
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving Synchronous Elastic Circuits: Token Cages and Half-Buffer Retiming / Casu, MARIO ROBERTO. -
ELETTRONICO. - (2010), pp. 128-137. (Intervento presentato al convegno 2010 IEEE Symposium on Asynchronous
Circuits and Systems (ASYNC 2010) tenutosi a Grenoble, France nel 3-6 May 2010) [10.1109/ASYNC.2010.16].

Original

Improving Synchronous Elastic Circuits: Token Cages and Half-Buffer Retiming

Publisher:

Published
DOI:10.1109/ASYNC.2010.16

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2352262 since:

IEEE

Improving Synchronous Elastic Circuits: Token Cages and Half-Buffer Retiming

Mario R. Casu

Dipartimento di Elettronica, Politecnico di Torino, Italy

Abstract—Synchronous elastic circuits help synchronous de-
signs tolerate computation or communication latencies, in a
way similar to the asynchronous design style. The datap-
ath is made elastic by turning registers into elastic buffers
and adding a control layer that uses handshake signals and
join/fork controllers. Join elements are the objective of two
improvements discussed in this paper. The first one is an
elegant implementation of input bypassable queues obtained
by retiming one of the latches of the elastic buffer which
follows the join controller. The second one enlarges the set
of cases in which unneeded input tokens are discarded in join
controllers with early evaluation. Their impact on throughput
are discussed by means of examples representative of typical
topologies and of a realistic processor datapath. Their area and
power costs are evaluated on a 45 nm CMOS technology.

I. INTRODUCTION

The designers of synchronous circuits in nanometer tech-

nologies are facing nowadays unprecedented challenges in

closing their designs. They are more and more forced to take

timing margins because of the high variability which affects

process technology parameters – like threshold voltages and

effective transistor channel lengths – and environmental

parameters like temperature and on-chip supply voltage.

They are then confronted with the dilemma of what to

sacrifice, performance if they pursue a worst case approach,

or design yield if instead they opt for a typical or even a best

case target. Variability takes also other forms, like the rather

unpredictable wiring delay, something that usually harasses

designers in late design stages.

A recent wave of studies advocates the design of syn-

chronous circuits optimized for the typical case and which

tolerate a certain amount of variability through an error-

correction approach [1][2][3] or variable-latency mecha-

nisms [4][5][6]. These methods bring the computer architec-

ture mantra “make the common case fast” – which ensues

from Amdahl’s law [7] – into the circuit and logic domain.

An answer to the variability problem exists since long

time but many consider it too radical and consists in replac-

ing the global clock with an asynchronous self-timed opera-

tion. Asynchronous circuits may be designed to be “elastic”

against environmental changes. A discrete degree of elas-

ticity, limited in resolution by the clock granularity, can

be brought also in the synchronous domain. Synchronous

elastic circuits have been proposed in the last decade in

various shapes [8][9][10][11][12]. From the implementation

viewpoint, they all rely on a handshake protocol based on

valid and stop signals which travel in the same and in the

opposite direction of data, respectively. Information about

late completion of the datapath operations or late arrival of

signals from long wires can be used by the elastic protocol

so as to stretch computation in time (in a discrete way) and

make it insensitive to excessive latency caused by variability.

If the latency-insensitive design approach described firstly

in [8] seems more appropriate for system-on-chip design,

the one proposed in [9] and then resumed and ameliorated

in [10][12] is particularly interesting for circuit and micro-

architectural design [13]. Our work stays in this last vein and

backs two improvements aimed at a performance increase:

1) An elegant implementation of input bypassable queues

which increase the throughput of systems with multi-

input elastic controllers and which are obtained by

retiming one of the latches of the elastic buffers that

follow such controllers.

2) A circuit that we call “token cage” to be added to the

multi-input controller of [12] and which improves its

performance by discarding more of the data which are

valid but useless for a given computation.

We start with a short review of synchronous elastic

circuits in section II, we motivate this work in section III

and illustrate the two main findings in section IV and V.

A simple yet close to real-life example of application is

presented in section VI. Section VII describes the results of

logic synthesis and mapping experiments on a 45 nm CMOS

technology. The conclusions are drawn in section VIII.

II. ELASTIC CIRCUITS: A SHORT REVIEW

We provide some basic grounds on elastic circuits and

refer the reader to a recent published paper and to the

references therein for any further details [14].

In a synchronous elastic circuit (SEC) computations are

scheduled by a global clock. We will not discuss asyn-

chronous elastic circuits and so will refer to SEC simply

as Elastic Circuits (EC), without ambiguity. The constituent

blocks of an EC tolerate (discrete) latencies of their input

data and execute a computation when all data (or the

minimum needed subset of them) are present. The reason

why some of the input data to a block may arrive later than

others is out of the paper’s scope. In general, computation

and communication latencies may arise which could not be

predicted at design time, or scarcely so. Elasticity can be

then also termed and formalized as latency-insensitivity [15].

Marked Graphs (MG), a subclass of Petri Nets [16], and

some derivations like Dual Marked Graphs [12], are an

2010 IEEE Symposium on Asynchronous Circuits and Systems

978-0-7695-4032-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ASYNC.2010.16

128

appropriate model to evaluate behavior and also to calculate

performance of Elastic Circuits. Vertexes and edges of an

MG represent events and relations of causality between

them. Edges can be unmarked or marked with tokens which

represent the system’s state. The initial marking represent

system’s initialization from which evolution begins. When

all input edges of a vertex are marked an event can be

fired, all input tokens are removed and a token is placed

in each output edge. In our case events will be timed by the

global clock ticks and correspond to synchronous elementary

computations. Performance’s measure is throughput, that is

the average number of events per unit time, in other words

the computations per clock cycle made by each block.

