires a support
threshold and a similarity threshold as clustering parameters.

Algorithm : Clustering of duplicate bug reports

 Input : A set of bug reports, a similarity threshold

 Output: Clusters of master reports and their duplicates.
1. Insert the first bug report into a new cluster and

nominate it as the cluster representative.

2. While NOT end of bug reports

a. Read the next bug report.

b. For each existing cluster, do

i. Compute Document similarity between the

current report and the cluster representative.

ii. If current similarity value > the max

similarity of current report with any cluster,

store the cluster number and the current

similarity value.

c. If max similarity >= threshold for current report,

then Add it to the corresponding cluster else

insert it into a new cluster.

Figure 1. Algorithm for Clustering bug reports

The algorithm is described in Fig. 1. It begins by
inserting the first report into a new cluster. The first report of
each cluster is treated as the cluster representative. Starting
with the second report in the repository, the similarity of
each report with the cluster representatives of existing
clusters is computed as a weighted sum of the cosine
similarity of the summary and description fields. If the
maximum of the similarity values for the report with the
cluster representatives is above the given threshold, it is
inserted into the cluster with which it has the highest
similarity. If the maximum similarity is below the threshold,
it is inserted into a new cluster and designated as its cluster
representative.

III. EVALUATION

This section describes the evaluation measures used, the
setup of the experiments and the results obtained. We
compare our results with the best results reported previously.

A. Evaluation Measures

As in [6], we adopt the approach of Jalbert and Weimer
[5] to identify true and false positives, and also the
definitions of true positive rate and true negative rate. The
set of true positives denoted by TP consist of of duplicate
bug reports correctly identified by the proposed approach.
The set of false positives denoted by FP consist of bug
reports that are incorrectly identified as duplicates. TPRate is
defined as the ratio of the cardinality of TP to that of the
actual set of duplicates denoted as ActualDuplicates.

 TPRate = |TP| / |ActualDuplicates| (2)

Similarly, TNRate is defined as the ratio of the number of

non duplicate bug reports less the number of false positives
as identified by our algorithm to the actual number of non
duplicates denoted as NonDupliactes.

 TNRate = |NonDuplicates – FP| / |NonDuplicates| (3)

In order to balance the tradeoff between the true positive

rate and the true negative rate, we also use the measure of

Harmonic mean defined in [6] as

Harmonic = (2*TPRate*TNRate) / (TPRate + TNRate) (4)

B. Experimental Results

We have evaluated our approach using the bug
repositories of the large open source projects of Mozilla,
Eclipse and Open Office that are available in the public
domain for research and experimental purposes. These
projects have been commonly used in the literature for
evaluation of duplicate bug detection methods [1], [2], [3],
[5], [6]. The details of the date ranges and the number of bug
reports in each data set are given in Table II.

TABLE II. DETAILS OF DATA SETS USED IN THE EXPERIMENTS

Data set name Period Number of reports

Eclipse Jan-Dec 2008 45234

Mozilla Jan-Dec 2010 75653

Open office Jan-Dec 2010 31138

A prototype of our approach was implemented in Java

and experiments were carried out using Eclipse on an Intel
Core i7 PC with 8GB memory running Windows 8. The bug
reports were clustered using the algorithm described in
Section 3. Initially, we used samples of bug reports from the
three datasets containing both duplicate and non-duplicate
bug reports, to determine the parameters of similarity
threshold and the relative weighting of summary and
description fields in the similarity calculation. The sample
sizes used were about 16% of each data set. The parameters
were chosen such that the TPRate on the sample is above
24% and the TNRate is close to 90% with a Harmonic value
of above 39%. These values were used as they correspond to
the previous best results reported in [6]. The parameters
values so chosen are given in Table VI, which vary for the
different data sets. These parameters were then applied to
separate test data of similar size as the training data. Tables
III, IV and V show the experimental results using the test
data. These experiments covered the threshold values for
similarity from 0.1 to 0.8 for each of the three data sets for
further comparisons and discussion. Most of the existing
research papers with the exception of [5] and [6] report only
recall rates which are equivalent to the TPRate and do not
report the TNRate. So the range of TPRate values we report
can provide a basis for comparison with these papers.

