
Self-Healing Asynchronous Arrays

Song Peng and Rajit Manohar∗

Computer Systems Laboratory
Cornell University

Ithaca, NY 14853, USA

Abstract

This paper presents a systematic method for designing
of a self-healing asynchronous array in the presence of er-
rors. By adding spare resources in one of three different
ways and forcing the asynchronous circuit to stall in case
of failure, the specific self-reconfiguration logic is activated
by a deadlock detector and the array circuit can be recon-
figured around the faulty components and recover from er-
rors automatically. Experimental evaluations show that this
method requires less hardware cost, smaller critical circuit
size, lower performance overhead and is more scalable than
traditional NMR-based techniques.

1 Introduction

The continuous advance of microelectronics has led to
a substantial reduction in both transistor dimensions and
power supply voltages, helping VLSI circuits operate faster
and consume less active power. However, technology scal-
ing causes circuits to be more sensitive to defects in fabri-
cation [3] and threatens the nearly unlimited lifetime relia-
bility standards that we have come to expect [18]. The re-
duced amount of charge stored on circuit nodes also makes
circuits more susceptible to transient faults [3]. Thus, fault
tolerant design, which improves both fabrication yield and
chip reliability, is once again becoming an important issue.

While there is a wealth of literature that examines fault
tolerance in clocked logic [8], less attention has been paid to
asynchronous circuits. The absence of clock signals means
that a faulty clockless circuit might exhibit problems that
would not normally arise in a clocked system [9], making
existing fault tolerance techniques for synchronous systems
ineffective or inefficient. For instance, the most widely used
approach to achieving fault tolerance in clocked VLSI sys-
tems is the hardwired duplication-and-comparison method
such as N-modular Redundancy (NMR) [8]. However, it is
non-trivial to apply such duplication-and-comparison tech-
niques to asynchronous logic without significant gate tim-

∗E-mail: {speng,rajit }@csl.cornell.edu

ing assumptions [19]. Unlike clocked systems where the
outputs from all replicas can be sampled at the same time
and thus easily compared against each other, the local hand-
shake in asynchronous circuits makes it unclear when the
non-directly related outputs are expected to match. In ad-
dition, faults in asynchronous logic may prevent the result
from appearing on the output, permanently blocking the
comparison procedure.

Besides hardwired duplication-and-comparison, another
possible fault tolerance approach, which can be conve-
niently formulated as a graph problem [5], is to utilize
self-checking and reconfiguration to maintain functional-
ity in the presence of failures. Although this approach in-
curs fault detection and reconfiguration overheads as well
as fault recovery time, smaller hardware redundancy and
less power consumption make it an attractive defect/fault
tolerance method [3]. Moreover, the absence of a compar-
ison procedure makes this approach better suited for asyn-
chronous circuits.

To reduce design complexity, a systematic way to build
a reconfigurable fault tolerant asynchronous system is to
make each of its components fault tolerant. In a digital
VLSI system, many computation modules such as adders,
array multipliers, FIR filters, etc, can be modeled as a lin-
ear array or a collection of linear arrays with external inputs
and outputs, given that communication propagates linearly
through them. Thus, the construction of a self-healing asyn-
chronous array provides the basis for reconfigurable fault
tolerant asynchronous VLSI design at fine-grained level.

The class of asynchronous circuits considered in this pa-
per, are quasi-delay-insensitive (QDI). QDI circuits are de-
signed to operate correctly under the assumption that gates
and wires have arbitrary finite delay, except for a small num-
ber of special wires known as isochronic forks [12]. A QDI
system can be taken as a collection of concurrent hardware
modules (calledprocesses) that communicate atomic data
items (calledtokens) with each other through one-to-one
message-passing channels. The message-passing channels
usually consist of data and acknowledge rails. The notion
of causality and event-ordering is implemented in terms of
handshake protocols on those channels [12].

The following contributions are made in this paper. First,

1

we propose a general framework of reconfigurable fault tol-
erant design for asynchronous circuits, as well as the 2- and
3-Dimensional implementation methods (Section 2). Sec-
ond, we develop three fault tolerant array models for this
framework (Section 3) and present the construction of cor-
responding self-reconfiguration logic (Section 4). Third,
we evaluate all the self-healing designs of different array
models, and show that they result in smaller hardware cost,
higher performance and lower energy overheads than tra-
ditional NMR method, as well as better scalability (Sec-
tion 5). Fourth, we analyze the relationship between recon-
figuration complexity and spare resource cost, compare the
self-healing designs of different array models, and assess
the advantages of each scheme (Section 5).

2 General Framework of Self-Healing Asyn-
chronous Circuit Design

In this section, we propose a general framework of self-
healing asynchronous circuits with respect to an arbitrary
number of hard and soft errors, which is shown as Figure 1.

w/ Fault Tolerant

Reconfiguration

Detection

Target Circuit

 Logic
Deadlock

Graph Topology

Figure 1. Block diagram of a reconfigurable
self-healing asynchronous circuit.

The target asynchronous circuit is built on aK-fault tol-
erant graph model with spare resources. Pass gates, whose
control inputs come from the reconfiguration logic, are
added to the wires of graph edges to make the target circuit
reconfigurable. Self-checking logic is added to the target
circuit to achieve deadlock in the presence of failure (fail-
stop). When the target circuit deadlocks, the deadlock de-
tection logic recognizes this and activates the online recon-
figuration logic, which reconfigures the target circuit around
the faulty components. The computation restarts from the
beginning or the last architectural checkpoint after the cir-
cuit has been reconfigured.

Since no extra circuitry other than self-checking logic
and pass-gates is on the critical path, small performance
overhead is expected in this reconfigurable fault tolerant de-

sign. Moreover, there is no switching activity in the recon-
figuration logic when the target asynchronous circuit op-
erates correctly, therefore low energy overhead is also an-
ticipated. Unlike hardwired NMR method where the la-
tency severely increases with largeK due to the dramati-
cally higher complexity of the voter, performance overhead
of this fault tolerant design does not increase significantly
with K because the number of gates being used for each
configuration remains the same. Thus, this reconfigurable
fault tolerant design is expected to scale well in terms of
performance and energy overhead with respect toK.

In this framework, the reconfiguration logic and dead-
lock detection circuits must be fault-free to achieve fault
tolerance. Thus, those circuits are critical (error-sensitive)
and must be made highly reliable. With traditional 2D (2-
Dimensional) integration technology, those circuits could
be implemented using conservative layout design rules and
large transistor sizing (even with thicker oxide). With re-
cent 3D integration technology [2] where planar device lay-
ers are stacked in a three-dimensional structure and adja-
cent device planes can be connected by short and verti-
cal wires, all the error-sensitive transistors can be placed
onto a separate device layer which is fabricated with a ro-
bust/conservative (micron or submicron) technology, while
the target circuits are placed onto another device layer with
an aggressive (deep-submicron or nanometer) technology.