EC’s require a handshake protocol to implement latency

tolerance. Every data link connecting two blocks is comple-

mented with a pair of control signals, valid and stop. The

first one flows in the same direction of data and means valid

data. In MG’s vocabulary, it’s a token. The second one flows

in the opposite direction and is used to stop valid data that

cannot be immediately consumed. Valid and stopped data are

stored in Elastic Buffers (EB’s). Their token capacity must be

greater than or equal to the maximum forward-propagation

latency of valid data plus the maximum back-propagation

latency of stop signals, C ≥ Lf + Lb. Usually, EB’s are

designed to hold exactly two items as a consequence of a

unitary latency in both directions. A smart implementation

consists of a pair of level-sensitive latches which may work

as an edge-triggered register when there’s no data to stop, or

as two separately controlled memory elements when there’s

an output stop to absorb [9][10]. In the latter event one

of the latches holds the stopped datum whereas the other

one prevents the incoming one from being lost. An elastic

half-buffer (EHB) controller defines latch transparency and

memory conditions. An EHB controller and a latch form an

EHB and two EHB’s form an EB.

EB’s initialized with void data – we will refer to them

as bubbles – can be added without changing the circuit

functionality. This is an effect of latency insensitivity and

is crucial to improve throughput for particular topologies.

Blocks that have multiple inputs and/or multiple outputs

need a Join and/or a Fork controller. The join element

implements the AND firing rule described above, that is as-

serts a valid output only when all inputs are simultaneously

valid, otherwise the valid ones get stopped. Fork elements

send valid tokens along the various output directions, if the

receivers are ready to get them. If instead one or more stop

the data, the fork controller keeps data valid for them and

invalidates the channels that were not stopped.

The AND firing rule is too restrictive for many practical

cases in which computations take place with a subset of

valid inputs, as it happens for a 2-way multiplexer which

reads one input at a time. The join controller can be then

modified to handle early evaluation and so to fire as soon as

the subset of needed inputs are valid, regardless the status of

the unselected ones. This implies discarding the unneeded

tokens which sooner or later arrive at the join inputs. A

possible technique consists in sending back negative tokens,

a.k.a. antitokens, which travel in the opposite direction of

standard tokens. When a token meets an antitoken, both

are canceled [12]. Or, they can be accumulated locally,

waiting for the positive tokens to arrive [11][17]. These

two techniques are thus nicely termed active and passive

antitokens. A full-blown implementation of active antitokens

requires doubling the protocol signals with negative valid

and stop wires. The question whether a passive or active

implementation performs better is still open, although the

work in [18] indicates a slight preference for the passive one.

Figure 1 shows an example of elastic block partitioned

in datapath and control. The cloud is a combinational logic

the output of which is registered by an EB made of two

latches each managed by its own EHB controller. L and H

indicate active-low and active-high transparent latches. The

join controller implements a strict AND firing rule [10].

Din2

ENL ENH

join ctrl EHB ctrl EHB ctrl

C
o

n
tr

o
l

S´´

V´´

Sout

Vout

Vin1

Sin1

D
a

ta
p

a
th

Dout

Din1

S´

V´

Vin2

Sin2
L

L

H

H

L H

Figure 1. Elastic datapath and control: 2-input join and elastic half-buffer
controllers [10].

In the example in Figure 2 the join controller implements

early evaluation and supports antitoken generation and prop-

agation [12]. The datapath, not reported, is identical to the

one in Figure 1.

Vin2
+

Sin2

−
Sin1

−
Vin1

−
Vin2

−
Sin2

V´
+

S´
+

S´
−

V´
−

S´´
−

V´´
−

S´´
+

V´´
+

H

L

H

L

Vout
+

Sout
+

−
Sout

−
Vout

ENH

EHB ctrl

P1 P2 ENL

join ctrl w/ early evaluation EHB ctrl

L

H

L

H

+
Vin1

+
Sin1

+

FF

FF

EE

GG

Figure 2. Elastic control: 2-input join with early evaluation and elastic
half-buffer controllers with support for antitokens [12].

P1 and P2 in Figure 2 indicate which inputs are “pro-

cessed”. Accordingly, the early-evaluation logic represented

by the block labeled EE will evaluate the following condition

EE = (P1 ∨ V +

in1
) ∧ (P2 ∨ V +

in2
). (1)

129

EE is asserted even if a channel is not valid, provided it is

not processed. In that case, an antitoken (V −

in1
or V −

in2
) can

be generated by G labeled AND gates. The flip-flops are set

when valid antitokens are stopped (V −

in1
∧S−

in1
, V −

in2
∧S−

in2
)

and need to be kept for the next clock cycle. The EHB

controllers are more complex than those in Figure 1 as they

propagate antitokens and elaborate a more sophisticated

enabling condition for the latches.

We did not report examples of fork structures as we will

not touch them from now on. Our optimizations apply to

structures which use both types of join controllers.

III. MOTIVATIONS OF THIS WORK

This work aims to improve the performance of elastic

systems by modifying the join element in two ways. The first

modification applies to both the case of AND firing rule and

of early evaluation. The second one only holds for the case

of join with early evaluation. We briefly motivate the need

for these improvements in the following two subsections.

A. The “bubble bounce” problem

A, B and C on top of Figure 3 are elastic computational

blocks modeled as nodes of a simplified Marked Graph.