TABLE III. EXPERIMENTAL RESULTS FOR ECLIPSE 2008 BUG REPORTS

Threshold TPRate TNRate Harmonic

0.1 0.69 0.22 0.34

0.2 0.64 0.44 0.52

0.3 0.58 0.64 0.61

0.4 0.51 0.74 0.6

0.5 0.41 0.85 0.56

0.6 0.33 0.88 0.48

0.7 0.28 0.93 0.43

0.8 0.25 0.96 0.39

Figure 2. TPRate, TNRate, and Harmonic for Eclipse 2008 at different

similarity thresholds

The values of similarity threshold, TPRate, TNRate, and
Harmonic for the bug reports of Eclipse in 2008 are shown in
Table III. The graph in Fig. 2 shows the TPRate, TNRate and
the Harmonic plotted against the threshold values of
similarity. Similarly, the experimental results for data sets
from Mozilla and Open Office are shown in Tables V and
VI, and also in Fig. 3 and 4 respectively.

From Table III and Fig. 2, it can be observed that as the
similarity threshold value increases, the TPRate starting with
a value of 0.69 for the threshold of 0.1 decreases
continuously. TNRate, on the other hand, starts with a low
value and increases to nearly 1. The Harmonic value
increases with the threshold value up to a threshold of 0.3,
and then gradually decreases for higher thresholds. Ideally,
we would prefer the TNRate to be close to 1 and the TPRate
to be as high as possible, so that the non-duplicate reports
that need to be fixed are not missed while maintaining a high
detection rate for duplicate bug reports. At the highest
Harmonic value of 61% for Eclipse the TPRate is 58% and
the TNRate 64%. As we require the TNRate to be closer to
1, the TPRate of 33% corresponding to detection of 33% of
actual duplicates with TNRate of 88% which represents a
false positive rate of 12% are more viable. The TPRate is
significantly better than the best value of 24.48% reported by
existing methods in the literature, though our TNRate is
lower than in that study by 3% [6]. However our Harmonic
value of 48% is much better than 39% achieved in the same
study.

TABLE IV. EXPERIMENTAL RESULTS FOR MOZILLA 2010 BUG

REPORTS

Threshold TPRate TNRate Harmonic

0.1 0.45 0.2 0.27

0.2 0.39 0.43 0.41

0.3 0.32 0.68 0.44

0.4 0.27 0.86 0.41

0.5 0.13 0.92 0.23

0.6 0.07 0.99 0.12

0.7 0.02 0.99 0.03

0.8 0.02 0.99 0.03

Figure 3. TPRate, TNRate, and Harmonic for Mozilla 2010 at different

similarity thresholds

The experimental results for the Mozilla data set are
shown in Table IV and Fig. 3. The pattern of TPRate,
TNRate and Harmonic for different threshold values is
similar to that for the Eclipse data. However, the absolute
values of these measures are significantly better for the
Eclipse data at corresponding threshold values. The TPRate
of 27% at a threshold value of 0.4 is better than the
previously reported best value of 24% for Mozilla bug
reports [6]. So also is our Harmonic value of 41% compared
to the previous best result of 39%, though the TNRate is
lower by 10% compared to that study. It is seen from the
graphs in Figures 2-4, that there is a clear tradeoff between
higher TPRates and lower TNRates as they move in opposite
directions for varying threshold values.

