A Delay-Insensitive Address-Event Link

Joseph Lin
Department of Electrical and Computer Engineering
Johns Hopkins University, Baltimore, MD 21218
Email: linjh@jhu.edu

Abstract—We present a delay-insensitive (DI) link that pro-
vides virtual point-to-point channels between ports at corre-
sponding locations in two-dimensional arrays on separate chips.
A communication, or event, on any particular channel is rep-
resented by its input port’s address, which the link encodes,
conveys, and decodes. Previous work cut pad-count by transmit-
ting row and column addresses sequentially, appending additional
column addresses for concurrent communications in the same
row, which are read and written in parallel, thereby boosting
throughput. However, a non-DI implementation was used off-
chip (bundled-data), incurring delay and area penalties when
interfaced with DI circuitry used on-chip. The link described
here avoids these penalties by using a DI implementation both
on- and off-chip (1-of-4 codes). We describe the transmitter’s and
receiver’s implementation in detail, including refinements made
to ensure efficient and robust operation with arrays as large as
320x960, and provide test results from two chips fabricated in
a 0.18um CMOS process.

I. ADDRESS-EVENT REPRESENTATION

Neuromorphic engineers seek to emulate the brain’s func-
tionality by building networks of silicon neurons. Like their bi-
ological counterparts, which generate millisecond-wide, tenth-
of-a-volt-high action potentials when sufficiently stimulated,
silicon neurons generate an asynchronous digital pulse, or
spike, when their input passes a threshold. Early efforts
focused on sensory systems, such as the retina and the cochlea.
Recent efforts have focused on cognitive systems, such as the
cortex and the hippocampus. This trend has been accompanied
by a shift from single- to multiple-chip systems (Fig. 1)
[1], [2], [3]. The address-event representation (AER) has
emerged as the standard for communicating spikes between
chips.

Address-event links realize multiple virtual point-to-point
channels with a single physical link by representing a com-
munication on any channel with its input-port’s address.
They communicate spikes between two-dimensional arrays
of silicon neurons by encoding the spike’s row and column
addresses, conveying these addresses to another chip, and
decoding them to recreate the spike at its destination [4], [5].
Transmitting row and column addresses sequentially cuts pad-
count, while reading and writing concurrent spikes in the same
row in parallel boosts throughput [6], [7]. This word-serial
AER link has been used in several neuromorphic systems [8],
[91, (101, [11], [12].

All AER links built to date, with the exception of [1], use
bundled-data (BD), which incurs delay and area penalties
when interfaced with the delay-insensitive (DI) protocol used

Kwabena Boahen
Department of Bioengineering
Stanford University, Stanford, CA 94305
Email: boahen @stanford.edu

=

=

=
w
o]
=
3

TRANSMITTER

RECEIVER
RECEIVER
RECEIVER

Fig. 1. Multiple-chip stack. a Each board contains a cerebellum chip with
2,048 silicon neurons and 65,536 plastic synapses in 16mm? of silicon, and
the necessary peripherals for tuning and control. b The chips communicate
with their neighbors through AER links—an open-ring network—where each
chip is tuned to behave as a specific cell type found in the olivo-cerebellar
complex.

TABLE I

1-0F-4 CODE
binary 00 01 10 11
1-of-4 0001 0010 0100 1000

on-chip [2]. In BD, two additional lines signal when the
sender outputs data (request) and when the receiver inputs it
(acknowledge). A four-phase handshake is used: Request is
asserted (data ready); acknowledge is asserted (data read); re-
quest is reset; acknowledge is reset [13]. Because the receiver
latches the data when it sees the request, this line must have
a longer delay than the data lines. For word-serial AER, the
burst is demarcated by a second request signal, which executes
two-phase handshakes at the beginning and the end with the
same acknowledge signal, incurring additional delay and area
penalties (Fig. 2a).