We choose a half-buffer based circuit template (called
precharge half buffers (PCHB)) [10] as the target QDI cir-
cuit. A PCHB circuit can have multiple inputs and outputs,
and it can be used to construct almost any pipelined QDI
logic. For instance, the asynchronous MiniMIPS micropro-
cessor [13] uses PCHBs for more than 90% of its circuits.
Thus, implementing self-healing behavior in PCHB circuits
takes an important step toward fault tolerance in general
asynchronous logic. Similar to a precharge domino circuit
in synchronous design, a PCHB circuit performs computa-
tions using pull-down (NMOS) networks, making it fast. In
this circuit, each variable is usually dual-rail encoded with
an explicit acknowledge. Validity and neutrality of the in-
puts and the output(s) are checked and synchronized (by
C-elements), which generates the common acknowledge to
all inputs and precharge/enable signal for data computation.

By adding separate data validity rail to each variable,
replicating all explicit acknowledges and crosschecking be-
tween duplicated internal control signals, we developed a
PCHB-based circuit template (calledFS-PCHB) [15] which
achieves fail-stop with respect to both hard and soft errors.
Figure 2 shows the block diagram of a FS-PCHB circuit.

In Figure 2, the data computation is dual-rail encoded
and implemented in terms of functionsff andf t. Output
data validityRv depends on input validity rails (Lv

i) and
becomes valid only if all those rails are true. For each in-
put/output variableX, the explicit validity railXv cross-
checks the data railsXt andXf . There is a counterpart
for any internal signal of FS-PCHB, and the circuit state

2

 Rk2

Rk1

(Le)2

Lt
n

Lf
n

Lt
0

Lf
0

Lf
1

Lt
1 ...

Rf

Rt

Lv
1

Lv
n

Rv

C

C

I

I

pR

(La)2

(La)1

Rk
Rf

Rt

(Ra)2

(Ra)1

(Le)1

Lv
0

...

en1

en2

Rf

Rt

I ≡

C

C

f t

Rt

Rt

Lt
i

Rf

Rf

Lf
i

en1

en2

en1

en2

ff

Rv

en1

en2

en2

en1

Lv
i

V

Figure 2. Fail-Stop Precharge Half Buffer (FS-
PCHB).

will not change unless both signals match. Any illegally en-
coded (′11′) dual-rail output will resetRk1 andRk2, block-
ing output acknowledges permanently. It can be proved that
any failure by single stuck-at fault or single event upset in
a FS-PCHB circuit causes the circuit to deadlock. Further
details of the construction can be found in [15].

3 Fault Tolerant Array Models

In the self-healing design of Figure 1, the target fail-stop
QDI circuit is built on aK-fault tolerant (K-FT) array so
that faulty components can be replaced by workable spare
resources. This section develops three fault tolerant array
models, each with different spare resource cost, maximum
degrees (node fanouts) and reconfiguration overhead.

3.1 Preliminaries

Suppose a graphG represents the topology of a multi-
processor system, an interconnection network, or a VLSI
circuit. We say another graphG′ is aK-FT graph of thetar-
get graphG if G is isomorphic to a subgraph of the graph
derived by deleting anyK nodes and all their incident edges
from G′. Since every edge fault is a part of some node fault,

G′ can tolerate both node faults and edge faults. In this
paper, we meannode fault tolerantwherever we sayfault
tolerant. To achieve reconfiguration, supporting logic is re-
quired forG′ and its complexity strongly depends on node
output degree and the total number of edges inG′. Thus,
thehardware overheadof G′ should include both spare re-
sources and reconfiguration logic.

Generally speaking, a VLSI module with inputs/outputs
can be modeled as a set of internal componentsV which
are connected to each other, as well as connections to a set
of external componentsVe. The directed graph of interest
when analyzing such module containsinternal edges from
V × V , andexternaledges from(V × Ve) ∪ (Ve × V). We
say that a graphGo = (V ∪Ve, E) (E is the set of edges) is
closedif E ⊆ V ×V . Otherwise, the graph isopen. As to a
nodeu (u ∈ V (Go)), the number of its incoming/outgoing
internal edges isinternal in/out degree, and the number of
incoming/outgoing external edges isexternal in/out degree.
Any external edge in a target graphG must be replicated to
at leastK other distinct nodes in aK-FT graphG′.

What makes the construction of a fault-tolerant model
for an open graph challenging is the fact that external in-
puts/outputs to the graph are not interchangeable, making
nodes in a open graph ’heterogeneous’. Although much
work has been devoted to constructing fault tolerant graph
models for closed linear arrays [1, 4, 5, 20, 21], a direct
application of these results requires ensuring that every ex-
ternal vertex ofVe has an edge to every internal node, which
results in a large number of external edges and prohibitive
reconfiguration cost.

In the following subsections, we provide efficient solu-
tions to this problem that minimizes the amount of replica-
tion required for external edges. We focus on open linear
arrays, which haveN internal nodes connected in a linear
fashion, together withN external nodes where each is con-
nected to one internal node. With minimum external edge
replication, a reconfigurable fault tolerant open linear array
with full duplications, a minimum number of spare nodes
or a small internal out degree, is constructed respectively.

The target open linear arrayPN (N ≥ 2) is defined as
follows. Let u1, u2, . . ., uN be the internal nodes in the
linear array, and lete1, e2, . . ., eN be the external nodes.
Nodeu1 is head nodeanduN is tail node. The edges are of
the form(ui, ui+1) and(ei, ui) for 1 ≤ i ≤ N . Let PN,K

be aK-FT linear array ofPN .

It should be noted that the constructionPN,K in this pa-
per can be used for general open linear arrays, where each
node inPN,K represents a subgraph (a VLSI sub-module),
and the external edges can correspond to possibly replicated
external inputs and/or outputs. For the following subsec-
tions, we use the termlinear array to mean anopen linear
array, and the termout/in degreeto meaninternal out/in
degree(the external out/in degree is alwaysK + 1).

3

3.2 K-FT linear arrays with full duplications

A straightforward way to construct a reconfigurableK-
FT linear array is to useK + 1 (instead of2K + 1 in hard-
wired NMR) full duplications. We call itfull-duplication
model. Although a large amount of spare resources are in-
troduced, this model incurs both the minimum internal out
degree (the degree of 1 for each node) and simple array-
switching based reconfiguration logic.

3.3 K-FT linear array with minimum spares

For a given linear arrayPN to be K-FT, there must
be at leastK spare nodes. We name these nodesuN+1,
. . ., uN+K . We construct aK-FT open linear arrayPN,K

with minimum spares as follows. (i)K spare nodesuN+1,
. . ., uN+K are introduced; (ii) External edges are added.
For 1 ≤ i ≤ N , we introduce replicas(ei, ui+1), . . .,
(ei, ui+K) of edge(ei, ui); (iii) Internal edges are added.
For each nodeui (i < N), K replicas(ui, ui+2), . . .,
(ui, ui+K+1) of edge(ui, ui+1) are introduced. Finally for
each nodeui (N ≤ i < N + K), N + k − i edges fromui

to ui+1, . . ., uN+K are introduced.
The proof thatPN,K is aK-FT N -node linear array, can

be found in [16]. There are(N−1)(K+1)+K(K+1)/2 in-
ternal edges inPN,K , andN−1 nodes have internal out(in)-
degree ofK + 1. Since aK-FT linear array with minimum
spares must have at least(N − 1)(K + 1) + Ω(K) internal
edges [16],PN,K is a near optimalK-FT linear array with
minimum spares and external edges whenK � N (which
is generally true in practice). We call thisPN,K min-spare
model. A construction example can be found in [17].