TABLE V. EXPERIMENTAL RESULTS FOR OPEN OFFICE 2010 BUG

REPORTS

Threshold TPRate TNRate Harmonic

0.1 0.41 0.31 0.35

0.2 0.43 0.52 0.47

0.3 0.35 0.71 0.47

0.4 0.28 0.85 0.42

0.5 0.19 0.91 0.31

0.6 0.13 0.97 0.23

0.7 0.09 0.98 0.16

0.8 0.08 0.98 0.14

Figure 4. TPRate, TNRate, and Harmonic for Open Office 2010 at

different similarity thresholds

Table V and Fig. 4 show the experimental results for the
Open Office data set. The TPRate of 28% and a TNRate of
85% at the threshold value of 0.4 is comparable to the results
for Mozilla data in Table IV. For the higher TNRate of 91%,
the TPRate is lower at 19%. The Harmonic value peaks at
0.47 for a threshold of 0.3 and then gradually decreases.
From the results for all three data sets, our current similarity
measure and the parameter settings work best for the Eclipse
data, though the results for the two data sets are comparable
to the best results previously reported in the literature [6].
There is scope for improving our results further by choosing

different similarity measures and fine tuning the parameter
settings to suit different data sets.

C. Discussion

The results for the test data sets using our approach are
compared against the results in [5] and [6] as only these two
papers have previously reported both the TPRate and the
TNRate. Other publications on the detection of duplicate bug
reports evaluate their approaches based on the TPRate
without accounting for the false positives [1], [2], [3], [4],
[7]. If the corresponding false positives and the low TNRate
are not considered, it is possible to get relatively high
TPRate.

TABLE VI. CLUSTERING PARAMETERS CHOSEN BY EXPERIMENTS

Data set Similarity threshold Similarity weighting

Mozilla 0.4 0.9

Eclipse 0.7 0.4

Open Office 0.4 0.7

TABLE VII. COMPARISONS WITH PREVIOUS RESULTS

Approach Data set TPRate TNRate Harmonic

Jalbert and

Weimer

Mozilla 8% 100% 15%

Tian, Sun

and Lo

Mozilla 24% 91% 39%

Proposed in

this paper

Mozilla 27% 86% 41%

Open Office 28% 85% 42%

Eclipse 33% 88% 48%

A comparison of the results for the three data sets using

our approach with the previous results in [5] and [6] are
shown in Table VII. References [5] and [6] have reported
only on Mozilla data set. In making this comparison, we are
assuming that the underlying characteristics of duplicate bug
reports for various projects and in particular for the Mozilla
project are similar over the life of the project. The TPRate
and the Harmonic are higher for all three data sets when
using our method. The TNRate on the otherhand is lower. As
the Harmonic combines the TPRate and the TNRate into a
single measure, it can be concluded that our method
performs better than the previous approaches. Several
researchers have previously evaluated their methods using
the recall rate defined as the ratio of the number of correctly
retrieved duplicates divided by the total number of actual
duplicates. Most of these methods also retrieve for a given
bug report the top-k similar bug reports of which it may be a
potential duplicate. The value of k may vary from 1 to 20.
The lowest recall rates in these studies are reported when the
value of k is 1. For evaluation against these studies, the
highest TPRate from our method can be treated as the top-1
retrieval. Based on this comparison, the top-1 recall rate of
our approach is also higher than the top-1 recall rates of
previous methods for the three data sets of Eclipse, Mozilla
and Open Office projects as reported in [19].

IV. CONCLUSIONS

The need for automating the duplicate bug detection process

is well recognized in the literature. In this paper, we extend

the previous work by Jalbert and Weimer (2008) and Tian et

al (2012), by proposing a clustering based approach to

improve the accuracy of duplicate detection. The textual

information in the summary and description fields of the

bug reports were used for this task. Pairs of bug reports

were compared using Cosine similarity with a threshold to

determine whether they should be in the same cluster. We

have evaluated our approach using three large data sets from

Mozilla, Eclipse and Open Office projects. The results were

compared against the previous approaches that have

reported both true positive and negative rates for duplicate

detection. For Mozilla and Open Office data sets, our results

are better on TPRate and the overall Harmonic value, but

slightly lower on the TNRate. Our results are significantly

better for Eclipse data on TPRate, TNRate and Harmonic.

However, the comparable previous studies had reported

results based only on the Mozilla dataset (Jalbert and

Weimer, 2008, Tian et al., 2012). Our experimental results

indicate that the proposed approach presents a trade-off

between high levels of duplicate detection and low levels of

false positives.
The bag of words approach followed in this research

cannot correctly deal with duplicate reports that share few
common words. As future work, we plan to extend this
approach by considering synonyms and phrases of similar
meaning in comparing reports. It is also proposed to release a
tool that will help developers flag duplicate bug reports as
part of bug management in systems such as Bugzilla.

