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Abstract—The configurable routing in asynchronous FPGAs
accounts for 80-90% of the total area and consumes 80-90% of
the total power. This paper presents an asynchronous FPGA that
applies two techniques to reduce power consumption. First, the
routing is altered to use two-phase logic rather than four-phase
logic. Second, enable (acknowledge) signals are voltage scaled
such that the overall FPGA performance is not affected. The re-
sulting FPGA is evaluated across eight of the MCNC LGSynth93
benchmarks. This FPGA consumes up to 60% less power than
a conventional asynchronous FPGA. In addition, the extra slack
provided by two-phase routing increases the throughput of some
benchmarks by up to 70%. The additional hardware required to
implement the low-power techniques increases the total area by
only 12%.

I. INTRODUCTION

A field-programmable gate array (FPGA) is a repro-

grammable integrated circuit composed of configurable logic

elements surrounded by configurable interconnect. Such a

system is attractive because it provides a high-speed solution

when compared to software and a low-cost solution when

compared to dedicated hardware. Synchronous FPGAs contain

a relatively small amount of pipelining. Typically, flip-flops

are placed adjacent to the configurable logic elements and

the configurable interconnect is not pipelined. As a result,

synchronous FPGAs operate at a fraction of the speed of other

types of integrated circuits, e.g., application-specific integrated

circuits (ASIC).

FPGAs have been shown to be amenable to the fine-

grain pipelining of high-speed asynchronous design [1]. Asyn-

chronous FPGAs can run at speeds up to three times faster

than their synchronous counterparts [2], [3]. However, this

speed advantage comes at a significant increase in both area

and power for the configurable interconnect. Whereas the

synchronous interconnect contains single-rail data and mul-

tiplexers, the asynchronous interconnect contains full asyn-

chronous buffer stages, multiplexers, and programmable c-

elements. Bundled-data is not applicable because the FPGA

interconnect needs to support bitwise routing. The interconnect

in an asynchronous FPGA accounts for 80-90% of the total

power consumption.

We propose two techniques to reduce power in asyn-

chronous FGPA interconnect: i) use two-phase logic [4] and

ii) apply voltage scaling to the enable (acknowledge) signals.

Two-phase logic has been previously proposed for system-

level interconnect with four-phase logic used for computa-

tion [5]. We show that a similar scheme is feasible for a

realistic FPGA architecture. The additional challenges here

are: i) the two-phase interconnect is buffered and ii) the

protocol converters are more expensive due to the bitwise

routing. The resulting interconnect has double the slack, which

improves performance in some designs.

We present a novel scheme for applying voltage scaling

to the enable signals in the interconnect. Most user designs

do not operate near peak throughput because they lack the

necessary pipelining to take full advantage of the asynchronous

FPGA. In these cases, it is possible to apply voltage scaling to

certain regions of the design to save power without impacting

performance. We derive a series of equations that determine

the amount of voltage scaling possible in these structures

without reducing the throughput. Some of the supporting

circuitry required is based upon our previous work [6].

This paper is organized as follows. Section 2 presents an

overview of the asynchronous FPGA architecture. Section 3

describes the circuits needed for two-phase conversion and

enable scaling. Section 4 details the timing analysis needed to

properly apply enable scaling. Section 5 discusses the setup

details of our experiments. Section 6 presents our results and

we conclude in Section 7.

II. FPGA ARCHITECTURE

A. Overview

A high-level overview of the asynchronous FPGA is shown

in Figure 1. The FPGA is composed of configurable logic

blocks (CLB) connected together through an array of switch

boxes (SB). In a synchronous FPGA, the SB is built out of

simple multiplexers. In an asynchronous FPGA architecture,

the SB is made of full asynchronous buffer stages, multi-

plexers, and programmable c-elements. This buffering in the

interconnect allows asynchronous FPGAs to run at higher

frequencies than synchronous FPGAs. However, this buffering

also greatly increases the size of the SB and increases its power

consumption. The FPGA is programmed through a chip-wide

distributed memory (not shown).

B. Routing

Each switch box has 32 inputs and 32 outputs in each

direction, as shown in Figure 2. The switch box is disjoint,

i.e., horizontal and vertical tracks connect only to tracks of the

same number. The switchpoint is implemented as 32 switch



Fig. 1. An asynchronous FPGA fabric composed of switch boxes (SB) and
configurable logic blocks (CLB).

points along the diagonal. At each switch point, an input may

change directions or enter the CLB. In order for an input to

change tracks, it must enter and exit the CLB, burning CLB

resources. The switch point can handle up to two different

inputs and copy them out to any combination of outputs.