3.4 K-FT linear array with small out degree

In this subsection, we develop a fault tolerant graph
model with constant small node out degree and reasonable
spare resource cost, through recursive construction.

(2M , PN) Graph. A (2M , PN) graph(M ≥ 0) is trans-
formed from2M full replications ofN -node linear arrays
through coalescing nodes and adding extra edges. The goal
is to develop a graph that tolerates(2M − 1) faults without
2M full replications. Specifically, it is constructed recur-
sively in the following way.

M = 0. (20, PN) graph is simply a replica ofPN .

M = 1. If N = 1, (21, P1) graph is composed of two
identical linear arrays ofP1. Otherwise, node coalescing is
applied to those two identical linear arrays: nodesui of the
first PN andudN/2e+i of the secondPN (1 ≤ i ≤ bN/2c)
are merged respectively. An extra edge fromudN/2e of the
secondPN to udN/2e+1 of the firstPN is added. Figure 3
shows the construction of(21, PN) graph(N ≥ 2). The

bN/2c pairs of nodes with the same labels and the corre-
sponding edges between them are coalesced. The bold edge
represents the extra edge added in the node coalescing. Af-
ter node coalescing, a(21, PN) graph hasN + dN/2e dif-
ferent nodes andN + bN/2c distinct edges in total.

 · · · · · ·

eN us
eN

u1
e1e1

· · ·

es+1es+1
u1

us
eses

· · ·

(a) EvenN

· · ·
eN us

eN

· · ·

u1
e1e1

es+2

· · ·

es+1es+1

es+2 u1

us
eses

· · ·

(b) OddN

Figure 3. Construction of (2, PN) graph (N ≥
2, s = bN/2c).

M > 1. If N < 4, (2M , PN) graph (M > 1) is
simply 2M−1 replicas of(21, PN) graph. Otherwise, the
(2M , PN) graph is constructed from(2M−1, PbN/2c) and
(2M−1, PdN/2e) graphs, as shown in Figure 4.

(2M−1, PdN/2e)

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

VtV2V1

u11
e1 e1 e1u21 ut1

eNeNeN utsu2su1s

utsu2su1s

u11

es+1

es+2

es es es

es+1es+1es+1

eN

es+2

es+3 es+3 es+3

es+2es+2

ut2u22u12

u21 ut1

· · ·

... · · ·
... · · ·

... · · ·
... · · ·

(2M−1, PbN/2c)

· · ·· · ·

· · · · · ·

· · ·· · ·· · ·...
...

...

· · ·

...

· · ·

· · ·

· · ·

...

Vt+2 V2MVt+1e1 · · ·

Figure 4. Construction of (2M , PN) graph (Odd
N , N > 4, s = bN/2c, t = 2M−1).

In Figure 4,2M−1 replicas ofdN/2e-node andbN/2c-
node linear arrays are added, shown as left-top and right-

4

bottom respectively. The right-top is(2M−1, PdN/2e) graph
and the left-bottom is(2M−1, PbN/2c) graph. bN/2c ×
2M−1 pairs of nodes with the same label are coalesced re-
spectively, so are the corresponding edges. In addition,
2M−1 extra edges (bold) are added. The(2M , PN) graph
with evenN is almost the same as Figure 4 except that
(2M−1, PdN/2e) subgraph is replaced by (2M−1, PbN/2c)
and those2M−1 grey-colored nodes are removed.

Claim 1 A (2M , PN) graph is(2M − 1)-fault tolerant.

Proof: The proof can be found in [16].

According to Figures 3 and 4, at most1 (or 2) extra
edges is added to each node during the recursive construc-
tion of (2M , PN) graph. Consequently, the maximum inter-
nal in/out degree of(2M , PN) graph is2 (or 3).

Since there is at least one path staring with nodeVi (i =
1, 2, · · · , 2M) in Figure 4, a(2M , PN) graph has at least
2M paths with2M distinct head nodes in total [16]. The
overall number of pathsP (M,N) in a (2M , PN) graph can
be calculated recursively as follows. LetYi (1 ≤ i ≤ 2M)
be the number of paths withVi as the head node, we have

P (M,N) =
2M∑
i=1

Yi (1)

where,

Yi =
M∑

j=R

Z(i, 2j) + 1

R = max(1,M + 1− blog2 Nc)

Z(i, 2j) =
{

0 if 0 < (i mod 2j) ≤ 2j−1

Yi−2j−1 otherwise

Construction. We show how to construct aK-FT linear
array based on(2M , PN) graphs. Say a(2i, PN)

⋃
(2j , PN)

graph is composed of a(2i, PN) graph and a(2j , PN) graph
disjointly, without any node coalescing between them. It
should be clear that a(2i, PN)

⋃
(2j , PN) graph is(2i +

2j − 1)-fault tolerant. LetK + 1 =
∑n

i=0 bi × 2i, where
n = blog2(K + 1)c andbi is either0 or 1. Let S{bi=1} =
{i|bi = 1}. Therefore, the

⋃
i∈S{bi=1}

(2i, PN) graphG′ is
K-fault tolerant. We name thisK-FT linear arraysmall-
degree model. The total number of spare nodes in this
model isO(N × K/2) (which is about half of that in full-
duplication model), and the maximum internal in/out de-
gree remains2 or 3 [16]. The small internal degree reduces
node output-degree and potentially simplifies reconfigura-
tion logic. As an example, Figure 5 shows the construction
of a 3-FT 4-node array using small-degree model.

SinceK = 3 andK + 1 = 22, the 3-FT 4-node array is
essentially a (22, 4) graph which is recursively constructed
from (21, 2) graphs. In Figure 5, the nodes with the same

c0

10

7

9

1

2

3

4 6

5

8

e1

e2

e3

e4

5

6

7

3

8

9

1

2

c10

c8 c6

c7c3

c9

c2

1

2

3

4

c4

c11

8

5

6

c0

c5

c1

10
c1

c2

c10

c8

c3

c4 c5c6

c7

c9c11

Figure 5. 3-FT array of (22, 4) graph.

label are coalesced, and the dashed lines denote the corre-
sponding merged edges. After node coalescing, there are
10 distinct internal nodes and 14 internal edges in total, as
well as 4 external nodes (e1, · · · , e4). Each external connec-
tion is replicated into four connections to the four different
nodes in the same row. For instance, external nodee1 con-
nects the internal nodes of 1, 5, 8 and 10.