Each block has two storage places for tokens – the two

latches of an EB – but they have not been explicitly shown

for simplicity. The EB of A is followed by a fork controller.

The one of C is preceded by a join controller. The initial

marking is given by the token configuration – that is the

black circles – at T=0. The blocks that are enabled to

fire are represented as gray rectangles. Block C receives a

token (valid datum from A) and a bubble (not valid from

B) at time T=0, thus it’s not enabled. Immediately, that is

combinationally, the bubble bounces against the join wall

and turns into a stop for the valid datum. The immediate

stop stalls block A which is not enabled to fire at T=0 and

saves the incoming token in the L latch of its EB (token

shown within the block at T=1).

The first consequence of this behavior emerges if blocks

A and B are physically distant from the join block. The time

it takes to propagate the bubble along the wire, the join logic

delay and finally the time to back-propagate the stop along

the valid channel must be less than a clock period and can

be itself a clock period limiter if the wires are long. This

was noticed first by C.-H. Li and others in [19].

The second consequence is a throughput reduction for

topologies like reconverging branches with unequal laten-

cies, like on top of Figure 3 where the outputs of A

reconverge on C with different latencies. The stop repeats

periodically and every block is enabled to fire once every

two clock cycles. The throughput of the system in figure

is then 1/2 and is said to be bubble limited [14]. As we

previously said, adding bubbles does not change system

functionality. So a way to improve the throughput could be

T = 0

A

B

A

C

BB

A

C

C C

CC

B

A A

C C

A A A

B B B

C C

A A A

CC

B B B

B

st
o

p

T = 0

T = 0 T = 3

T = 3

T = 1 T = 2

T = 2T = 1

st
o

p

T = 2

st
o

p

T = 3T = 1

B

A

Figure 3. Top of figure: the bubble bounce problem. Middle: buffer
insertion. Bottom: buffer sizing.

that of adding a bubble in the “fast” channel so as to balance

the channel latencies. This is illustrated in the middle of

Figure 3. The time evolution shows that there is no need to

stop any data because all channels have the same latency.

The throughput is 2/3 because all blocks fire twice every

three cycles (marking at T=3 is the same of T=0).

In more complex systems than our simple example,

adding bubbles can solve a local problem but may degrade

the overall system throughput by creating new critical

cycles [20]. Another option without negative consequences

is buffer sizing which consists in increasing the capacity

of buffers in short branches, possibly without changing the

forward latency. In the problem at stake, we need an input

buffer added to the fast channel with zero forward-latency

and one-cycle backward latency. In practice, a bypassable

FIFO queue which stores the data in case of stop created

by the bubble bounce and which delays the stop itself. The

combinational path of the stop signal will be split in two

clock cycles, making the timing constraint less burdensome.

The bottom part of Figure 3 shows what happens when

such a queue was added on the left input of C. The early

valid from A gets stored (token within block C at T=1).

130

When the late token arrives from B the queue is read and

the new datum from A gets stopped. However this stop has

no effect as A was already stalled because its input was not

valid. The throughput increases again from 1/2 to 2/3.

We show later on in section IV an elegant solution for

this queue which basically consists in retiming the elastic

half-buffer which follows the join element.

B. The “useless (yet stopped) token” problem

Suppose now that the join controller of block C in the top-

most part of Figure 4 implements an early evaluation firing

rule. Letter “P” indicates the right input as the needed one,

that is the “processed” input, for the present computation.

Unfortunately, the processed channel is devoid of tokens

whereas the left input contains a “useless” token. The join

controller of C cannot cancel that token with an antitoken

because this would require an output positive token to be

generated at the same time (token preservation [12]).

A

C

A

B B

B

CC

B B

B B

A A

A AA

C C

CC

B

T = 2

st
o

p

st
o

p

T = 0 T = 1 T = 3

T = 2T = 1

st
o

p

T = 3T = 0

C

A

P P P

P P P P

P

Figure 4. Top: the useless token problem. Bottom: effect of token cage.

To figure out the situation it is expedient looking at the

implementation of the controller logic in Figure 2 and at

logic equation (1). Suppose that input 1 is processed and

not valid while input 2 is not processed and valid:

(P1 ∧ V +

in1
) ∧ (P2 ∧ V +

in2
).

The consequent false value of EE in (1) and so of V ′+ in

Figure 2 sets to false the two negative valid signals V −

in1

and V −

in2
(we assume a false value of V −

out and of the two

flip-flops). In turn the false value of V −

in2
asserts S+

in2
which

stops the valid input. This is graphically represented by the

stop arrow at T=0 in Figure 4, top part.

The back-pressure exerted on the valid and useless chan-

nel results in the end in a smaller throughput, if that channel

belongs to a critical part of the system. The time evolution

on top of Figure 4 shows that a throughput of 1/2 is obtained,

exactly like it happens in the case without early evaluation

depicted in the top part of Figure 3.

A reasonable solution consists in discarding the useless

datum and “remembering” that it was canceled out. If, after

such elimination, another token pops up in that channel

before the needed token on the processed channel arrives, the

new one will be stopped, as it is impossible to know if it will

be needed in the future (the processing configuration may

switch). We need thus a sort of “queue” of unit capacity, just

for the valid signal, not for the data, but since we will not

use the queue content anymore we call it “token death cage”,

or “cage” for short. The bottom part of Figure 4 shows the

time evolution when the useless token is caged – and not

stopped anymore – at time T=1. The resulting throughput is

2/3, the maximum possible for this case, obtained without

any buffer sizing. As shown in figure, we need to stop at T=1

the new datum on the non-processed input: We don’t know

if it will be processed next. However, there’s no throughput

penalty here because the stop occurs when A is not enabled.

