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Abstract

This paper presents a novel variation of wave
pipelining that we call “surfing”” In previous wave
pipelined designs, timing uncertainty grows monotoni-
cally as events propagate through gates or other logic
elements. We bound this dispersion by propagating a
timing pulse along with the data values. Our logic el-
ements have delays that are smaller in the presence of
the pulse than in its absence. This produces a ““surf-
ing” effect: events are bound in close proximity to the
timing pulse. We demonstrate this approach with the de-
sign of a 4x12 multiplier. Spice simulations from the
extracted layout indicate that this design is robust in the
presence of fabrication parameter variation and power
supply noise. Because timing is maintained by acceler-
ating the logic, our designs achieve lower latency than
their purely combinational equivalents. Thus, the con-
trol overhead for these designs is indeed negative.

1 Introduction

This paper presents a novel variation of wave pipelin-
ing called “surfing.” In surfing pipelines, a timing pulse
is propagated along the pipeline, and logic elements are
modified so as to have reduced propagation delays in the
presence of this pulse. We show that when a few, simple
conditions are satisfied, events in the data path will prop-
agate in bounded temporal proximity to the timing pulse.
This prevents timing uncertainties from accumulating in
the data path, and we can implement wave pipelining on
pipelines that are arbitrarily deep with a correspondingly
arbitrary number of waves.

Williams and Horowitz introduced earlier the con-
cept of “zero-overhead” pipelines [13]. If a pipeline has
a total latency equal to the sum of the latencies of its
stages, then no latency is introduced by control or latch-
ing, and the pipeline is said to have “zero-overhead.”
Our pipelines have lower latencies than the sum of the
latencies of a purely combinational design. These low

latencies are achieved because the delays of the logic
elements decrease in the presence of the timing pulse.
Thus, we say that our pipelines have negative overhead.
Prior to our work, Fairbanks and Sutherland observed
that pipelines can operate with soft-latches where the
latch does not go fully opaque between successive clock
cycles [10]. Simply increasing the delay of the latch can
provide proper pipeline operation in some cases. Our
present work explains these observations in a more gen-
eral framework and introduces an acceleration mecha-
nism that can eliminate the need for latches entirely.
The main contributions of our paper are:

e We show how modulating the delay of logic gates
can create “event attractors” (Section 3). These at-
tractors propagate faster than the non-surfing delay
of logic elements, resulting in negative overhead.
Furthermore, these attractors ensure timing uncer-
tainties remain unbounded, even in arbitrarily long
pipelines. This removes the need for latches and
their associated overhead.

e \We describe a CMOS logic family that implements
surfing (Section 4). These circuits are a simple vari-
ation of existing, self-resetting domino designs [3].

e We present a surfing multiplier (Section 5). We
report extensive Spice simulation results based on
a model extracted from a layout of the multiplier.
Due to surfing, propagation delays of the XOR
gates and multiplexors are only 11% greater than
the delays of simple inverters, and about 4% faster
than the corresponding, non-surfing, self-resetting
domino implementations. Spice simulations indi-
cate that the surfing pipeline is fast and robust in
the presence of parameter variation and power sup-
ply noise.

2 Pipelining Methods

Figure 1 shows a traditional synchronous design. Let
the period of the clock, @, be P, and let dyin and Omax



be the minimum and maximum delay from the inputs to
the outputs of the combinational logic. For simplicity,
we ignore latch set-up and hold times, latch propagation
delays, and clock skew, noting that the qualitative obser-
vations that we make continue to hold in more detailed
models. Classical synchronous design is based on the
observation that if oy < P, then the values present at
the input of the latches will have settled to their proper
values prior to each clock event. In other words, the
minimum clock period is determined by the slowest path
through the combinational logic. In general, reducing
the clock period increases performance.