4 Deadlock Detection and Reconfiguration

When the fail-stop QDI circuit stalls permanently in the
presence of failure, the deadlock is recognized by deadlock
monitor through watching handshake activity. At any time,
if a transition occurs on the data channel, a timer is started.
The deadlock detector waits for the next valid protocol state
to occur. If it does not occur for a large amount of time (in
terms of microseconds or milliseconds), it assumes that the
circuit has deadlocked. The timer of deadlock detector is
implemented as delay line [11], which is a current-starved
inverter chain with an immediate reset (triggered by the fol-
lowing valid transition). By reducing charge/discharge cur-
rent to enough small amount, the propagation delay of a 6
or 8 cascaded inverter chain, can be increased to the order of
milliseconds. Note that the circuit can wait for its environ-
ment infinitely in the completion state of a handshake cycle.
Thus, the delay line should remain reset for this state (i.e.,
the timer is disabled). Compared with target asynchronous
circuit and reconfiguration logic, the hardware cost of dead-
lock detector is usually negligible.

Online reconfiguration logic, which is a key module of
self-healing circuits, is used to change target circuit topol-
ogy by replacing faulty components with spare workable
components when any failure occurs. Generally speaking,
there are two methods to achieve the online reconfiguration.
(i) One is to locate faults and use a workable configuration
directly. Although such a system is fast in terms of fault re-
covery time, fault location logic can largely increase hard-
ware overhead, which not only increases design complexity
but also hurts the overall reliability by exposing more tran-
sistors to unreliable environment. (ii) The other approach
we use in this paper, is to let the reconfiguration logic try
all possible configurations until it finds a workable one. Al-

5

though this will prolong fault recovery time, we save the
fault location logic, reducing hardware overhead. Also, a
longer fault recovery time has little impact on system per-
formance, as faults are not expected to occur frequently.

The core of the online reconfiguration logic is a cyclic
state machine which searches all target graphsPN embed-
ded in the fault tolerant graphPN,K for a working one. All
pass-gate control signals are derived from the output of that
state machine. Specifically, the system is reconfigured in
the following way. Whenever the target circuit deadlocks,
the deadlock detector activates the state machine and the
latter advances to the next state. All control signals to pass-
gates are then updated according to this new state, setting
up new connections which corresponds to anotherPN em-
bedded inPN,K . A local reset signal, which is used to re-
initialize the target circuit during reconfiguration, is gen-
erated by the deadlock detector. After the reconfiguration
is completed, the deadlock detector will be reset, making
the new circuit ready for the restarted computation. The
above procedure repeats if the new configuration is still not
fault-free (system deadlocks again in this case), and another
different configuration will be chosen. During each recon-
figuration, the propagation delay of local reset and pass-gate
control signals is assumed to be bounded. In order to pre-
vent any hardware resource permanently disabled by soft er-
ror, no malfunctional configuration is excluded by the state
machine during the search. Therefore, an unworkable con-
figuration due to soft error will become reusable in the fu-
ture as long as the transient fault source disappears at that
time.

Since the primary input to reconfiguration logic is the
time-out signal from deadlock detector and its primary out-
puts are control signals to the pass gates in the target cir-
cuit, no handshake occurs between reconfiguration logic
and its environment. Thus, it is efficient to implement the
reconfiguration circuitry in synchronous logic, resulting in
less hardware cost than the asynchronous implementation
with fake handshake signals. Note that no global clock dis-
tribution is required for this synchronous implementation
because the reconfiguration logic is triggered sporadically
by the local time-out signal. Due to the very long inter-
val of deadlock detections, conservative timing can be ap-
plied to reconfiguration logic to guarantee its functionality.
Pass gates in the target circuit can be implemented with
single-device (instead of complimentary fashion) without
any threshold loss, as long as higher power supply voltage
is used for reconfiguration logic. All these help reduce the
hardware overhead of our self-healing design.

Since the amount of replication for external edges of all
three graph models are minimized, the wires of all external
edges must be augmented with pass-gates to achieve recon-
figuration with respect toK faults. However, the amount of
internal edges which have to be augmented with pass-gates
for reconfiguration, is different for various graph models.
In the next subsections, we present how to implement the

reconfiguration logic with minimized pass-gate augmenta-
tion, for the threeK-FT linear array models of Section 3.

4.1 Full-Duplication and Min-Spare Models

Full-duplication model is composed ofK + 1 replicas
of target arrayPN , and no internal edge has to be made
reconfigurable with pass-gate. Reconfiguration is realized
by simply switching to a different replica ofPN by setting
its external connections. Specifically, reconfiguration logic
can be implemented as aK+1-bit one-hot counter (a cyclic
shift register with unique bit-’1’). At any time, the unique
bit-’1’ sets up the connections between external nodes and
the corresponding replica while the bit-’0’s disable the ex-
ternal connections of all otherK replicas.

With the min-spare model, all the remaining nodes after
K nodes removed fromPN,K have to be used. Therefore,
all internal edges have to be augmented with pass-gates to
achieve reconfigurability, and the total number of configu-
ration outputs is the sum of all internal and external edges in
PN,K . There are

(
N+K

K

)
configurations forPN,K of min-

spare model, corresponding to all possible fault locations.
The state machine of reconfiguration logic can be imple-
mented as adlog2

(
N+K

K

)
e-bit counter (whenK � N ,

M ' K log2 N). Each output of the counter represents a
unique choice ofK nodes. Thus, the Boolean equation for
each configuration output can be derived directly from the
remaining graph after removing thoseK faulty nodes, and
static complementary combinational logic is used to imple-
ment those Boolean equations (with counter output bits as
variables). With Karnaugh map generation for each con-
figuration output, greedy grouping of min/max-terms and
search for common subexpressions, the boolean equations
with both minimized and simplified logic can be generated
automatically. Further, gate decomposition can be achieved
through expression tree disintegration so that the resulting
boolean logic can be easily implemented in CMOS.

4.2 Small-Degree Model

We define abasic blockto be a largest sequence of con-
secutive nodes where all the nodes are on a directed path
with no possibility of branching except at the beginning and
the end. For instance, nodes ofu1, u2, · · · , us in Figure 3(a)
form one basic block. The construction of small-degree
model determines that all nodes of a basic block must be
used if any one is used in a configuration. Thus, only in-
ternal edges between different basic blocks need to be aug-
mented with pass-gates for reconfiguration. Those reconfig-
urable internal edges are exactly the ones which are from/to
a node with out/in degree of2 or 3 [16]. Since less inter-
nal edges have to be made configurable, the reconfiguration
logic for small-degree model can be simpler.

All paths in PN,K of small-degree model haveK + 1
distinct head nodes in total, and there can be multiple paths

6

with the same head node. Since there is no back edge in
PN,K , all the paths with the same head nodeu forms a tree
structure with nodeu as the root, and the nodes with out-
degree of2 or3 provide branches in this tree. Consequently,
to search all configurations (embedded target paths) with a
given head nodeu is equivalent to a tree walk with rootu.
In order to find a workable configuration, the state machine
of reconfiguration logic implements the traversal of allK +
1 trees with different roots. Figure 6 shows the top-level
diagram of reconfiguration logic for small-degree model.