We show later on in section V a possible implementation

of the cage.

IV. HALF-BUFFER RETIMING

Figure 5 represents a typical situation in which two

channels from two EB’s on stage i of a hypothetical pipeline

join on a single EB on stage i+1. The figure shows both data

and control paths. The clouds represent combinational logic

and/or wires annotated with delays, Td1, Td2 and Tdj .

C
o

n
tr

o
l

D
a

ta
p

a
th

JOIN

Tdj

Stage i+1Stage i

L H

M

Na

Nb

Td2HL

HL Td1

EHB
ctrl

EHB
ctrl

EHB
ctrl

EHB
ctrl

EHB
ctrl

EHB
ctrl

Figure 5. Datapath: Two data inputs merge on the same output data.
Control: The join controller merges/forks valid/stop signals.

We create two bypassable queues on the inputs of stage

i+1 in two steps whose final result is shown in Figure 6:

1. Retime the negative level-sensitive latch (L) of the output

EB moving it backward across the cloud.

2. Retime and duplicate the EHB controller and let the two

131

C
o

n
tr

o
l

D
a

ta
p

a
th

Stage i+1Stage i

Td1

Td2

Tdj

JOIN

M

Nb

Na

L

ctrl
EHB

HL

H

L

EHB
ctrl

EHB
ctrl

EHB
ctrl

EHB
ctrl

EHB
ctrl

EHB
ctrl

HL

Figure 6. Datapath: Two negative-level sensitive latches have been retimed.
Control: Two elastic half-buffers controlled have been retimed.

copies operate independently on channels A and B.

Moving back and doubling the latch does not necessarily

mean doubling the area occupied. It may be the case that

the input and output size of the combinational logic are such

that Na + Nb ≤ M (take for example a 16x16 multiplier

with 32 bit output).

EHB retiming applies to join controllers without and with

early evaluation. Since the latter contain the edge-triggered

flip-flops shown in Figure 2, after having retimed the

active-low latch we must change the trigger polarity of the

flip-flops from positive to negative.

Two issues arise, though, when we retime latches and

EHB controllers. The first one regards timing constraints.

The second one concerns the way antitokens produced by

an early evaluating controller move across the latches. The

following two subsections face these two matters.

A. Timing issues with latch retiming

Moving the two latches ahead may require a time borrow

to complete the computation of the “cloud” in Figure 6

which takes Tdj time units. Suppose we use a single-phase

clock scheme with symmetric duration of low and high

phases, 1/2 clock cycle each. Suppose that prior to latch

retiming there was no slack left in the path which crosses

the two datapath stages, i-th and i+1-th (critical path). Then

the clock-output delay tcq of the upstream EB plus the

propagation delay of the clouds and the setup time tsu of the

downstream EB sum up to a clock period Tck. In formulas,

tcq + max(Td1, Td2) + Tdj + tsu = Tck. (2)

This condition is graphically exemplified in Figure 7, top

waveforms labeled “before retiming”. The input of the

active-low latch of stage i+1 (Lin) arrives just tsu before

clock’s edge (null slack) and gets stored. The output of the

active-high latch (Hout) arrives tcq after the second positive

clock edge.

before retiming

tcq tcq

tcq

after retiming (case 2)

tcq Tdj

Td1(2)+Tdj

after retiming (case 1)

tcq Tdj tdqTd1(2)

Td1(2) slk

CK

CK

CK

Lin

Hout

Lin

Hin

Hout

Lin

Hin

Hout

tsu

tdq

tdq

Figure 7. Timing waveforms before and after retiming.

After retiming, two possible situations occur depending

on the arrival time of Lin:

1) tck−q + max(Td1, Td2) > Tck/2.

2) tck−q + max(Td1, Td2) ≤ Tck/2.

The combination of these two inequalities with (2) results

in a duration of Tdj shorter or longer than Tck/2 − tsu. In

the first case, corresponding to the middle part of Figure 7,

Hout arrives 2tdq − tsu after clock’s edge. Such quantity is

close to tcq if both input-output delay tdq and setup time tsu

are on the same order of the clock-output delay, as it usually

occurs. In this fortunate case, the arrival time of Hout does

not change appreciably and there’s no extra time to borrow

132

with respect to the case we had before retiming.

In the second case, exemplified in the bottom part of

Figure 7, there is a slack slk between the arrival time of

Lin and the opening of the active-low latch (which occurs

after 1/2 clock cycle). Therefore, the arrival time of Hout

exceeds the clock period of slk + tdq + tcq − tsu. If again

tdq ≃ tsu, slk is more or less the quantity in excess of tcq

that needs to be borrowed, if available, from the next stage.

In case of early evaluation controllers, L latches must be

retimed also on P1 and P2 inputs of Figure 2 and a similar

analysis must be done for timing paths that pass through

them. Usually the simpler protocol logic has more slack than

datapath logic making it easier to fix timing constraints.

It’s worth noting that retiming helps tolerate delay vari-

ability as it relaxes the constraint of (2): The computation is

allowed to take more time than nominal Tdj , provided that

a slack can be borrowed from stage i+2.