In this paper, we introduce a link that avoids these penalties
by using a DI protocol both on- and off-chip—at the cost of
doubling the data lines. In 1-of-2, a four-phase handshake is
performed using one line or the other to signal a bit’s value,

ayo ReqY=byw:
axo 7Reqx= bxi il ACk oo
XMT RCV XMT ., plon: RCV
ai :ACk bo Data
ano p{bni
Data
DataX_r XXXX ¢ XXXXXX Data)X R X 0 X ¢ X 0 XT X0
Rav_/ TN\ Ak N\ N\ O\
~RegX N/
Ak_/ N/ o
a b

Fig. 2. Bundled Data (BD) and Delay-Insensitive (DI) Address-Event Links.
a XMT outputs a row address (R) and raises ReqY; RCV latches it and raises
Ack. Then XMT outputs a column address (C) and lowers “ReqX; RCV
latches it and lowers Ack. Then XMT raises “ReqX and RCV raises Ack. This
cycle repeats for additional column addresses. Finally, XMT lowers ReqY and
RCV lowers Ack. b XMT outputs a one-hot coded row address (R); RCV
latches it and raises Ack. Then XMT outputs a neutral code (0) and RCV
lowers Ack. This cycle repeats for additional column addresses (C) and a
tailword (T).

0 or 1.' A valid signal (one line high) cannot be confused
with an invalid (both low) or incomplete signal (raising both
lines is disallowed), making a separate request line—and its
added delays—superfluous [14]. We dispensed with the second
request signal as well by introducing a reserved address—the
tailword—that demarcates the end of a burst (Fig. 2b).

To mitigate the increase in I/O pads, we cut power pads
in half by adopting 1-of-4 coding: One of four lines is raised
to signal one of four possible two-bit values (Table I). Half
as many as 1-of-2 and BD (worst-case)—halving power pad
requirements. For instance, our chip’s 10-bit 1-of-4 datapath
(9 for address plus 1 for tail) required 29 I/O pads: five sets
of 1-of-4 (20 pads) with 5 V434/Gnd pads interleaved between
them, plus reset, acknowledge, and two V34/Gnd pads for the
core. If we had used bundled-data, we would have had 25
pads: 9 address with 10 V34/Gnd pads interleaved between
them, plus Y-request, X-request, acknowledge, reset, and core
Vaq and Gnd, a savings of only 4 pads.

Section II reviews one-hot coding. Section III describes
the architecture of the transmitter and receiver. Section IV
describes the logic synthesis process and presents the result-
ing circuits. Section V presents test results from two chips.
Section VI presents concluding remarks.

II. ONE-HOT CODES

One-hot codes use 2° lines to encode b bits: The ith line
is raised to transmit the ¢th b-bit word. As the number of bits
increases, line-count increases exponentially while switching
activity decreases linearly, with the optimum occuring at
b = 2. In addition to these 2° valid codes, there is a single
neutral code: All lines low. A m-input OR checks for validity
or neutrality in a single 1-of-m group; a datapath with n
groups requires n. m-input ORs and n—1 C-elements connected
in a binary tree.2 For neutrality alone, an OR-tree suffices.

'Popularly known as dual-rail.
2A C-element’s output goes high if both inputs are high, low if both are
low, and remains the same if they differ.

00 O-tol

o e

Fig. 3. Tailword Creation and Tailbit Extraction. a Combines tailbit (t1i)
with a 1-of-8 group to create two 1-of-4 groups. b Extracts tailbit (to0, tol)
from a 1-of-4 group and combines the other bit with another 1-of-4 group to
create a 1-of-8 group.

We label the ith one-hot line xi, where x denotes the group
number; for a control line, it represents the signal’s name. For
example, the first group’s 1-of-4 signals are labeled 00, 01,
02, and 03. And control signal c’s 1-of-2 signals are labeled
cO0 (c=0)and cl1 (c=1).

We chose to use 1-of-4 codes for the link, with an extra
address-bit (LSB) that is 1 in the tailword and O elsewhere
(i.e., within a burst). This tailbit is combined with the address’
three least-significant bits—for which the encoder uses a 1-
of-8 code—to obtain two 1-of-4 groups (Fig. 3a). When the
tailbit is extracted from the least-significant 1-of-4 group at the
decoder, the remaining bit is combined with the second-least
significant 1-of-4 group to recreate the 1-of-8 group (Fig. 3b).