(tree−walk logic)

1 00

... ...

(shift register)

TK+1TKT1

Figure 6. Reconfiguration logic diagram for
small-degree model.

In Figure 6, there is a (K +1)-bit one-hot counter, which
is triggered by the time-out signal from local deadlock de-
tector. This counter is used to initiate a tree walk logic (to
look for a workable configurationPN with a given head
node) at one time. After one tree walk is completed (i.e.,
all the configurations with a given head node have been
searched but none is workable), the bit-’1’ will be shifted
to the neighbor cell, initiating another tree walk. This pro-
cedure repeats until a workable configuration is found. Note
that gates may be shared between different tree walk logic in
Figure 6, if those trees belong to the same(2M , N)-graph.

The internal edges of small-degree model can be recon-
figured as follows. For the basic block including the root
of current tree walk, the one-hot counter output generates
the configuration bit(s) (pass-gate control signal(s)) of out-
edges of this basic block; for the basic block without cur-
rent tree root, the out-edge configuration bit(s) is deduced
from the in-edge configuration bit(s). Specifically, it could
be one of the three cases of Figure 7 where all the grey-
colored nodes form a basic block. The reconfigurable inter-
nal edges are bold-colored, and the nearby literal represents
the configuration bit of that edge.

A basic block is aout-branched blockif its tail node
has more than one out-edge. A basic block is atop out-
branched blockif there is no other out-branched block on
the path from the root of current tree structure to this ba-
sic block. A basic blockA is a direct out-branched child
block of basic blockB if there is a path from blockB to
blockA in current tree structure and blockA is the first out-
branched block on that path. Figure 7 shows how to gener-
ate the out-edge configuration bits according to the in-edge
configuration bits of that basic block. (i) The basic block in
Figure 7(a) has two in-edges and one out-edge. The config-
uration bit of the out-edge is a logic-OR of the configuration

...
V

U

V
W

W

...

...

...

U

(a)

Td

V W

EN

...

...

...

a0 a1

CLK

... ...

U

V W

U

(b)

YW

ENU

V

V Td

...

... ...

a0 a1

CLK

......

U

W Y

(c)

Figure 7. Configuration of internal edges.

bits of the in-edges. In other words, the out-edge is enabled
only if one (and only one) in-edge is enabled. (ii) The out-
branched block in Figure 7(b) has one in-edge and two out-
edges. Neither out-edge is enabled unless the in-edge has
been enabled. If the in-edge becomes enabled (U = 0 → 1)
during the reconfiguration (time-out signalTd = 1), it trig-
gers the 2-bit edge-sensitive counter (with cyclic output se-
quenceV W = 00 → 01 → 10) and enables one (and only
one) out-edgee. If there is any direct out-branched child
block of this basic block, the enabling of out-edgee will
trigger another 2-bit cyclic counter. In this case, out-edge
e has to keep enabled in order to achieve tree walk. Thus,
another enable signalEN is added to freeze current con-
figuration outputs (through blocking the clock input) un-
til the cyclic counters for all the direct out-branched child
blocks have completed their output cycles. (iii) The logic
for configuration bits of basic block in Figure 7(c) is the
same as that in Figure 7(b), except that a logic-OR output
triggers the cyclic counter so that an out-edge becomes ac-
tive when either in-edge is enabled. Finally, an extra enable
signal should be added to freeze present one-hot counter
output (by blocking the clock input) if current tree walk is
not completed (i.e., at least one cyclic counter output for the
top out-branched blocks is not′00′).

The configuration bits of external edges are the same if
the internal endpoints are in the same basic block. These
bits can be generated from one-hot counter output and in-
ternal edge configuration bits directly: they are derived as
logic-OR of configuration bit(s) of all (internal) in-edges to
this basic block in current tree structure. Note that those
logic-OR gates can be re-used from the logic which gener-
ate internal edge configuration bits. In most cases, almost
no extra logic is required in order to generate the configura-
tion bits of external edges.

As an example, we show the construction of reconfigu-
ration logic for 3-FT 4-node array of Figure 5. Bold lines
in Figure 5 denote reconfigurable internal edges. The la-
bel of Cx beside each bold line denotes the reconfiguration
bit of that edge. All external edges are reconfigurable, and
we useDi,j represent the configuration bit of the external
edge between external nodeei and internal nodej. Fig-

7

ure 8 shows the corresponding reconfiguration logic dia-
gram. Blocks< 1 >–< 4 > are 2-bit cyclic counters
for out-branched blocks. Deadlock detector generates the
primary input, time-out signalTo, which is delayed byτ
(signalTd) to trigger the cyclic counters so that the one-hot
counter outputs have been updated before initiating a new
tree walk.

<4>

C8C10 C9C11

C3C4

C9

C10

C5

C6

C7

C8

C8

C6

4−bit Cyclic Shift Register
a3 a1a2 a0

clk

Delay

Td

Td

Td

Td

b0b1

To

To

<2>

<1>

<3>

a1
clk

a0a1
clk

a0

a1
clk

a0

a1
clk

a0

C7
C8
C9
C10

C0

C0

C1

C2

C5C6C7

Figure 8. Reconfiguration for 3-FT array.

The reconfiguration logic works in the following way.
Initially, all configuration bits of internal and external edges
are reset to0. When the circuit deadlocks, the upward tran-
sition oftime-outsignal activates the one-hot counter, which
moves the bit-′1′ to the neighbor cell (saya0). The cyclic
counter< 1 > is triggered afterτ , setting configuration
bit C0. OnceC0 becomes high, the clock input of the one-
hot counter is blocked, freezing its current output. Mean-
while, the upward transition onC0 further triggers counter
< 2 >, setting configuration bitC5. After C5 becomes
′1′, the clock input of counter< 1 > is blocked. At this
point, a new configuration with nodes 10, 8, 5 and 6 is set
up. If this configuration is not workable, the circuit dead-
locks again. The second upward transition of time-out sig-
nal To triggers Counter< 2 > afterτ , which resetsC5 and
setsC6. The upward transition onC6 further triggers the
counter< 4 > which sets configuration bitC9. At this
point, another new configuration with nodes 10, 8, 7 and
3 is set up. Such procedure repeats until current tree walk
is completed. Meanwhile, the one-hot counter output re-
mains the same because its clock input is blocked all the
time. For the configuration bits of external edges, they are
derived directly from one-hot counter output and internal
edge configuration bits. For example,D1,1 = D2,2 = C4,
D3,3 = C11, D4,4 = C11 ∨ C10.