2.1 Wave Pipelining

With careful control of the delays in the combina-
tional logic, wave pipelined designs [1] can achieve
clock periods less than dma. For example, if O <
2dmin, then the circuit can operate at a clock frequency
P that satisfies:

provided that certain internal delay constraints specific
for the particular logic blocks are satisfied (see [1, Sec-
tion 2.3.2]). In this case, the combinational logic block
operates with twice the throughput but the same latency
as the classical synchronous design. Figure 2 illus-
trates this operation, showing three waves shortly after
a clock event. At this point, the data that propagated
through latch 1 at the most recent clock event is propa-
gating through the combinational logic as wave C. Data
that propagated through latch 1 one clock period earlier
is also propagating through the combinational logic as
wave B. The one clock-cycle head start of wave B en-
sures that it will arrive at latch 2 at the end of the current
clock cycle without being overtaken by wave C. At each
clock event, latch 2 acquires the data that propagated
through latch 1 two clock periods earlier. Thus, wave A
represents data from two clock cycles before wave C.

More generally, if (k— 1)dmax < kdmin holds for some
positive integer k, then the circuit can operate at a clock
frequency satisfying

6max/k < P < 6min/(k_l) (2)

provided again that the necessary internal delay con-
straints are satisfied. This allows that circuit to operate
with k times the throughput of classical, synchronous
designs.

Timing uncertainties are the Achilles’ heel of wave
pipelined design. To minimize delay uncertainties, typi-
cal wave-pipelined designs arrange logic blocks into lev-
els as shown in Figure 3.
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Figure 1. Synchronous Design
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Figure 2. Wave Pipelining with Two Waves
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Figure 4. Self-Resetting Domino AND Gate

The uncertainty at the output of a latch is determined
by skew and jitter of the clock and variations of the prop-
agation delay of the latch. This uncertainty grows mono-
tonically as each level adds its uncertainty to the accu-
mulated uncertainty of the previous levels (assuming all
paths are sensitizable). This accumulation of uncertainty
presents a fundamental limit to wave pipelining. In par-
ticular, Equation 2 implies:

P > Omax— Omin 3)

Thus, uncertainty in the timing leads directly to a
limit on the operating frequency. In practice, most
wave pipelined designs have only supported two to four
waves. To achieve this, most wave pipelined designs
employ logic restructuring and extra delay padding to
minimize delay variation. This gives these designs
greater latency than their classical equivalents, and the
throughput is improved by a factor much smaller than
the degree of wave pipelining. The surfing technique in-
troduced in section 3 avoids this accumulation of delay.
We first describe self-resetting domino circuits which
resemble wave-pipelined designs in their need for well
matched delays. We use self-resetting domino as the
starting point for our designs presented in section 4.

2.2 Self-Resetting Domino

Self-resetting domino circuits [3] are a variation of
domino circuits [6] where the precharge control signal
for each gate is derived from the gate’s output. As an
example, figure 4 shows a self-resetting domino, two-
input AND gate. Transistors p1 and p2 are the precharge
transistors. After precharge, node g is high. If the a and
b inputs both go high, then node g is pulled low and
output y goes high. If either a or b remains low, then
the y output remains low as well. Asserted values in
self-resetting domino are represented by pulses. After
the output y goes high, inverter i2 drives its output low,
enabling transistor p1 to precharge node g high which
returns output y to a low value. Between input pulses,
the precharge control signal, pre is low, and node g is
held high by transistor p2. This maintains the level of
g when the gate is operated at low frequencies and im-
proves noise immunity.
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Figure 5. A Surfing Pipeline

Self-resetting domino circuits offer performance ad-
vantages because the only P-channel devices on the for-
ward path are those for the output inverters of the gates.
The switching networks that implement logic functions
are constructed entirely of N-channel transistors with
their higher carrier mobilities. The self-resetting oper-
ation allows the gate to precharge immediately after the
completion of evaluation, minimizing the cycle time.

Input pulses to a multi-input self-resetting gate must
have sufficient overlap to allow the N-channel network
to fully discharge the precharged node (node g in Fig-
ure 4). Furthermore, input pulses must be short enough
to avoid fights during the self-resetting precharge. These
considerations place two-sided timing constraints on the
operation of self-resetting domino circuits. Typically,
blocks of self-resetting domino gates are arranged in
levels, similar to those shown in Figure 3. This makes
wave pipelining a natural technique for use in conjunc-
tion with self-timed domino designs [3]. As with other
wave-pipelined designs, accumulated timing uncertainty
limits the depth of logic in self-resetting domino de-
signs. In particular, the accumulated uncertainty must
be sufficiently less than the pulse width to ensure full
triggering of the self-resetting gates.