The one-hot encoder and decoder are built from wired-NOR
and NAND gates, respectively. For the encoder, we cut the
wired-NOR’s static power dissipation by activating its pull-
up only when the encoder’s output is acknowledged (Fig. 4)
[6]. The pull-up’s weaker sizing guarantees the output is
not cleared until the input has cleared. For the decoder, we
assumed that when a NAND gate clears its output, all its inputs
have cleared. This timing assumption requires the address-
lines’ capacitances to be matched (Fig. 5). Avoiding 1-of-
2 coding, which connects twice as many gates or drains to
the address-line as 1-of-4 coding, which itself connects twice
as many as 1-of-8, helps to achieve this—and speeds up
performance while lowering power dissipation.

III. DI ARCHITECTURE

We came up with architectures for the transmitter and re-
ceiver through process decomposition, the first step of Martin’s
three-step synthesis procedure for asynchronous circuits [15].

]]] |]] |]]
TR
TR T BT BT
TR BT B
TR BT BT
TR BT BT
TTTTTTER j
0 s Y O
ArArarararararararariramararird

00 01 02 03 04 0506 07 10 11 12 13 n0 nl n2 n3

Fig. 4. One-Hot Encoder. Uses 1-of-8 for three least-significant bits and
1-of-4 for remaining bits. If a bit is leftover, it is combined with the previous
two to form a 1-of-8 group. The small inverters hold state (weak-feedback).

The resulting DI architectures are similar to the BD de-
signs [6], [7]; we will note the key differences.

In the DI transmitter (Fig. 6a), event generators (E) make
requests to the row arbiter through an interface (I). The row
arbiter selects one row and directs an encoder to output that
row’s address, which is buffered (A). Selection by the arbiter
also enables the row’s event generators to raise their column
lines, which are latched before being relayed to the column
arbiter. As was done for the row, this arbiter directs an encoder
to output these columns’ addresses to a second buffer (A) one
by one. After prompting the first buffer to output the row
address, the sequencer (S) repeatedly prompts the second one
to output the column addresses—until the latch signals that
it is empty. At which point the sequencer causes the tailword
(TB) to be output and prompts the latch to load the next row,
which was read out while the burst was being sent. The row,
column, and tail words are output through OR-gates, in contrast
to the BD design, which used a two-way multiplexor.

In the DI receiver (Fig. 6b), the sequencer directs buffers
(A) to load incoming row and column addresses. They are
decoded, stored (L and Latch), and sent to the event-recipients
when the tailword shows up. Additional buffering (B) allows
a burst to be decoded while the previous one is being written.
Note that the row-address is decoded immediately, unlike the
BD design, which waited till the burst ended.

As our DI architectures are similar to the BD designs,
we skip describing process decomposition and proceed to
handshaking expansion (HSE), the second synthesis step.

IV. HANDSHAKING EXPANSION

In HSE, each communication is expanded into a pair of
four-phase request-acknowledge sequences:

00 01 02 03 04 0506 07 10 11 12 13 n0 nl n2 n3

\
N

g

\
N

= |

%

U

1

0
| % _
i
- ‘AA_ -
N

]
e

Fig. 5.

One-Hot Decoder.

Interface

Mo

e

e

a

Fig. 6. Transmitter and Receiver Architecture. a Transmitter: The selected
row’s events are readout in parallel and transmitted in a single packet—
row address (Y), column address(es) (X), and tailword (E, generated by
TB). b Receiver: The packet’s events are written to the addressed row in
parallel. Discs symbolize combinational logic. Note that the latches send back
valid/neutral signals to their controllers (dimples);

Four—-phase

*[aot; [ai]l;ao—; [Taill

*[[pi]l;po+; ["pil;ipo-]

The active port (A) asserts the request (ao+) and waits for
the acknowledge ([ai]), then deasserts the request (ao-—)
and waits for the acknowledge to clear ([“ai])—a lazy-
active port checks immediately before raising the request to
start the next handshake. The passive port (P) waits for the
request ([pi]) before asserting the acknowledge (po+), then
waits for the request to clear (["pi]) before deasserting the
acknowledge (po—). Note that the first two-phase communi-
cation synchronizes A and P; the second is superfluous—it
just returns the signals to their initial state. For more on HSE
notation, see Table II (at the end of Section VI). We present
the transmitter’s HSE, followed by the receiver.