5 Evaluation

We evaluate the design of self-healing asynchronous ar-
ray in terms of hardware cost, performance, energy con-
sumption and fault recovery time, and compare the results

with traditional NMR-based method1. We say a circuit to
be K-SFT if it achieves self-healing with respect toK er-
rors. Since full adder is a common datapath operator and a
widely-used array-sized VLSI module, we choose it as the
target circuit for evaluation. For anM -bit full adder, the
number of nodes in the linear array isN = M/C if each
node is aC-bit adder cell. Although the carry out is propa-
gated linearly through different nodes, eachC-bit adder cell
(a node) itself doesn’t have to be in ripple-carry fashion (if
C > 1). In fact, eachC-bit adder cell can be implemented
using any structure (e.g., carry-look-ahead for high perfor-
mance), without compromising the fault tolerance property.
In theM -bit adder, each 1-bit adder element is implemented
in terms of a FS-PCHB circuit. Thus, theM -bit adder can
guarantee fail-stop with respect toM errors as long as they
are in distinct FS-PCHB circuits (i.e., different 1-bit ele-
ments). Here we choose the adder size to be 64-bit.

5.1 Hardware overhead

The cost of a circuit in terms of the amount of hard-
ware necessary is estimated by its transistor count. We
define normalized hardware costto be H(Aft)/H(Ao),
whereH(Ao) is the hardware cost of the baseline adder, and
H(Aft) is the hardware cost of fault tolerant adder. We in-
vestigate normalized hardware costs of the self-healing de-
sign based on three graph models of Section 3 respectively.
In the remaining of this section, we use the termhardware
costto meannormalized hardware cost.

Since no extra spare resource is added to baseline adder,
its hardware cost has nothing to do withC andK. Because
full-duplication model is composed ofK + 1 full replicas
of the baseline adder, the hardware cost is only decided by
M andK and independent of node sizeC. For min-spare
and small-degree models, larger node sizeC results in more
spare resource cost (givenK) but simpler reconfiguration
logic due to less number of nodes. Consequently, their hard-
ware costs are affected by node sizeC.

We first investigate the impact of node size on the hard-
ware costs of min-spare and small-degree models so that an
appropriate node size can be used to reduce the total hard-
ware cost, given theM andK. Specifically, total hardware
costs of aK-SFT 64-bit adder with various node sizes of
1-, 2-, 4-, ..., 32-bit, are studied. Figure 9 shows the results,
whereMIN andSMLrepresent the self-healing adder based
on min-spare and small-degree model respectively.

Several conclusions can be drawn from Figure 9. First,
the hardware cost of min-spare model varies dramatically
with respect to different node sizes, while that of small-
degree model changes much less. An appropriate node size
does reduce the hardware costs of both models. Second,

1To apply NMR to QDI circuits is non-trivial: timers and non-
negligible self-reconfiguration logic have to be added to the voter. We omit
those components and only investigate the voter core here, so the reported
hardware cost, performance and energy consumption are optimistic.

8

K=4 w/ SML

 10

 2
 1 2 4 8 16 32

N
or

m
al

iz
ed

 H
ar

dw
ar

e
C

os
t

Node Size (bits)

K=1 w/ MIN
K=2 w/ MIN
K=3 w/ MIN
K=4 w/ MIN
K=1 w/ SML
K=2 w/ SML
K=3 w/ SML

 100

Figure 9. Hardware costs of K-SFT 64-bit
adder with different node sizes

larger node size tends to reduce reconfiguration and pass-
gate augmentation overheads of both models (although it
incurs more spare resource cost), because the graph is sim-
plified with fewer nodes. Third, the complexity of the adder
core itself is quickly dwarfed by that of the reconfigura-
tion logic for min-spare model whenN and K increase.
Consequently, the optimal node size which incurs the min-
imum hardware cost of min-spare model, becomes larger
and closer toM/2 whenM or K grows. However, the op-
timal node size for small-degree model gradually reduces
with largerK because the reconfiguration cost varies much
less, which makes spare resource cost become the deciding
factor when the node size is large enough.

Table 1 shows the total hardware costs (shown in column
Total) of theK-SFT 64-bit adder based on different graph
models with the optimal node sizes (shown in columnCell
Size), as well as the corresponding hardware cost break-
downs. Meanwhile, we compare those hardware overheads
with traditional NMR-based design which uses2K + 1
replicas and a majority voter [8]. Because the configura-
tions in Table 1 result in small node numbers in the fault
tolerant arrays, the wiring overhead can be neglected com-
pared with the node cost. Thus, the reported numbers in this
table are good approximations to the real results.

In Table 1,MIN, SMLandDUP denote min-spare, small-
degree and full-duplication model respectively. The total
hardware costs in the table are further decomposed into
three categories: (i) The hardware cost of reconfiguration
logic with deadlock detection (Recfg) ; (ii) The hardware
cost of spare resources with fail-stop augmentation logic
(Spare); (iii) Other hardware cost including theM -bit adder
with fail-stop logic and all configuration pass-gates. For
each category, higher hardware cost is generally expected
with larger K. Regarding small-degree model, however,
the case ofK = 2M − 1 (e.g., K = 7) usually results
in smaller spare cost than the case ofK = 2M − 2 (e.g.,
K = 6) because more nodes are coalesced in the first situ-
ation, which may further result in less total hardware cost.

As to min-spare model, higherK requires larger number of
configuration bits while leads to more possible gate sharing
of different reconfiguration bits, which may slightly reduce
the overall reconfiguration overhead (for example, the cases
of K = 8 andK = 7).

Generally speaking, min-spare model incurs the mini-
mum hardware overhead, because an appropriate node size
simplifies reconfiguration logic while keeping the mini-
mum spare resource cost; Small-degree model results in
low hardware cost, as it reduces the spare resources through
node coalescing while maintaining simple reconfiguration;
Full-duplication model incurs reasonable hardware over-
head due to itsK +1 full duplications; NMR-based method
causes the highest hardware cost (except the case ofK=1)
due to both2K + 1 full replicas and non-negligible voter
logic. Second, the size of error-sensitive circuit (Recfg) of
full-duplication model is negligible, while that size remains
small in small-degree model and becomes large (but still
reasonable) in min-spare model. However, NMR incurs the
largest error-sensitive circuit (Voter) and that cost becomes
prohibitive whenK increases (because voter has to com-
pare every combination ofK + 1 signals out of (2K + 1)
inputs). Thus, it is impractical to apply NMR design at fine
granularity to tolerate a large number of faults. Third, NMR
design is not scalable withK, because of the dramatic in-
crease of voter complexity which not only dreadfully slows
down the system but also consumes a lot more energy.

It is safe to conclude that our self-healing design is less
costly and more scalable (withK) than NMR method. For
the self-healing design of different models: Full-duplication
model becomes the best choice if tiny protected circuit size
is required; Min-spare model can be the appropriate can-
didate if the designers want to reduce the hardware cost as
much as possible; Otherwise, small-degree model is a good
solution due to its small protected circuit size and reason-
able hardware overhead.