3 Surfing

Consider again the synchronous circuit depicted in
Figure 1. Due to timing uncertainties, the signals at
the inputs of latch 2 may settle at different times. For
proper operation, the latch must be triggered after the
last data input has settled. Viewed from a slightly dif-
ferent perspective, latches bound timing uncertainty by
slowing down events that propagate too fast. Recogniz-
ing this property of latches, Dooply and Yun [4] refer
to latches as “roadblocks” when deriving timing con-
straints for self-resetting domino circuits.

Instead of slowing down the fast signals, we propose
to speed up the slow ones. Thus, our pipelined circuits
have lower latency than their unclocked combinational
equivalents. This is the basis for our claim of negative
overhead for our self-timed pipelines. This section de-
scribes how selective acceleration of slow paths provides
a high-performance mechanism for bounding timing un-
certainty.

Figure 5 depicts a simple surfing pipeline. Each logic
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Figure 6. Timing for Surfing

block in the pipeline has a special input labeled fast.
Asserting fast decreases the delay of the block. Let
Ogowmin b€ the minimum delay of a logic block when
fast is not asserted, and let &ast max b€ the maximum de-
lay of a logic block when fast is asserted. The delay and
buffer chain in Figure 5 generates the fast signal for each
logic block. Let Ogmin and drmax denote the minimum
and maximum delay between fast signals for consecu-
tive stages of the pipeline. To ensure proper operation,
we require:

6fast,max < 6F,min < 6F,max < 65!0w,min (4)

When the constraints of Equation 4 are satisfied,
events in the chain of logic blocks are attracted to the
leading edge of the pulses of the fast signals. To see this,
consider what happens if the outputs of a logic block
change before fast is asserted for that block. In this case,
the propagation delay for the next block will be at least
Ogowmin Which is greater than dgmax. Therefore, the tim-
ing pulse will catch up (or partially catch up) with the
logic events. Conversely, if the output of a logic block
changes after fast is asserted, then the propagation delay
for the next block will be at most &t max Which is less
than dgmin. In this case, the data events propagate faster
than the timing pulse and eventually catch up.

As a metaphor, we view the propagation of data
events as a swimmer in the ocean, and propagation of
the timing events as a wave. Unassisted, the swimmer
cannot swim as fast as the wave. However, there is a
region on the leading edge of the wave where the swim-
mer is accelerated by the wave to travel at the same rate
as the wave. Accordingly, we refer to this mechanism as
“surfing.”

To examine surfing in more detail, we need to con-
sider the continuous variation of the propagation de-
lay of the logic block under the influence of the timing

pulse. We will say that an input event to a logic block
is an enabling event if it is the last input required to en-
able a transition on at least one output of the block. Let
Amin(t) be the minimum delay from an enabling input
event to the corresponding output event if the input event
occurs t time units after the arrival of the timing pulse.
Likewise, let Amax(t) be the maximum delay from an en-
abling input event to the corresponding output event if
the input event occurs t time units after the arrival of
the timing pulse. Figure 6 shows Amin(t) and Amax(t) for
a prototypical surfing logic block. We have also drawn
the timing pulse in this figure to illustrate the relation-
ship between the timing pulse and the varying delay of
the logic block.

Figure 6 illustrates the timing properties of a surfing
pipeline in greater detail. The bottom trace depicts the
timing pulse (i.e. the fast signal) at a particular stage
of the pipeline. The upper pair of solid curves show the
maximum and minimum delays of the logic block for in-
puts that change at the time indicated on the horizontal
axis — when the fast signal is high, delays are decreased
compared with the delays when fast is low. The hor-
izontal dashed lines show the quantities that appear in
Equation 4. The tick marks on the axes indicate that the
plot is drawn with much greater time resolution for the
vertical axis than the horizontal one.

Equation 4, used the quantities dgow,min, N0 Ofast max-
These are related to Amin(t) and Amax(t) by the relations:

Ogowmin = mtax Amin(t)

mtin)\max(t)

®)

6fast,max

Now, define t1, tp, t3, t4, and t5 as indicated below:

t1: The time at which Ayin(t) crosses above dgme in
response to the falling edge of the previous timing
pulse.



to: The time at which Amin(t) crosses below Ogmax in
response to the rising edge of the current timing
pulse.

t3: The time at which Ama(t) crosses below Ogmin in
response to the rising edge of the current timing
pulse.

t4: The time at which Ay (t) crosses above g pmin in
response to the falling edge of the current timing
pulse.

ts: The time at which Apin(t) crosses above O max in
response to the falling edge of the current timing
pulse.