A. Transmitter

In the transmitter, EVT initiates the cycle (Fig. 7). With P
passive, R active, and C active, EVT’s HSE is:

ARB
11i 1o 12i 2o
Ly
co ci
—| INT eij«
vi vo
A
B O N
go gi
1 LmH "7 sEQf< Ack
1 il ——{sod
k yo d
i »|di yi
VN vy ADY
YO do
A
i
llo
h 1 ARB
co ei
1 EVTIO >vi|NTco—>]2i
— |« O vo cile—|1220

Fig. 7. Transmitter Schematic. Elaborated to show signal names and
valid/neutral detectors (VN).

EVT
*[[pi]l;ro+; [ri];co+,po+t;
["pil;ro—; ["ri];co—,po-]

The first and second two-phase communications with INT
signal that EVT’s row has been selected (ro+; [ri]) and
its column signal (co+) has been read (ro—; ["ril),
respectively. EVT communicates with the event-generator
(po+; ["pi]) after the first and clears its column signal
after the second.

INT receives EVT’s row request through a row-wide
wired-OR, identical to the encoder’s (see Fig. 4).> With V'
passive, C' active, and F active, INT’s HSE is:

INT

*[[vi];co+; [ci& ei];eo+,vo+;

["vi&ei]l;co—; ["ci];eo—,vo-]

The first and second two-phase communications with ARB
signal when INT’s row is selected (co+; [ci]) and
unselected (co—; ["ci]). Thus, INT communicates
with EVT (vo+; ["vi]) and the row-address encoder
(eo+; [ei]) after the first but postpones clearing these
signals till after the second. This pipelining is safe because
the next INT selected by the arbiter waits until ei clears
(lazy-active). INT is also used to interface LTH with the
column arbiter and encoder.

N — 1 copies of ARB, connected in a binary tree, arbitrate
INT’s request and those from the other N — 1 rows (or
columns). With L; and L, passive and R active, each ARB

3To ensure that ro remains low until ri clears, other EVTs in that row
must be prevented from placing a request when ri is true.

handles its daughters’ requests with two identical concurrent
HSE sequences:
ARB
x[[1li&"ri];alo+;rlo+; [ri&ali];llo+;
[T11li];alo—;rlo—;["alil;1llo-]
. x[[12i&"ri];a20+;r20+; [ri&a2i];120+;
[T12i];a20—;r20—; [Ta2i];120-]
Requests from one daughter ([111i];rlo+) or the other
([12i];r20) propagate up the tree, ORed to produce a
single outgoing request (ro), which feeds back at the top.
Acknowledges propagate down the tree, steered to one side
([rigalil;1llo+) or the other ([ri&a2i];120+) by a
local two-way arbiter (see Fig. 8). Clearing follows the same
sequence, except that R is lazy-active, thereby preventing
new requests from being accepted until ri clears. For more
detail on this non-greedy arbiter, see [6].

LTH receives EVT’s column signal through a column-tall
wired-OR, identical to the encoder’s (see Fig. 4). With R
passive and G active, LTH’s HSE is:

LTH

x[[ri&rk];go+;ro+; ["ri&gil;go—; ["gil;ro-]

The first and second two-phase communications with SEQ
signal when LTH is full ([ri]; ro+) and when it is empty
([Tril;ro-), respectively.4 The latter completes after LTH
finishes communicating with INT. LTH does not check that
the column signal cleared ([rk])—SEQ ascertains that
before initiating the next cycle (see below)—this way, the
empty signal and the column signal clear concurrently.

ADX captures the row address when directed by SEQ.
With D and Y passive, ADY’s HSE is:

ADY

*[[yi];yotj [vyljdo+; [Tyi];yo—; [Tvy&~di];do-]
It prompts its buffer to latch and output the row address
([yil;yo+), and acknowledges receipt as soon as the output
becomes valid ([vy];do+). It does not check the column
address’ ([dni]) and requests’ ([di]) validity because that
is implied (by [vy] and [yi], respectively). The signals
clear in the same sequence.’