5.2 Performance overhead

We used HSPICE to simulate the self-healing 64-bit
adder of three graph models, and compared the through-
puts with the baseline adder and NMR adder. We define
normalized throughputto be Thr(Aft)/Thr(Ao), where
Thr(Ao) is the throughput of baseline adder, andThr(Aft)
is the throughput of fault tolerant adder. Figure 10 shows the
normalized throughputs, whereDUP, MIN andSMLrepre-
sent the self-healing adder with full-duplication, min-spare
and small-degree model, andFSdenotes the fail-stop 64-bit
adder without any spare resource. All theK-SFT adders use
the optimal node sizes in Table 1. The HSPICE simulation
uses TSMC 0.18um technology at25◦C.

Because the reconfiguration logic and spare resources
are not on the critical path, the performance of our self-
healing design does not strongly depend onK (it only
changes within 10% for differentKs), exhibiting better per-

9

Table 1. Hardware costs of K-SFT 64-bit asynchronous adder

K Cell Size Recfg/Voter Spare Total
MIN SML MIN SML DUP NMR MIN SML DUP NMR MIN SML DUP NMR

1 4 32 0.14 0.03 0.01 0.62 0.12 0.96 1.92 2.00 2.48 3.16 4.09 3.62
2 8 32 0.21 0.04 0.01 1.41 0.48 2.88 3.85 4.00 3.01 5.21 6.14 6.41
3 16 16 0.14 0.08 0.02 4.43 1.44 2.88 5.77 6.00 4.01 5.38 8.19 11.43
4 16 16 0.21 0.09 0.02 17.34 1.92 4.81 7.69 8.00 4.68 7.44 10.23 26.34
5 16 16 0.31 0.11 0.03 73.28 2.40 5.77 9.62 10.00 5.39 8.54 12.28 84.28
6 16 16 0.54 0.12 0.03 314.06 2.88 7.69 11.54 12.00 6.24 10.59 14.33 327.06
7 16 8 2.64 0.14 0.04 1342.03 3.37 6.73 13.46 14.00 8.95 9.81 16.37 1357.03
8 16 8 2.40 0.16 0.04 5699.22 3.85 8.65 15.38 16.00 9.31 11.87 18.42 5716.22

NMR 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

K

DUP
MIN
SML

FS

 0

Figure 10. Normalized throughputs.

formance scalability than NMR. Note that the performance
overhead of self-healing design primarily comes from the
fail-stop augmentation logic (shown asFSin Figure 10) and
the graph model themselves only incur small performance
overheads. Given another fail-stop implementation method
with higher throughput, our self-healing design can achieve
even better performance.

Among those three graph models, full-duplication model
always achieves the best performance, because there is no
pass-gate overhead on the carry propagation. Since there
are onlylog2bN/2c (instead ofN − 1 in min-spare model)
pass-gates added to the carry propagation in small-degree
model, small-degree model achieves higher throughput than
min-spare model. With largerK, the pass-gates on external
edges become the majority of pass-gate augmentation over-
head. Thus, the throughputs of full-duplication and small-
degree models become growingly closer to each other.

5.3 Energy overhead

Generally speaking, energy consumption of a circuit can
be divided into two parts: leakage energy consumption and
dynamic energy consumption. A simple estimate of the
leakage energy consumption can be obtained from the tran-

sistor count. It can be concluded from Table 1 that the leak-
age energy overheads of the self-healing designs are much
less than NMR method.

The same HSPICE simulations are applied for dynamic
energy consumptions. We definenormalized energy con-
sumptionto beE(Aft)/E(Ao), whereE(Ao) andE(Aft)
are the energy consumptions of baseline and fault tolerant
adders respectively. Figure 11 shows the normalized results,
where the labels are the same as those in Figure 10.

NMR 10

 5

 2
 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

K

DUP
MIN
SML

FS

 20

Figure 11. Normalized energy consumptions.

Because all2K+1 replicas and the voter are working all
the time, the NMR adder incurs the largest energy overhead
and such overhead increases dramatically whenK grows.
As to our self-healing design, the dynamic energy over-
head is much less because there is no switching activity in
both reconfiguration logic and spare hardware. Most of the
energy overhead comes from fail-stop augmentation logic
being used which remains constant (shown asFS in Fig-
ure 11). Hence the total energy overheads do not change
significantly (within 22%) with differentKs.

10

5.4 Fault recovery time

Fault recovery time is decided by the number of configu-
rations the system has tried before it finds a workable one. It
takes systemτd before it decides that current configuration
doesn’t work and switches to another, whereτd depends
on target circuit size and is usually in terms of micro/milli-
seconds. The worst fault recovery time, which can be used
to estimate the expected fault recovery time, is that all pos-
sible configurations have been searched and only the last
one is found workable. In our self-healing design, the worst
fault recovery time can be denoted as|P (G)| × τd, where
|P (G)| is the total number of paths embedded in thePN,K .
Sinceτd is constant for the given circuit, we can normal-
ize the worst fault recovery time to be|P (G)|. Given the
fault rate of once per hundreds hours andτd of millisec-
onds,|P (G)| can be thousands or tens of thousands while
with little impact to overall system performance.

As to full-duplication model,|P (G)| = K+1 because of
K+1 full replicas; For min-spare model,|P (G)| =

(
N+K

K

)
as anyK out ofN +K nodes can be faulty; When it comes
to small-degree model,|P (G)| can be calculated recursively
with equation (1) in Section 3.4. Figure 12 shows the nor-
malized worst fault recovery times ofK-SFT 64-bit adders
with the optimal node sizes of Table 1.

DUP

 100

 10

 1
 1 2 3 4 5 6 7 8

W
o

st
−

C
as

e
F

au
lt

 R
ec

o
v

er
y

 T
im

e

K

MIN
SML

 500

Figure 12. Normalized worst fault recovery
time.

Because the optimal node size changes at someKs for
min-spare and small-degree models, there are significant
variation of the normalized fault recovery times (the num-
ber of paths) at those points. Generally speaking, full-
duplication model incurs the minimum fault recovery time,
while min-spare model takes the longest fault recovery
time. Besides, the fault recovery time of min-spare model
dramatically increases whenK grows, noticeably reducing
its maintainability. On the other hand, the fault recovery
time of small-degree model is always at the same order of
that of full-duplication model, and thus remains acceptable
in practice even with respect to a large number of faults.

6 Related Work

Although a lot of research has been conducted on fault
tolerant synchronous design [8], only a little work has been
done for asynchronous circuits. Jackson et al. [6] imple-
mented a biologically embryonic asynchronous array based
on clocked FPGA to achieve fault tolerance, while with
large hardware overhead for redundant copies of configura-
tion bits and complex re-placement-and-routing logic. With
full duplication of circuit parts and synchronization of repli-
cated results through C-elements, the authors in [9, 14] de-
veloped several fault detection methods and hardening tech-
niques for QDI circuits. Although their approaches can im-
prove the robustness of QDI circuits, significant timing as-
sumptions are required in order to detect errors and those
methods cannot guarantee fault detection and tolerance all
the time. By using doubled-up production rules, Jang et
al. [7] proposed a SEU-tolerant QDI circuit design without
any requirement of significant timing assumptions. How-
ever, this approach cannot be applied to hard error toler-
ance, and usually results in large hardware cost and signif-
icant performance overhead (for example, the resulting cir-
cuit can be three times larger and twice slower [7]). More-
over, this approach is designed for single error tolerance and
cannot be extended to an arbitrary number of faults. Com-
pared with the aforementioned work, the method proposed
in this paper can be applied to achieving fault tolerance with
respect to any number of hard or soft errors, while with rea-
sonable hardware cost and acceptable overheads.