In Figure 6, dashed vertical lines depict these times.
The key properties of surfing are:

o If the enabling input events for one stage arrive in
the interval [to,t3] at one stage, then all input events
will be in interval [to,t3] at all subsequent stages.

e If the enabling input events for one stage arrive
in the interval (t1,t4) at one stage, then the input
events at the next stage will be in a smaller interval
contained in (t1,t4). The sequence of such intervals
for successive stages converges to [t,t3].

In other words, the interval (t1,ts4) is the “capture inter-
val” for surfing. The interval [to,t3] is the steady state
event uncertainty; we call this the “surfing interval.” We
omit the proofs of these properties due to space limita-
tions, noting that they are straightforward. Events that
arrive in the interval [ts,ts] could surf with the current
timing pulse, or they could “fall-off” and slip to the next
pulse. Events in this interval are timing violations that
could give rise to metastable behaviors [2] and related
malfunctions. In practice, the steady state interval and
the violation interval are both much smaller than the cap-
ture interval — this gives rise to the robustness of surfing.

Note that surfing gates are faster when the timing
pulse is asserted. With this negative overhead, perfor-
mance is improved by implementing every gate on the
critical timing paths as a surfing gate. By using surfing
on every gate, timing uncertainty is minimized. Typi-
cally, such extreme pipelining is unacceptable for tradi-
tional, latched designs because of the latency overhead
of the latches. In contrast with latched designs, surfing
simultaneously lowers latency and bounds timing uncer-
tainty.

4 Surfing Circuits

To achieve surfing, we designed gates where assert-
ing the fast input causes the output of the gate to shift
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Figure 7. A Surfing AND Gate

slightly in the direction of making a transition. For self-
resetting domino logic, active transitions are always in
the low-to-high direction. Thus, we shift the low output
of a gate slightly upwards in response to assertion of the
fast input. We call this shift preswitching.

4.1 Preswitching for Self-Resetting Domino

As an example of our approach, Figure 7 shows a
self-resetting domino AND gate with a fast input im-
plemented as described above. When the fast input is
low, transistor p2 is conducting and functions as a keeper
for the internal node g. To minimize the capacitance on
node g, we implement p2 with a minimum width device.
Accordingly, if inputs a and b are both high while fast is
low, transistors nl and n2 can overpower p2 and trigger
an output pulse. In this situation, the hindering current
sourced by p2 slightly delays the transition, an effect that
increases the delay in the non-accelerated regime, there-
fore increasing the timing margins for surfing.

When fast is high, transistor p2 is turned off, and
transistor n3 is conducting. If node g is high, then n3
pulls up against the N-channel pull-down of inverter il.
This raises the voltage of node y slightly above ground
and decreases the delay for a subsequent rising transi-
tion of y if node g later goes low. Otherwise, if node
g is low, then inverter il is already pulling node y high.
If node y is in transition, then the extra current from n3
simply accelerates the transition. Thus, rising transitions
of y are faster when the fast signal is high than the rising
transitions of an otherwise equivalent, non-surfing gate.

In practice, we draw transistor n3 with the same
shape factor as the N-channel pull-down of inverter il.
This design exploits the fact that N-channel devices
make poor pull-ups. With equal sized devices, node y
moves about 20-25% of the way to Vdd when node fast
is high, and the delay of the gate decreases by about
30% compared with the delay when node fast is low.
Because the fight pits an N-channel pull-up against an
N-channel pull-down, our design also enjoys excellent
device matching. Traditional, “five-corner” Spice simu-
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Figure 8. A Dual-Rail Surfing XOR Gate

lations show robust operation over the full range of de-
vice parameters for the 0.35u process that we are using
(see Section 5.4).