ACKNOWLEDGMENT

The authors wish to thank Rohit Gopalan (Visagio
Australia) for his contributions towards the success of this
project.

REFERENCES

[1] C. Sun, D.Lo, X.Wang, J.Jiang, S.-C.Khoo, “A discriminative model
approach for accurate duplicate bug report retrieval,” Proc.

International Conference on Software Engineering, pp. 45-56, 2010.

[2] A.Sureka, P.Jalote,“Detecting duplicate bug report using character n-

gram-based features,” Proc. Asia Pacific Software Engineering
Conference, pp. 366-374, 2010.

[3] X.Wang, L.Zhang, T.Xie, J.Anvik and J.Sun,“An approach to

detecting duplicate bug reports using natural language and execution
information,” Proc. International Conference on Software

Engineering, pp. 461-470, 2008.

[4] P.Runeson, M.Alexandersson and O.Nyholm,“Detection of duplicate

defect reports using natural language processing,” Proc. International
Conference on Software Enginnering, pp. 499-510, 2007.

[5] N.Jalbert and W.Weimer, “Automated duplicate detection for bug

tracking systems,” Proc. International Conference on DSN, pp. 52-61,
2008.

[6] Y.Tian, C.Sun, and D.Lo, “Improved duplicate bug report

identification,” Proc. European Conference on Software Maintenance
and Reengineering (CSMR), pp. 385-390, 2012.

[7] C. Sun, D.Lo, S.-C.Khoo, and J.Jiang,“Towards more accurate

retrieval of duplicate bug reports,” Proc. International Conference on
Automated Software Engineering (ASE), pp. 253-262, 2011.

[8] N.Bettenburg, R.Premraj, T.Zimmermann, and S.Kim, “Extracting

structural information from bug reports,” Proc. International Working
Conference on Mining Software Repositories,(MSR’08), pp. 27-30,

2008.

[9] J.Anvik, L.Hiew, and G.C.Murphy, “Copying with an open bug
repository,” Proc. OOPSLA Workshop on Eclipse Technology

eXchange (Eclipse’05), pp. 35-39, 2005.

[10] N.Bettenburg, R.Premraj, T.Zimmermann, and T.Sunghun Kim,

“Duplicate bug reports considered harmful … really?,” Proc. IEEE
International Conference on Software Maintenance (ICSM 2008), pp.

337-345, 2008.

[11] N.Bettenburg, R.Premraj, S.Just, A.Schroter, C.Weiss, and
T.Zimmermann, “What makes a good bug report?,” IEEE

Transactions on Software Engineering, vol.36, pp. 618-643, 2010.

[12] H.Cheng, X.Yan, J.Han, and C.-W.hsu, “Discriminative frequent
pattern analysis for effective classification,” Proc. ICDE 2007.

[13] A.Podgurski, D.Leon, P.Francis, W.Masri, M.Minch, JB.Wang,

“Automated support for classify software failure reports,” Proc. ICSE
2003.

[14] http://www.mysmu.edu/faculty/davidlo/

[15] http://www.bugzilla.org/

[16] https://issues.apache.org/ooo/

[17] G.Tassey, “The economic impacts of inadequate infrastructure for
software testing”, National Institute of Standards and Technology -

Planning Report 02-3.2002, 2002.

[18] Y.Li and R.P.Gopalan, “Clustering high dimensional sparse
transactional data with constraints”, Proc. IEEE International

conference on Granular Computing, 2006, pp. 692-695.

[19] A.T.Nguyen, T.T. Nguyen, T.N. Nguyen, D.Lo, and C.Sun,
“Duplicate bug report detection with a combination of information

retrieval and topic modeling”, Proc. ASE’12, Germany, pp. 70-79,
September 2012.

http://www.mysmu.edu/faculty/davidlo/
http://www.bugzilla.org/
https://issues.apache.org/ooo/