There is a wealth of research on graph models of recon-
figurable fault tolerant linear arrays. Hayes [5] introduced
the concept of fault tolerant graphs and proposed optimal
K-FT graphs for linear array and circle. Alon et al. [1] con-
structed fault tolerant graphs for (undirected) linear arrays
in a more general way. Haray et al. [4] discussed the design
of optimalK-edge fault tolerant graphs of paths, circles and
n-dimensional hypercube. Zhang [21] proposed a new fault
tolerant linear array to trade off maximum node degree with
more spares, and a better construction was subsequently de-
veloped by Yamada et.al [20]. However, there is no external
input or output with respect to the array, because they treat
the whole topology of parallel systems or interconnection
networks as only one graph.

7 Conclusion

For asynchronous circuits, the causality and event-
ordering is realized by handshake and data are usually en-
coded with redundant rails. Thus, they have the potential
to achieve self-checking with small hardware overhead [9].
However, it is non-trivial to apply conventional duplication-
and-comparison method to asynchronous logic to achieve
fault tolerance due to the lack of a global synchronization.
To efficiently tolerate errors in asynchronous circuits, this
paper proposed a general framework for constructing a self-

11

healing array-sized QDI circuit which achievesK-fault tol-
erance without comparison procedure while exploiting the
self-checking potential. Three fault tolerant array models
as well as efficient implementations of the corresponding
self-reconfiguration logic were presented for this frame-
work. Furthermore, the relationship between reconfigura-
tion complexity and spare resource cost was analyzed for
all the graph models. By exploiting inherent self-checking
potential of QDI logic, this reconfigurable fault tolerant de-
sign can achieve much lower hardware overhead than tradi-
tional NMR method (especially for largeK). By keeping
most of self-healing related logic off the critical path, this
reconfigurable design also achieves small and nearly con-
stant performance and energy overheads with respect to dif-
ferentKs, exhibiting much better scalability than NMR.

Regarding the self-healing design based on different
graph models, the energy overheads are close to each other
because fail-stop logic and pass-gates on external edges
contribute most of the extra energy consumption. The min-
spare model requires the least hardware cost but the largest
error-sensitive circuit size, performance overhead and ex-
pected fault recovery time; the full-duplication model re-
sults in the most hardware cost but the minimum error-
sensitive circuit size, performance overhead and expected
fault recovery time; the small-degree model is a compro-
mise between min-spare and full-duplication model: it in-
curs modest hardware overhead, small critical circuit size,
low performance overhead and short fault recovery time.
Therefore, the min-spare model is the most effective for
the fault tolerant designs with smallK or for the minimum
hardware cost, while the full-duplication model can be used
for the cases which require tiny error-sensitive circuit size or
very short fault recovery time. Otherwise, the small-degree
model becomes the appropriate solution.

Finally, this self-healing method can be conveniently ap-
plied to synchronous design. The only significant change is
the implementation of fail-stop behavior in target clocked
circuit. One way to do this is duplicating the target circuit
and comparing the results off the critical path on each clock
cycle. If any mismatch is reported, the clock will be shut
down and online reconfiguration will be activated.

References

[1] N. Alon and F. Chung. Explicit construction of linear sized
tolerant networks.Discrete Math, 72:15–19, 1988.

[2] K. Banerjee, S. J. Souri, and P. Kapur et al. 3-D ICs: A novel
chip design for improving deep-submicrometer interconnect
performance and systems-on-chip integration.Proc. IEEE,
89(5), 2001.

[3] G. Bourianoff. The future of nanocomputing.Computer,
36(8), 2003.

[4] F. Haray and J. P. Hayes. Edge fault tolerance in graphs.
Networks, 23:135–142, 1993.

[5] J. P. Hayes. A graph model for fault-tolerant computing sys-
tems.IEEE Trans. on Computers, 25(9), 1976.

[6] A. H. Jackson and A. M. Tyrrell. Implementing asyn-
chronous embryonic circuits using AARDVArc. InProc.
NASA/DoD Conference on Evolvable Hardware, 2002.

[7] W. Jang and A. J. Martin. SEU-tolerant QDI circuits. In
Proc. International Symposium on Asynchronous Circuits
and Systems, 2005.

[8] B. W. Johnson.Design and Analysis of Fault Tolerant Digital
Systems. Addison Wesley, 1989.

[9] C. LaFrieda and R. Manohar. Robust fault detection and
tolerance in quasi delay-insensitive circuits. InProc. Inter-
national Conference on Dependable Systems and Networks,
2004.

[10] A. Lines. Pipelined asynchronous circuits. Master’s thesis,
California Institute of Technology, 1995.

[11] N. R. Mahapatra, A. Tareen, and S. V. Garimella. Compar-
ison and analysis of delay elements. InProc. the 45th Mid-
west Symposium on Circuits and Systems, 2002.

[12] A. J. Martin. Synthesis of asynchronous VLSI circuits. Tech-
nical Report CS-TR-93-28, California Institute of Technol-
ogy, 1993.

[13] A.J. Martin, A. Lines, and R. Manohar et.al. The design of
an asynchronous MIPS R3000. InProceedings of the Con-
ference on Advanced Research in VLSI, 1997.

[14] Y. Monnet, M. Renaudin, and R. Leveugle. Hardening tech-
niques against transient faults for asynchronous circuits. In
Proc. IEEE International On-Line Testing Symposium, 2005.

[15] S. Peng and R. Manohar. Efficient failure detection in
pipelined asynchronous circuits. InProc. IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems,
2005.

[16] S. Peng and R. Manohar. Explicit constructions of fault-
tolerant open linear arrays. Technical Report CSL-TR-2005-
1044, Cornell University, 2005.

[17] S. Peng and R. Manohar. Fault tolerant asynchronous adder
through dynamic self-reconfiguration. InProc. IEEE Inter-
national Conference on Computer Design, 2005.

[18] J. Srinivasan, S. V. Adve, and P. Bose et al. The impact
of technology scaling on lifetime reliability. InProc. Inter-
national Conference on Dependable Systems and Networks,
2004.

[19] T. Verdel and Y. Makris. Duplication-based concurrent error
detection in asynchronous circuits: Shortcomings and reme-
dies. InProc. IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, 2002.

[20] T. Yamada and S. Ueno. Optimal fault-tolerant linear arrays.
In Proc. ACM Symposium on Parallelism in Algorithms and
Architectures, 2003.

[21] L. Zhang. Fault tolerant networks with small degree. InProc.
ACM Symposium on Parallelism in Algorithms and Architec-
tures, 2000.

12