The sizing of transistor n3 presents some interesting
trade-offs. Increasing the width of this transistor pulls
node y higher while waiting for node g to fall and fur-
ther decreases the gate delay. By making the dip in the
timing curve deeper, widening transistor n3 increases
the robustness of the design to timing variations. On
the other hand, pulling node y higher moves y closer to
the switching threshold of the next gate. Thus, widen-
ing transistor n3 decreases the voltage noise margin of
the design. This concern is exacerbated by our use of
dynamic logic. If the inputs to the next gate are pulled
higher than the threshold voltage for N-channel device,
then charge is drained from node g of that gate, even if
that gate should not be enabled to switch. If this leakage
persists long enough, node g will drop below the switch-
ing threshold of inverter i1, and the gate will produce a
spurious output pulse.

Our simulations indicate that we obtain a fast and ro-
bust design when the width of transistor n3 is equal to
that of the pull-down in inverter il. For typical pro-
cess parameters, node y is pulled slightly higher than the
threshold voltage for N-channel devices. However, the
leakage is quite small, and node g remains comfortably
above the switching threshold of inverter il for the du-
ration of the pulse on the fast input. We are currently
exploring other circuit variations to better understand
this trade-off between timing robustness and noise im-
munity.

4.2 Dual-Rail Gates

Because domino logic is non-inverting, we use a
dual-rail encoding: each signal, x, is produced in true
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Figure 9. Measured Delays at Typical Pro-
cess Point

and false versions with a pulse on the x.t wire indi-
cating a value of true and a pulse on the x.f wire in-
dicating a value of false. In the simple multiplier pre-
sented in Section 5, the critical path consists entirely of
XOR gates and multiplexors. Figure 8 shows our dual-
rail surfing domino XOR gate. The multiplexor has ex-
actly the same transistor topology with different signals
connected to the inputs. By using the same circuit for
both functions, we achieve close matching of the delays
through the two gates.

Figure 9 shows the delays that we observed in hspice
simulations for the XOR gate and for the multiplexor.
The rising edge of the timing pulse occurs after the dip
in gate delay because we measured delays based on in-
put arrival times. The delay from data inputs to the gate
output is greater than the delay from the fast signal to
the output. Thus, the fast signal modulates the delay of
inputs that arrived somewhat earlier.

For simplicity, we measured delays from the 50%
point of rising edges. We realize that delays depend on
the shape of the rising waveform as well as the time of
the 50% point, and these wave shapes are significantly
altered by preswitching. Also, we collected these data-
points using a small subset of circuits from the mul-
tiplier, rather than simulating the entire multiplier, to
reduce the time necessary to construct Figure 9 from
weeks to only hours. Thus, the curves in Figure 9 should
be viewed as approximate; yet, we still found such plots
to be very effective for debugging and optimizing our
design.

The upper curve shows the delay of the XOR gate as
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a function of the time of arrival of the last input for an
exhaustive enumeration of data values, and a wide range
of arrival times of the earlier input. The lower curve sim-
ilarly shows the delay of the multiplexor. The horizontal
line that cuts through the dip shows the measured delay
of the timing chain for a large number of runs. Observe
that the depth of the dip is nearly 30% of the delay with-
out preswitching, while the vertical spacing between the
minimum and maximum delay curves is much smaller.
Thus, the surfing effect strongly dominates the timing
variations of the gate and ensures proper operation of
the pipeline.

4.3 GasP Backwards Control

In order for surfing to occur, our timing signals must
propagate at about the same rate as or a little faster than
our fastest domino element. Self-resetting domino logic
is very fast. The forward latency is less than two inverter
delays, and when preswitching is being used the forward
latency is only slightly greater than one inverter delay.
We avoided using a simple inverter chain because pulses
can be lost. A very fast self-timed chain is required. The
self-timed style we have found to be best suited to our
purposes is GasP [11].

In the configuration given by Sutherland and Fair-
banks [11], GasP has four inverter delays in the forward
direction and two inverter delay for the backward la-
tency. In the self-timed designs for which they created
GasP, the extra forward latency matched the delay of
their data paths with latches, and the smaller backward
latency provided a small cycle time. Our designs have
no latching overhead, and applying preswitching to ev-
ery gate in the critical path improves both performance
and timing margins. GasP pipelines closely resemble
self-resetting domino designs, and we found the shorter,
backward latency of GasP ideal for propagating our tim-
ing pulses. Figure 10 shows our “GasP backwards” con-
trol. (Note that the NAND gates are self-resetting.)