Similarly, ADX captures the column address when directed
by SEQ. With X and C passive, ADX’s HSE is identical to
ADY’s:

ADX

*[[xi];x0+; [vx];co+; ["xi];x0—; [vx];co-]
Except that ["di]’s counterpart is missing because there are
no extra lines to check.

That brings us to SEQ, which orchestrates the whole
show. With S, Y, X and T active, its two concurrent HSE
sequences are:

4Because the acknowledges feed into an OR-tree, the first of multiple
acknowledges to arrive triggers the full signal, thus their delays must be
matched.

5Note that the column address lines’ neutrality is not checked—[~ vy]
does not imply [~ dni]—therefore their delay must be shorter than the
column request lines’.

ARB

ro

LTH 115

ri gt

go
rk
Fig. 8. Synthesized Transmitter Circuits. The tilde denotes a signal’s complement. ADX’s x1i is wired to xo, and its vJj is wired to co.
SEQ # that si clears before the next burst is read in (see below),

*[["ti&si&so];jyo+; [ti];so-jyo~; the order in which the signals clear is unimportant.

[Tti&"si&"so];to+;so+; [ti];to-]
I
*[["ti&si& " so];xo+; [ti];x0o-]

They output row/tail (Y or 7) and column (X) words,
respectively, through triangular communications with the
receiver that loop through ADY, ADX, or TB (see Fig. 7).
Control switches to the second sequence halfway through the
first sequence, which starts when LTH becomes full ([si])
and resumes when it becomes empty ([“si]). To ensure the
column signals clear before LTH becomes transparent, we
guarded SEQ’s so+ with ADY’s do- (see ~sod in Fig. 8).

Once we have HSE sequences, we proceed to the final step,
compiling them into production-rule sets (PRS), which are
straightforward to implement with CMOS transistors [15]. Due
to space constraints, only the synthesized CMOS circuits are
shown (Fig. 8). In the next section, we present the receiver’s
handshaking sequences.

B. Receiver

In the receiver, SEQ initiates the cycle (Fig. 9). With Y,
X, and S active, its HSE is:
SEQ

x [yot+; [yi];xo+; [xi];so+;
yo—;x0—; ["xi&si];so—; ["si& yi]]

It directs ADY to load the row address (yo+; [yi]), ADX to
load the column addresses (xo+; [xi]), and BUF to write
the burst into the array (so+; [si]). Apart from ensuring

ADY inputs the row address when directed by SEQ. With

Y passive, G passive, and H active, ADY’s HSE is:
ADY

*[[yi];jhot+; [vh];go+; [ng];yo+;

go—; [hi];ho—; ["vh& " hi&"yi];yo-]

It prompts its buffer to latch and output the row address
([yi];ho+), and acknowledges receipt as soon as the output
becomes valid ([vh] ; go+)—without waiting for HBUF to
read the output ([hi]). Only after the input clears ([ng])
does it acknowledge SEQ (yo+), which can now safely ask
ADX to load the column address. Clearing go early allows
this to happen as quickly as possible.

By providing additional buffering, HBUF allows another
row address to be input while the decoder is still selecting the
previous row. With H passive and P active, HBUF’s HSE is:
HBUF

*[[Tpil;po+; [vp];ho+; [pi];po~; ["vp];ho-]
It acknowledges receipt as soon as its buffer captures the
row address ([vp] ; ho+), without waiting for the decoder’s
acknowledge ([pi]). Notice that HBUF would be identical
to the transmitter’s ADX if P was passive.

LTH captures the row decoder’s output, allowing it to
acknowledge HBUF before the row is actually selected. With
B and V passive, LTH’s HSE is:

LTH
*[[bi];bo+; [vi];vo+; ["bi];bo—; ["vi];vo-]

Y:X:E N > VN o
Y
ti eo ve
Ack < tlg ADX ei
xi X0
Ty !
N [»[ng 9© XO X1 O CL
yol—»vi
hoADY yile ~{yo SEQ BUF
VN|»>vh py si so ai go
A
Ty 'y
ho co ci bo bi
" HBUF BUF qi|< »vi LTH
XN >vP pi g0 J VO |
y Y
b vi -O—— ci -
9 1 LTHvo|— »EEVT |
bo
\ \
Fig. 9. Receiver Schematic. Elaborated to show signal names, valid/neutral

detectors (VN), and tailbit extractor (TB).