B. The “late antitoken bounce” problem

Assume we want to apply retiming to a join controller

with early evaluation. We still want to solve the bubble

bounce problem by delaying the backpressure signal that

stops an “early” valid while we’re waiting for the other

token. However, when such early valid is the needed one,

we don’t stop it and send instead an antitoken back in

the bubble direction. Without retiming, such antitoken is

immediately, that is combinationally, sent back. Again, such

token-antitoken bounce could be timing critical in the same

way as it was the bubble bounce. But apart from this

potential problem, such immediacy may be important for

throughput reasons. With retiming, the early token reaches

the join controller and generates an antitoken half clock

cycle later due to the latch crossing. In turn, this “bounced”

antitoken reaches the upstream EB another half clock cycle

later, due to the other latch. Overall, the antitoken arrives

after one clock cycle, a latency which may negatively impact

performance, as explained in Figure 8. In the example

labeled “before retiming”, C and D implement early evalua-

tion. “P” indicates the needed input for present computation.

The join controller of D immediately generates an antitoken

– a white circle in figure – at T=0. Such antitoken goes back

and annihilates the token on B’s output at T=1. All blocks

except C become and remain enabled (gray shading) after 2

clock cycles from inception. The system throughput is one

operation per clock cycle. The fact that C never operates has

no effect on global performance as its output is unnecessary

to D, and hence unnecessary to the whole system.

The example in the middle of Figure 8 represents the

same system in which retiming was applied to block D. The

antitoken arrives in B at time T=2, one clock cycle later

than in the previous example. The token on C’s input at time

T=1 is not annihilated and gets stopped as a consequence

of a bubble bounce. Such stop back-propagates and makes

stall first B (T=1), second A (T=2), and finally D (T=3, not

A E

B B

A E

C C

A E

B

A E

B

E

C C

A E

B

A E

B

E

P P P

P P P

P P P

late antitoken
bounce

late antitoken
bounce

token−antitoken
annihilation

token−antitoken
annihilation

before retiming

C C

A E

B F

T = 2

F

T = 0

F

T = 1

C

F

T = 2

F

T = 0

F

T = 1

B

A

C

D D D

F

T = 2

F

T = 0

F

T = 1

C

B

A

stop

D D D

D D D

immediate
antitoken bounceP P P

token−antitoken
annihilation

P P P

P P P

bubble bounce
stop due to

after retiming of blocks C and D

after retiming of block D

Figure 8. Example of timing evolution before and after retiming with
early evaluation blocks.

shown). If the configuration of processed channels never

changes, this situation repeats periodically leading to an

overall throughput of 4/5, 20% lower than the original case.

If we finally apply retiming to both blocks C and D,

we remove the bubble bounce problem which occurred at

time T=1 by storing the token on C’s input in the retimed

latch. As the bottom part of Figure 8 shows, at T=2 such

token gets annihilated and leaves its place free for the newly

arrived token. In the end, the final throughput is 1, with no

performance degradation compared to the original case.

The last example shows that the application of retiming

133

needs to be done judiciously whereas early evaluation blocks

are used. As for the join controllers without early evaluation,

the retiming technique can be always applied without any

throughput penalty, after a proper timing verification.

V. TOKEN CAGES

The join controller with early evaluation of Figure 2 sets

the output token if none of the flip-flops holds a previously

stopped antitoken and the output of the early evaluation

block (EE) is also true. The latter condition occurs if the

processed channel is valid, regardless the state of the not

processed one, as explained by equation (1). If instead the

processed channel is not valid, EE’s output is false and the

controller stops the not processed input, if valid (unless there

was a previously stopped antitoken stored in the flip-flops

which cancels the valid token). The not processed token is

stopped even though it will never be used. As we previously

noted in section III-B, instead of stopping it we can put it

in a cage waiting for the right conditions to kill it, unless

another token was previously caught and not killed yet.

The circuit in Figure 9 implements the token cages of a

2-in join controller. The addition of cages concerns only the

control part of a circuit, the datapath remains unmodified.

If cages are free, that is the flip-flops content is zero, the

conditions under which tokens get caged are

S′+

1 ∧ V +

in1
∧ P1 ∧ EE,

S′+

2 ∧ V +

in2
∧ P2 ∧ EE.

A caged token gets killed, that is the FF content is zeroed,

when the join element removes the corresponding stop signal

S′+

1 or S′+

2 . An antitoken V ′−

1 or V ′−

2 gets propagated to

V −

in1
or V −

in2
only if the cage is free. The join controller

operation guarantees the following invariants [12]

V ′−

1 ∧ S′+

1 , V ′+

1 ∧ S′−

1 ,

V ′−

2 ∧ S′+

2 , V ′+

2 ∧ S′−

2 .

Therefore, the join controller cannot send a negative token

back without deasserting the corresponding positive stop

signal. So, if the cage is occupied and an antitoken (V ′−

1

or V ′−

2) is sent, a false value of S′+

1 or S′+

2 will clean the

cage (its token gets annihilated by the incoming antitoken).

It is important to check that the insertion of cages respects

the invariants and other SEC properties like persistence and

liveness [10][12]. Although it is always possible to resort to

model checking for such verification, it is rather easy to fully

prove them because of the simplicity of the cage. We did

not report proofs for reasons of space but we can tell that by

assuming the absurd hypothesis of properties violation by the

cages, one concludes that it is the surrounding environment

to violate them, which cannot be true.

The example in Figure 10 is similar to the one we

previously analyzed in Figure 8 in which block D was

retimed and C was not, and which had a throughput of

Vout
+

+
Sout

CAGE 2

+
Vin1

+
Sin1

−
Vin1

−
Sin1

S1´

V1´

V1´

S1´

+

+

−

−

+

+

−

−

S2´

V2´

V2´

S2´

Vout
−

Sout
−

+

+

−

−
Sin2

Vin2

Sin2

Vin2

P1 P2

E.E.