5 A Surfing Multiplier

To evaluate surfing domino logic, we want a deep
pipeline with several different types of gates in order We
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Figure 11. Pseudolatch Self-Resetting
Domino Pseudolatch

have chosen to implement an integer multiplier for our
tests. Our design is implemented in a 0.35y, 3.3 volt
CMOS process. Although this is far from bleeding edge
technology, it is an economical process for prototyping.
Even in this process, our chips should be fast enough to
strain our test equipment.

5.1 High-Level Design Choices

We decided upon a radix-2, add-pass design. More
aggressive multiplier designs exist (e.g. [7]), but since
our goal was to create a nontrivial deep pipeline, rather
than advance the state of the art in multiplier design, we
chose to keep our design simple. Radix-2 gives us flexi-
bility in testing a variety of pipeline depths, and add-pass
ensures that our pipeline will be very deep.

All of the gates in our multiplier use self-resetting
domino logic. There are no latches anywhere in the mul-
tiplier array. The multiplier is composed of cells which
perform a single bit of multiplication and addition. Fig-
ure 12 shows one cell, where x and y are the numbers to
be multiplied, s and ¢ are sum and carry outputs of mul-
tiplier cells, i and j are the bits in x and y which are being
multiplied in a cell, and t indicates the pipeline stage.

5.2 Timing

We used the theory of Logical Effort [12] as a start-
ing point for optimizing our gates and matching the de-
lays of the data path to those of the GasP backwards
control. For conciseness in this section, we report de-
lays measured using typical process parameters. Sec-
tion 5.4 describes our validation of the design using five-
corner Spice simulations. Surfing is used to control tim-
ing along the critical path. Along noncritical paths, we
employ two additional mechanisms to control timing:
pseudolatches and generous pulse widths. Each of these
three mechanisms as applied in the multiplier are de-
scribed in greater detail below.

The critical timing path is through surfing domino
gates XOR1, XOR2, and MUX;. The gates use the cir-
cuit topology shown in Figure 8 with the timing shown
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Figure 12. Multiplier Cell

in Figure 9. From Figure 9 we observe that for the XOR
gate dgowmin = 245 ps, and Ofas,max = 173 ps, with the
MUX having a slightly lower delay. The forward de-
lay of the timing pulse is on average 206 ps.® Thus, the
inequalities of Equation 4 are satisfied.

The bits of the x and y arguments are passed along
with the results of the computation, using pseudolatches
Lo through L7. As shown in Figure 11, the pseudolatch is
a self-resetting domino AND gate with the timing pulse
as one of the inputs to keep signals aligned with the
wave when not part of the current computation. The
pseudolatch is not state holding; it only serves to pre-
vent the events off the critical path from outpacing the
events on the critical path. The pseudolatch design is
simpler and uses less power than deliberately construct-
ing a slow buffer and then accelerating it with surfing.
To ensure proper operation, we must show that pulses
from the critical path logic and pulses from the pseu-
dolatches have sufficient overlap to properly trigger the
gates for which they are inputs. In particular, we must
establish overlap of pulses at the i0 and s inputs of mul-
tiplexor MUX1. The timing of both pulses can be deter-
mined relative to the timing pulse for XOR gate XOR;
and pseudolatch L1. The two paths are:

80 ps
fast XOR; MUX;[s]
170 .
and (fast Tps> MUX1[i0]

The width of the XOR’s output is around 345 ps, and the
width of the pseudolatch’s output is 350 ps. This ensures

1The average GasP delay of 206 ps differs from the measurements
in Figure 9 because the simulation conditions were different.

an overlap of about 340 ps, which is more than sufficient
for the correct operation of MUX;. This approach of
widening input pulses for multiple input gates to ensure
adequate overlap is essentially the same as that taken by
Chappell et al. [3].

Paths through gate AND1 introduce their own timing
issues. The true side of gate AND1 is the surfing domino
AND gate shown in Figure 7. It has delays that are just
slightly less than those for XOR gates due to lower par-
asitic capacitances on internal node g. The false side of
gate AND is a self-resetting domino OR gate as shown
in Figure 13. This gate has a delay that is substantially
lower than the target interstage delay. When exactly one
of ¢xj or tyj is 0, the delay through the false side of
AND; is typically 161 ps; when both inputs are 0, the
delay drops to 112 ps. Rather than modifying the gate
topology, we observed that the fast false side does not
impair the function of our multiplier.