Having captured the decoder’s output ([bi];bo+), LTH
selects the row when BUF prompts it ([vi];vo+). The
signals clear in the same sequence. LTH is also used to select
a column.

ADX inputs the column address when directed by SEQ.
With X passive, E active, L passive , and 7' passive, its two
concurrent sequences are:

ADX
*[Tei&xi&ti0];eo+; [ve]l; lo+;
[ei&"ti0];eo—; [“vel;lo-]
[
* [[

xi&til];xo+;to+; ["xi&7til];x0o—;to—]

The first sequence relays column addresses to the decoder
while the second sequence communicates with SEQ; control
switches to the latter when the tailbit becomes true ([ti11]).
Notice that, apart from [ti0], the first sequence is identical
to HBUF’s.

By providing a buffer between the column decoder and
LTH, BUF allows another burst to be decoded while the one
in LTH is being written. With C' passive and @ active, BUF’s
HSE is identical to LTH’s, except that) is lazy-active rather
than passive:

BUF

*[[ciljcot; [Tgi];qgo+; [Tci]jco~;[gqi];qgo-]
To prevent the stored event from proceeding to LTH while
the previous row is being written, we stall it by guarding
LTH’s bo+ with [“vi], which works because vi is true
when the new burst comes in.® BUF is also used to buffer
SEQ from LTH.

9SEQ waits for ~ si, which corresponds to the other BUF’s co—, which
happens after BUF’s go+, which corresponds to LTH’s vi.

That brings us to EVT, which receives the event from the
two LTHs through triangular communications initiated by
SEQ’s BUF (see Fig. 9). With R passive, C' passive, and P
active, EVT’s HSE is:

ROW

x[[ri&ci];po+; [pil;ro+; [Tri& cil;po—; ["pil;ro-]
When the LTHSs select its row and column (ri and ci),
EVT arouses the event-recipient and relays its acknowledge
to BUF (po+; [pi]l;ro+). The row-wide wired-OR that
feeds ro to an array-tall OR-tree on the periphery is identical
to the encoder’s except that the select signal inactivates the
pull-up [7]. Clearing follows the same sequence.’

As with the transmitter, we skip compiling HSE into PRS
and show the synthesized CMOS circuits (Fig. 10).

V. TEST RESULTS

We present test-data for the link’s transmitter and receiver,
obtained from two chips, both fabricated in 0.18um CMOS.
The first chip, with a 256 x8 array of silicon neurons in 4.9 X
2.9mm?, provided the transmitter data (Fig. 11a). The second
chip, with a 320x960 array of pixels in 6.2 x 4.8mm? [1], pro-
vided the receiver data (Fig. 11b). Both chips were designed
to be daisy-chained, and were tested talking to another copy
of the same chip. The transmitter chip merged the incoming
address-events with those from its own transmitter to form
the outgoing stream.The receiver chip copied the incoming
address-events to its own receiver as well as to the outgoing
stream. FIFOs buffered the outgoing stream, enabling us to use
full FIFOs—filled by holding up the link—to pump address-
events at full-speed from chip to chip.

We measured an interword-interval of 23ns for the transmit-
ter (Fig. 12) and 16ns for the receiver (Fig. 13). The difference
in burst-rate is attributed to the longer wires connecting the
transmitter chips, which were on separate boards (see Fig. 1a),
whereas the receiver chips were side-by-side on the same
board. Indeed, it appears that the transmitter’s cycle-time was
limited by interchip-delays because the interval was the same
(23ns) when we dumped out events from a full FIFO. This
result is not surprising, since the array size was rather small.
On the contrary, it appears that, in the worst case, the receiver
writes events into the array at a slower clip than the 64ns
it takes to deliver each event’s four words—chip address,
row address, column address, and tailword. Further testing is
required to ascertain this.