JOIN

CTRL

FF

P2
EE

P2
EE

FF

P1
EE

P1
EE

CAGE 1

Figure 9. Insertion of two token cages on the join controller inputs.

A E

B

A E E

F

T = 2

F

T = 0

F

T = 1

B

A

C

stop

B

D D D

P P P

P P P

retiming of block D and cages in C

C C

Figure 10. Example of timing evolution after cage insertion.

4/5. Here the difference is that cages have been added to

the inputs of block C1. At time T=1, the bubble on C’s

input does not turn into a stop because the useless token

gets caged. At time T=2, the caged token gets killed but the

new value needs to be stopped, as we don’t know if it will

be necessary in the following computation (the processed

input may switch) and because there’s no place to store it

as we could do with retimed latches. The stop signal then

back-propagates and progressively stalls all blocks along the

(B,A,D,C) loop. The resulting throughput will be 5/6, higher

than the value of 4/5 that we obtain without cages.

The capture of useless tokens helps improve throughput

for a small area overhead that we quantify later on in section

VII.

1It’s not necessary to add token cages to all of the inputs, but just to the
ones that need them to increase the throughput.

134

VI. A REALISTIC EXAMPLE

Figure 11(a) shows a simplified elastic processor the

execution unit of which supports 4 types of operations:

• addition (ADD):X + Y
• multiplication (MUL):X · Y
• multiply & accumulate (MAC): X · Y + Z
• add & accumulate (AAC): X + Z

w
ri

te
−

b
ac

k
 l

o
o
p

IFD + RF

MEM

EXE

MEM

EXE

IFD + RF

MEM

EXE

IFD + RF

wadd dinradd1 radd2

dout1 dout2

Y X

RF

IFD

ac
cu

m
u
la

to
r

lo
o
p

DMEM

add din

dout

Z 0

(a)

(b)

(d)

(c)

stop

Figure 11. Example of elastic processor: (a) datapath, (b) marked graph
w/o buffers, (c) w/ one buffer to break critical path, (d) w/ a second buffer
to balance latencies.

The IFD block performs instruction fetch and decode, the

RF block is the register file and the DMEM block is the data

memory accessed via load-store instructions. The execution

units includes a multiplier and an adder/accumulator. The

usual branch loop found in all processors was not shown

for simplicity in Figure 11(a) but was taken care of in the

graphs reported on the right of the figure itself. The self-loop

of the IFD+RF block on the one hand describes the branch

loop, on the other hand represents a “state” and the fact that

the register file always stores a valid token [13].

The graph in Figure 11(b) does not contain bubbles

and the corresponding throughput is 1 (all blocks always

enabled). Join elements do not implement early evaluation,

for now. The critical path of the circuit, highlighted in Figure

11(a) with a dashed line, goes through the multiplier and the

adder. Suppose that we want to increase the clock frequency

by breaking the critical path and inserting an elastic buffer

initialized without a token, i.e. a bubble, which corresponds

to the dashed darker gray register in Figure 11(a). The

throughput can be calculated by inspection of the simplified

marked graph in Figure 11(c) in which we inserted a gray

buffer. Due to the bubble bounce problem (highlighted with

a stop arrow in figure), the throughput is 1/2, exactly like

in the example we reported in the top part of Figure 3. The

reduction of throughput wipes out any frequency increase.

If we now apply half-buffer retiming to the EXE join

element to solve the bubble bounce problem, we can raise

the throughput up to 2/3. If we instead insert buffers on

the register file outputs (pale gray boxes in figure) we will

be able to equalize the paths, as clear from the graph in

Figure 11(d), making the throughput increase up to 3/4.

Buffer insertion seems the best option, but we did not

take early evaluation under consideration so far. Assume

that the EXE join controller implements early evaluation.

Suppose we do not insert the second buffer that equalizes

latencies. Then we have two different situations depicted in

Figure 12(a) and 12(b), depending on the type of operation.

In the left graph, the P letter indicates that the EXE unit

is processing the low latency result, coming from the adder

(ADD or AAC instructions) or directly from the RF. When

this fast path is selected, the throughput is maximum, that

is 1. The dashed loop which crosses only blocks that hold

tokens and no bubbles demonstrates this. When the late path

is chosen (MUL or MAC operations), Figure 12(b), a bubble

bounce occurs and the fast token gets stopped, though not

processed. If no retiming nor cages are used, the throughput

is 1/2 as it was for the example on top of Figure 4. Latch

retiming raises it up to 2/3 and finally retiming plus cages

reaches a throughput of 3/4, the maximum possible since

the active loop now contains 3 tokens and 1 bubble.

Now suppose a second buffer was inserted for balancing

the two latencies. Figure 12(c)-(d) shows the same two

processing configurations of Figure 12(a)-(b). It’s clear that

whatever the processing case, the active loop contains three

tokens and one bubble and the throughput is 3/4, always.

In conclusion, with buffer insertion we cannot reach

unitary throughput. The throughput with token cages and

retiming is instead as much as the buffer insertion one in

the worst case and maximum, i.e. unitary, in the best case.

VII. SYNTHESIS AND MAPPING EXPERIMENTS

The performance results of the proposed controllers come

at an area and power cost that we quantified so as to have a

clearer picture. We first described in synthesizable VHDL

the following four elastic controllers which combine the

basic elements described in [10] and [12] and that we used

as reference designs:

• 2i/1o: 2-input join and EB controller (like in Figure 1).