To verify the timing of paths through gate AND1, we
consider paths that start with the timing pulse for XOR>,
MUX3, Ls, and L7 of the previous stage, and propagate
through these gates and gates XOR1 and AND; of the
current stage to reach inputs s and i1 of MUX respec-
tively. The delay to the s input of the multiplexor is
given by:

80 ps 206 ps

1
t_lfast W tSi,j—1 W’ MUX]_[S]

or, roughly, 386 ps. The path through {~1MUXj is
equivalent. The delay to the il input of the multiplexor
through the false side of gate AND1 is given by:

170 ps [112 ps,161 ps)
A AND;

t—1fast t+1MUX1]i1]

t-1L3

The total delay on this path is between 282 ps and 331
ps, Thus, the pulse for the il input of MUXy can ar-
rive as much as 104 ps before the pulse for the s in-
put. Pulses output from gate AND; have a width of at
least 359 ps. This provides a minimum overlap of rougly
255 ps, which is still sufficient to ensure correct opera-
tion of the multiplexor.

The analyses for the other paths are similar to those
described above.

5.3 Layout

We performed our tests on a 4x 12 version of the mul-
tiplier design. We chose 4x 12 because it offers a deep
pipeline (36 stages of computation) while keeping sim-
ulation time and memory usage reasonable. We used the
layout editor Magic [8] to create a physical layout of our
design. The layout is 0.7 mm x 1.8 mm. We empha-
sized ease of design; thus, in many regions the layout is
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not very dense, and it is certainly not optimized to mini-
mize wiring capacitances.

We extracted capacitances for our Spice simulations
from the layout. We were unable to extract wire resis-
tances; thus, they were omitted from the model. We
built the multiplier with four separate power supplies:
for logic, preswitching, GasP, and timing signal distri-
bution. The separate supplies allow us to measure the
power consumption due to each class of elements. To
simulate power supply noise we placed inductors in se-
ries with each of the four supplies.

5.4 Results

Our tests were performed in Spice using parameters
from a 0.35y, 3.3 V process. All timing measurements
are taken at the fifty percent point. Under typical pro-
cess parameters, the average measured FO4 delay [5] is
185 ps.

We tested both the speed and robustness of the de-
sign. We observed correct multiplier operation at all five
process corners. Under typical process parameters the
average interstage GasP delay is 206 ps. That gives an
end-to-end latency of 7.4 ns. We can issue at 1.11 GHz,
for eight waves in flight. At the fast/fast corner, our av-
erage interstage delay is 154 ps, and we can issue at
1.3 GHz. At the slow/slow corner, our average inter-
stage delay is 269 ps, and we can issue at 850 MHz.

Table 1 lists power supply parameters. We used an
inductance of 3 nH per supply pin. Since the logic uses
by far the most power, we allocated three pins for that
supply. These results were observed under typical pro-
cess parameters, while driving the pipeline at 1.11 GHz.
Current measurements include the input drivers (stan-
dard clocked domino buffers), but the outputs were not
driving any load. Observed currents are maximums, and
observed noise amplitudes are from lowest peak to high-
est peak. Note that the power consumed by preswitching
is an order of magnitude lower than that consumed by
the multiplier logic.

Our design exhibited some sensitivity to power sup-
ply noise. Initially we tested using 3 nH inductors on
all four supplies. The multiplier consistently failed at

Supply Induct. | Current | Noise Ampl.
Logic 1nH | 286 mA 76 mV
Preswitching | 3 nH 33 mA 111 mV
GasP 3nH 52 mA 68 mV
Timing Dist. | 3nH | 104 mA 195 mV

Table 1. Typical Power Supply Characteris-
tics

the fast/fast corner. We observed a prolonged period of
operation when the logic supply was 0.2 V lower than
the GasP supply. As a consequence the multiplier logic
ran slower relative to GasP, narrowing the gap between
Ormin and &rasmax (S€€ Section 3), reducing our toler-
ance for late signals. While we believe that the separate
power supplies almost certainly exacerbated the noise
problem, and a design with a single global power supply
would be more robust, we have simulated with separate
supplies to stress the design with respect to power supply
noise. We are continuing our Spice simulation studies to
determine the version that we will fabricate.