Our receiver testing revealed that not all of a burst’s events
made it into the target row (Fig. 14). We determined that
the leftward and downward bias was due to delays in the
wires, modeled with RC-segments. The width of the pulse
BUF launches is determined by the propagation delay down
to the selected row, plus the time it takes for the first pixel in
that row to acknowledge, plus the propagation delay back up
through the OR-tree. While the first gets longer with distance,
the second and third remain constant. Thus, the lower the

"Because clearing is triggered by the first EVT to acknowledge, when
multiple column lines are active their delays must be matched.

SEQ ADY
vh ng@(
~yngO ~goq
~vh{
~go ho_ ~hi{
hi ~yi{
ye ho =
~yi
431 hOo
-H
g0i—I-
L’(hno
4{
gni—o{

ADX BUF
XlE@»Xo,to CZ<J
vo til - o
gi
ve lo
LTH
~ei
. bo
tiOE eo bt }J vo
elo vi
s 1
’ j@em EVT .
11i— —
‘ Nriﬁ Po
Ini . 4{
ro — pi

Fig. 11. Transmitter and receiver die micrograph and layout (insert). a
The transmitter circuitry that services this 14.Imm? chip’s 256 x 8 array
occupies 0.57mm?2 (0.18-pm CMOS). b The receiver circuitry that services
this 29.6mm? chip’s 320 x 960 array occupies 1.26mm? (0.18-um CMOS).

500mV /div 10ns /div

Fig. 12. Transmitter Performance. Four words in an address-event—chip,
row, column, and tail word—measured at 23ns per word. Three of the first
1-of-4 group’s signals are shown, together with the active-low acknowledge.

selected row, the longer the pulse. These longer pulses travel
further along the selected row. Thus, the lower the row, the

Ack

© 500mV/div 10ns/div

Fig. 13. Receiver Performance. Active-low acknowledge shown with first
signal of the first 1-of-4 group—measured at 16ns per word.

more pixels are selected.® This behavior can be rectified by
moving the OR-tree to the far side of the array to guarantee
that the select pulse makes it all the way across.

We investigated the role of wiring delays further by simu-
lating a 256 x 256 transceiver array on a 13.9 x 11.8mm? chip,
with global lines replaced with RC-segments extracted from
the layout. We found that the wired-ORs used to aggregate row
and column requests—and in the encoder—tended to become
active again when the acknowledge was cleared. Because, the
line’s far end remains below Vi,, and switches the request
back high when charge redistributes along the line (Fig. 15).
We rectified this behavior by placing the pull-up at the far end
of the line, which guarantees that the entire line is above Vi,
when the output goes low.

8The pulse BUF launches rightward will arrive at EVT simultaneously—
and will be subject to the same amount of filtering—if vertical LTH-to-
LTH RC-segments are identical to vertical EVT-to-EVT RC-segments and
horizontal LTH-to-LTH RC-segments are identical to horizontal EVT-to-EVT
RC-segments.

Fig. 14. RC delay model. Shaded pixels receive an event when a row-
wide burst is input. Differential wiring delays account for the leftward and
downward bias.

Lr i

P ool

1114 12ﬁi

Fig. 15. Wired-OR for Requests. Placing the active pull-up at the far end of
the line guarantees correct behavior.

lnﬂ

VI. DISCUSSION

We presented DI transmitter and receiver designs based
on the BD burst-mode word-serial architectures developed
in [6], [7]. Making interchip communication DI streamlined
interfacing with on-chip DI circuitry, eliminating delay and
area penalties incurred with BD. However, DI requires twice
as many I/O pads as BD. We mitigated this by using 1-of-4
coding, which cuts the number of power pads in half.

For area-efficiency, our design assumes matched delays
when signals are broadcast to an entire row or column, such
as on the receiver’s row-select line. In large chips, differential
wiring delays violated this assumption, causing events sent to
the far side of a row to be dropped when events were sent to
the near side in the same burst. These distributed-RC effects
also negatively impacted the wired-OR design with an active
pull-up that the transmitter uses to aggregate row- and column
requests. We proposed fixes in both cases that simply involve
relocating the receiver’s OR-tree and the transmitter’s active
pull-ups to the far end of the lines in question.