135

Table I
LOGIC SYNTHESIS AND TECHNOLOGY MAPPING RESULTS ON A CMOS 45 NM TECHNOLOGY.

area dynamic power leakage power

(µm
2) ovh. (%) vs EB (%) (nW/MHz) ovh. (%) vs EB (%) (nW) ovh. (%) vs EB (%)

64 bits EB (datapath) 1099.32 – – 452.13 – – 38.46 – –

2i/1o after [10][12] 32.10 – 2.9 49.76 – 11.0 6.71 – 17.4

2i/1o ret. 41.98 +30.8 3.8 (+0.9) 66.32 +33 14.7 (+3.7) 7.79 +16 20.3 (+2.9)

EE 2i/1o after [10][12] 82.91 – 7.5 109.12 – 24.1 12.85 – 33.4

EE 2i/1o ret. 101.61 +22.6 9.2 (+1.7) 131.74 +20.7 29.1 (+5.0) 17.33 +34.9 45.1 (+11.7)

EE 2i/1o cages 110.07 +32.8 10.1 (+2.6) 141.0 +29.2 31.2 (+7.1) 16.89 +31.4 43.9 (+10.5)

EE 2i/1o ret. & cages 132.65 +60.0 12.1 (+4.6) 158.9 +45.6 35.1 (+11) 21.96 +70.9 57.1 (+23.7)

2i/2o after [10][12] 44.81 – 4.1 71.24 – 15.8 6.53 – 17.0

2i/2o ret. 60.33 +34.6 5.5 (+1.40) 90.88 +27.6 20.1 (+4.3) 9.79 49.9 25.4 (+12.0)

EE 2i/2o after [10][12] 109.02 – 9.9 138.66 – 30.7 15.84 – 41.2

EE 2i/2o ret. 128.77 +18.1 11.7 (+1.8) 164.38 +18.5 36.4 (+5.7) 19.78 +24.9 51.4 (+10.2)

EE 2i/2o cages 136.18 +24.9 12.4 (+2.5) 172.14 +24.1 38.1 (+7.4) 20.49 +29.4 53.3 (+12.1)

EE 2i/2o ret. & cages 159.82 +46.6 14.5 (+4.6) 192.98 +39.2 42.7 (+12.0) 25.79 +62.8 67.1 (+25.9)

IFD + RF

MEM

EXE

IFD + RF

MEM

EXE

IFD + RF

MEM

EXE

IFD + RF

MEM

EXE

(a) (b)

(c) (d)

P

P

stop

P

P

Figure 12. EXE join with early evaluation and different processing
conditions: (a) no buffer and fast input processed, (b) no buffer and slow
input, (c) buffer and fast input, (d) buffer and slow input.

• EE 2i/1o: 2i/1o with early evaluation (like in Figure 2).

• 2i/2o: 2i/1o and 2-outputs fork controller.

• EE 2i/2o: EE 2i/io and 2-outputs fork controller.

Then we described the following eight new controllers:

• 2i/1o ret.: 2i/1o with EHB retimed.

• EE 2i/1o ret.: EE 2i/1o with EHB retimed.

• EE 2i/1o cages: EE 2i/1o with cages.

• EE 2i/1o ret. & cages: EE 2i/1o with EHB retimed and

cages.

• 2i/2o ret.: 2i/1o ret. and 2-outputs fork.

• EE 2i/2o ret.: EE 2i/1o ret. and 2-outputs fork.

• EE 2i/2o cages: EE 2i/1o cages and 2-outputs fork.

• EE 2i/2o ret. & cages: EE 2i/1o ret. & cages and 2-

outputs fork.

Finally, we evaluated area and power consumption (dy-

namic and leakage) after logic synthesis and technology

mapping on a 45 nm 1.1 V CMOS technology using Syn-

opsys Design Compiler. We set a 500 MHz clock frequency

constraint, with all inputs driven by a fanout-of-one (FO1)

inverter and all outputs loaded with four FO1 inverters

(FO4 load), and nominal process, voltage and temperature

conditions. A 50% switching probability was set on valid

and stop inputs.

Table I reports all the results we obtained. They are

expressed as both absolute values and overhead (in percent-

age) with respect to the reference designs after [10][12].

They are also expressed as percentage of the area and

power consumed by the datapath portion of a 64-bits Elastic

Buffer (64 bits latch pair). This comparison will help figure

out the controller overhead on the datapath. We did not

deliberately report the possible datapath overhead arising

from the duplication of input latches on retiming cases, as

a correct (and fair) evaluation depends on the bitwidth of

inputs and outputs of the logic sandwiched between L and

H latches. As we already noticed in section IV, it might turn

out that there’s no overhead or that an area saving may even

occur. A case-by-case analysis is required for this type of

evaluation.

If we look at the controllers figures only and ignore the

controlled datapath, the results in table show that the over-

heads of the new elastic controllers compared to the original

ones proposed in [10][12] (“ovh. (%)” columns) are quite

significant (in the 20-30% range for the case with retiming

or cages only and in the 50-60% range when retiming and

136

cages are used together). However the controllers always

come along with an elastic datapath and so the comparisons

with an EB are more significant and appropriate. When we

compare the controllers figures with a 64 bits EB (“vs. EB

(%)” columns), the extra area cost with respect to the

standard controllers (value between parentheses in “vs. EB

(%)” columns) is less than 5%, the dynamic power overhead

less than 12% and up to 25.9% for the leakage contribution

in the case of the most complex controller.