6 The Future of Surfing

We have designed a surfing multiplier in a 0.35p pro-
cess to the point of a layout. Spice simulations of the
extracted layout show that the multiplier achieves very
low gate delays and is robust with respect to variation
of fabrication parameters and power supply noise. The
obvious next step is to add the necessary test structures
to this layout, fabricate the design, and test it. We will
be doing these in the near future.

As mentioned in section 4.1, our approach to surf-
ing introduces a trade-off between timing margins and
noise immunity. Clearly much more extensive analysis
and testing must be done to examine the noise sensitivity
of surfing domino logic. Furthermore, we are exploring
variations of the basic surfing gate design presented in
section 4.1 to determine if designs that are even faster
and/or more robust are feasible.

When we first considered surfing designs, we were
concerned about the added power consumption due to
preswitching. In some of our early designs that we have
since rejected, preswitching increased power consump-
tion by factors of four or greater. Our current design is
much cooler. As shown in Table 1, preswitching current
accounts for only 7% of the total power budget of our
multiplier. All timing circuits (GasP + timing pulse dis-
tribution 4+ preswitching) account for 40% of the total
budget. While this number is comparable to many high-
performance synchronous designs, it is an obvious area
to look for improvements.



The design of the multiplier was simplified because
its critical paths consist of chains of identical, or nearly
identical, gates. We expect that surfing can be employed
profitably in other structures as well. For such designs
to be practical, we need to find practical design method-
ologies that will ensure sufficient matching of forward
delay of the control chain to the propagation delay of the
data path. Logical effort [12] is an obvious place to start.
Determining a consistent effort model for preswitched
gates and developing the rest of a design methodology
are key areas for future work.

The analysis in Section 3 indicates that computa-
tions can surf through an arbitrarily deep logic circuit
without accumulating timing uncertainty. Although the
multiplier is a straight-line pipeline, we believe that
our techniques can readily be extended to latch-free,
surfing ring structures as well. For such a structure,
computations could progress through an arbitrary num-
ber of stages without being slowed by latches. More
general structures, such as the multi-rings of Sparsg
and Staunstrup [9], pose additional challenges. Tokens
at join nodes can stall, waiting for tokens from other
branches. We have not determined an attractive way to
handle such stalls in the context of surfing.

Testing is another major issue that we have yet to ad-
dress. For example, scan testing relies on stopping the
device under test while loading or unloading the scan
registers. While stopping can be relatively straightfor-
ward with latch based designs, surfing seems much less
amenable to stopping: once a wave is launched, it tra-
verses the entire pipeline. We confess that we haven’t a
clue as to how one might perform production test of surf-
ing designs. On the other hand as we gain a better un-
derstanding of the design trade-offs and opportunities of
surfing, we hope that we will discover novel approaches
to address testing issues.

7 Conclusions

We have presented surfing pipelines and described
their implementation using a simple variant of self-
resetting domino. These pipelines achieve negative
overhead: the latency of the pipeline is less than delay of
an purely combinational logic implementation. Further-
more, the event attractors created by surfing support ar-
bitrarily high degrees of wave-pipelining without latches
or other road-blocks.

In our surfing pipeline, the delays of logic elements
are modulated by timing pulses that propagate along
with events in the pipeline’s data path. We use self-
timed, GasP pipelines to propagate these pulses. The
use of a self-timed design was motivated by the high-
speed of GasP that is well matched to the propagation
delays of surfing logic elements. By using self-timed

handshaking, GasP ensures that pulses are not lost in the
timing chain due to timing imbalances, while avoiding
the need for elaborate pulse-shaping circuitry.

To demonstrate this approach, we have designed a
small multiplier.Spice simulations from the extracted
layout indicate that the pipeline can operate with an is-
sue rate of 1.11 GHz with typical process parameters and
1.3 GHz at the fast corner. The latency of the critical
path is reduced by 4% compared with the correspond-
ing, purely combinational design. This shows that surf-
ing does indeed achieve negative overhead as promised.

We have examined robustness issues and the design
appears to be tolerant of process parameter variation and
power supply noise. Our next step is to fabricate the
multiplier to experimentally verify the simulation results
and perform further tests. We also intend to apply surf-
ing techniques to other pipeline structures.
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