ACKNOWLEDGMENT

The authors would like to thank Rodrigo Alvarez for pro-
viding data on the transmitter performance and John Arthur for
simulating the 256 x 256 transceiver. This work was supported
in part by NSF’s CAREER (Grant ECS00-93851) and EMT
(Grant CCF-0630505) programs.

(1]

[2]

[3]

[4]

[3]
[6]

(7]
[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

TABLE II
HSE NOTATION

Operation Notation Explanation

Signal v Voltage on a node

Complement v Inversion of v

And v & W High if both are high

Or v | w Low if both are low

Set v+ Drive v high

Clear V- Drive v low

Wait [v] Wait till v is high

Sequential [ul; v+ =u -> v+ in PRS

Concurrent v+, wt = v+, w+ in PRS

Repetition [v+;v—] Repeats forever
REFERENCES

J. Lin, P. Merolla, J. Arthur, and K. Boahen, “Programmable connections
in neuromorphic grids,” Circuits and Systems, 2006. MWSCAS ’06. 49th
IEEE International Midwest Symposium on, vol. 1, pp. 80-84, Aug.
2006.

P. Merolla, J. Arthur, B. E. Shi, and K. Boahen, “Expandable networks
for neuromorphic chips,” IEEE Trans. Circuits Syst. I, vol. 54, no. 2,
pp. 301-311, 2007.

L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang,
“A gals infrastructure for a massively parallel multiprocessor,” Design
and Test of Computers, IEEE, vol. 24, no. 5, pp. 454-463, Sept.-Oct.
2007.

M. Sivilotti, “Wiring considerations in analog VLSI systems, with ap-
plication to field-programmable networks,” Ph.D. dissertation, California
Institute of Technology, Pasadena CA, 1991.

M. Mahowald, An Analog VLSI Stereoscopic Vision System.
MA: Kluwer Academic Pub., 1994.

K. Boahen, “A burst-mode word-serial address-event link-i: transmitter
design,” IEEE Trans. Circuits Syst. I, vol. 51, no. 7, pp. 1269-1280,
2004.

——, “A burst-mode word-serial address-event link-ii: receiver design,”
IEEE Trans. Circuits Syst. I, vol. 51, no. 7, pp. 1281-1291, 2004.

K. Zaghloul and K. A. Boahen, “Optic nerve signals in a neuromorphic
chip: Outer and inner retina models,” IEEE Trans. on Biomed. Eng.,
vol. 51, no. 4, pp. 657-666, Submitted.

T. Y. W. Choi, B. E. Shi, and K. Boahen, “An on-off orientation
selective address event representation image transceiver chip,” IEEE
Trans. Circuits Syst. I, vol. 51, no. 2, pp. 342-353, 2004.

P. Merolla and K. Boahen, “A recurrent model of orientation maps
with simple and complex cells,” in Advances in Neural Information
Processing, S. Thrun and L. Saul, Eds., vol. 15. San Mateo CA:
Morgan Kaufman, 2004, pp. 995-1002.

T. Y. W. Choi, P. Merolla, J. Arthur, B. E. Shi, and K. Boahen,
“Neuromorphic implementation of orientation hypercolumns,” IEEE
Trans. Circuits Syst. I, vol. 52, no. 6, pp. 1049-1060, 2005.

J. Arthur and K. Boahen, “Synchrony in silicon: The gamma rhythm,”
IEEE Trans. Neural Networks, vol. 18, no. 6, pp. 1815-1825, 2007.

C. A. Mead, Introduction to VLSI Systems. Reading MA: Addison
Wesley, 1980.

A. J. Martin, “Programming in vlsi: From communicating processes to
delay-insensitive circuits,” California Institute of Technology, Technical
Report CaltechCSTR:1989.cs-tr-89-01, 1989.

——, “Synthesis of asynchronous vlsi circuits,” in Formal Methods For
VLSI Design, J. Staunstrup, Ed. North-Holland, 1990, pp. 237-283.

Boston,