It’s certainly true that comparative results depend on the

EB size chosen and that a smaller choice (e.g. 16 or 32

bits) is bound to make relative figures look bigger. But it’s

also true that even in case of 16 or 32 bits datapaths, a

single stage does not just contain one register, it may contain

two registers (e.g. two operands or data and address pair)

plus random and/or structured combinational logic that we

could not account for because, again, a case-by-case analysis

would be required. Based on the obtained results we judge

that the area and power overhead is a tolerable amount for

a large set of typical and practical cases of application.

VIII. CONCLUSION

In this paper we proposed two improvements that apply to

the design of synchronous elastic circuits: half-buffer retim-

ing and token cages. They aim to solve some performance

issues that arise in the standard elastic buffer controllers.

They can also be combined together for a further throughput

enhancement. We discussed their benefits and warned about

potential problems that may arise from the use of retimed

half-buffers. We chose a realistic example to better display

their use and potential. Finally, we evaluated the cost of

the enhanced elastic controllers in terms of area and power.

In a complex design, of which the datapath represents the

largest part, our opinion is that the marginal cost of the new

controllers will be a worth price paid for the performance

improvement. However, a complete evaluation requires to

know the characteristics of the involved datapath, something

that in this preliminary analysis was left out as we focused

mainly on the control part of synchronous elastic circuits.

In the future, we plan to build real-size designs for this

purpose. This will allow also further types of analysis like,

for instance, the comparison between EHB retiming which

creates a bypassable queue on all of the inputs of a datapath

stage and the insertion of custom queues just on the inputs

that requires them for throughput reasons.

REFERENCES

[1] T. Austin et al., “ Opportunities and Challenges for Better Than
Worst-Case Design,” Proc. ASP-DAC, Jan. 2005, pp. 2–7.

[2] D. Blaauw et al., “Razor II: In Situ Error Detection and Cor-
rection for PVT and SER Tolerance,” Proc. ISSCC, Feb. 2008,
pp. 400–622.

[3] K.A. Bowman et al., “Energy-Efficient and Metastability-
Immune Resilient Circuits for Dynamic Variation Tolerance,”
IEEE JSSC, vol. 44, no. 1, Jan. 2009, pp. 49–63.

[4] S. Ghosh et al., “CRISTA: A New Paradigm for Low-Power,
Variation-Tolerant, and Adaptive Circuit Synthesis Using Crit-
ical Path Isolation,” IEEE TCAD, vol. 26, no. 11, Nov. 2007,
pp. 1947–1956.

[5] X. Liang et al. “Revival: A Variation-Tolerant Architecture Us-
ing Voltage Interpolation and Variable Latency,” IEEE Micro,
vol. 29, no. 1, Jan.-Feb. 2009, pp. 127-138.

[6] D. Bañeres et al., “Variable-Latency Design by Function
Speculation,” Proc. DATE, Apr. 2009, pp. 1704–1709.

[7] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan-Kauffman, 2006.

[8] L.P. Carloni et al., “A Methodology for Correct-by-
Construction Latency Insensitive Design,” Proc. ICCAD,
Nov. 1999, pp. 309–315.

[9] H.M. Jacobson et al., “Synchronous Interlocked Pipelines,”
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst.,
Apr. 2002, pp. 3–12.

[10] J. Cortadella et al., “Synthesis of Synchronous Elastic Archi-
tectures, Proc. DAC, July 2006, pp. 657–662.

[11] M.R. Casu and L. Macchiarulo, “Adaptive Latency-Insensitive
Protocols,” IEEE Des. Test Comput., vol. 24, no. 5, Sep./Oct.
2007, pp. 442–452.

[12] J. Cortadella and M. Kishinevsky, “Synchronous Elastic
Circuits with Early Evaluation and Token Counterflow,”
Proc. DAC, June 2007, pp. 416–419.

[13] T. Kam et al., “Correct-By-Construction Microarchitectural
Pipelining”, Proc. ICCAD, Nov. 2008, pp. 434-441.

[14] J. Carmona et al., “Elastic Circuits,” IEEE TCAD, vol. 28,
no. 10, Oct. 2009, pp. 1437–1455.

[15] L.P. Carloni et al., “Theory of Latency-Insensitive Design,”
IEEE TCAD, vol. 20, no. 9, Sep. 2009, pp. 1059–1076.

[16] T. Murata, “Petri nets: Properties, Analysis and Applications,”
Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[17] C.-H. Li and L.P. Carloni, “Leveraging Local Intracore Infor-
mation to Increase Global Performance in Block-Based Design
of Systems-on-Chip,” IEEE TCAD, vol. 28, no. 2, Feb. 2009,
pp. 165–178.

[18] M.R. Casu and L. Macchiarulo, “Adaptive Latency Insensi-
tive Protocols and Elastic Circuits with Early Evaluation: A
Comparative Analysis,” Elec. Notes in Theor. Comp. Science
(ENTCS), 245 (2009), pp. 35–50.

[19] C.-H. Li et al., “Design, Implementation, and Validation
of a New Class of Interface Circuits for Latency-Insensitive
Design,” Proc. Int. Conf. Formal Methods Models Codesign,
May 2007, pp. 13–22.

[20] R. Collins and L.P. Carloni, “Topology-Based Optimization
of Maximal Sustainable Throughput in a Latency-Insensitive
System,” Proc. DAC, June 2007, pp. 410–416.

137