Each switch point contains two four-input to four-output (4:4)

switches.

It is often the case that outputs of a CLB are inputs to

another CLB that is several tiles away, rather than adjacent to

their tile. Due to this, it is unnecessary for each track to stop

at every SB. To take advantage of these cases, different length

wire segments are often used to reduce the area of SBs and

decrease the latency through a route. Figure 3 shows the three

types of wire segments used in the target architecture. For

instance, a hex segment connects SBs that are six tiles apart.

In the target architecture, there are 12 singles, 12 doubles and

8 hexes.

C. Configurable Logic Block

The CLB for the target FPGA architecture is shown in

Figure 4. The CLB contains a logic core surrounded by input

Fig. 2. A 32 x 32 disjoint switch box made from 32 switch points.

Fig. 3. The three types of routing segments used in this FPGA.

and output connection boxes. The connection boxes allow any

input or output of the logic core to connect to any switch point

in the SB. Inside the logic core are four four-input lookup

tables (LUT4). The LUT4 outputs one of 16 preprogrammed

values based upon the four inputs. There are four LUT4s,

therefore the logic core has a total of 16 inputs and 4 outputs.

To support two-phase routing, the only alteration needed is the

addition of phase converters for each input and output of the

logic core.

III. SUPPORTING CIRCUITRY

Two types of supporting circuits are needed to implement

two-phase switching and enable scaling in the interconnect.

Protocol converters are needed to convert between the two-

phase logic in the switch boxes and the four-phase logic in

the configurable logic blocks. In addition, we require a special

two-phase 4:4 switch that can be configured to use a low-

voltage enable signal.

A. Protocol Converters

There are two basic protocols used for two-phase hand-

shakes. We will refer to the first protocol as the rail transition

(RT) protocol, as shown on the left of Figure 5. With the RT

protocol, you simply transition the rail that you want to send

as data. For example, we will send a ’1’ from state ’00’. Both

the true rail (the first digit) and the false rail (the second digit)

are logic low in state ’00’. To send a ’1’, we set the true rail

high, which makes the current state ’10’. To send another ’1’,

we set the true rail low and the current state returns to ’00’.

The second basic protocol is the level-encoded dual-rail

(LEDR) protocol [4], as shown on the right side of Figure 5.

Rather than two data rails, the LEDR protocol encodes a data

signal and a repeat signal. The data rail is always set to the

value of the current token. The repeat rail is toggled when the

current token is the same value as the previous token. Unlike

the RT protocol, the value of the most recently sent token can

Fig. 4. The CLB contains input/output connection boxes, four LUTs, and
phase converters.



Fig. 5. The rail transition and LEDR two-phase protocols.

be inferred from the current state. For example, the two shaded

states, ’10’ and ’11’, have most recently sent a ’1’.

Which protocol is superior? The two-phase buffer presented

in [6] works for both protocols. Single bit protocol converters

are roughly the same size for both protocols. However, multi-

bit conversions are cheaper with LEDR because the current

state can be determined without examining the previous state.

In addition, readily knowing the current token value makes

debugging two-phase circuits easier. For these reasons, we

choose the LEDR protocol for our circuits.

The four-phase to two-phase LEDR converter is shown in

Figure 6. The input channel, L, is a standard dual rail channel

composed of a true rail (L.t), false rail(L.f), and an enable

signal(L.e). The output channel, R, is an LEDR based channel

composed of a data rail(R.d), repeat rail(R.r), and an enable

signal(R.e). The en variable is implemented as a dual rail

variable to avoid using back-to-back latches in the converter.

Back-to-back latches introduce some tricky timing constraints

because of the need to satisfy their setup and hold times. The

latency of the converter is three transitions in the worst case

because of the need to invert Lf and Lt. The four-phase to

two-phase converter is about 3x larger than a simple four-

phase buffer.

The two-phase LEDR to four-phase converter takes an

LEDR input, L, and produces a dual rail output, R. The

converter is shown in Figure 7. Similar to the four-phase to

two-phase converter, the enable signal is implemented as a

dual rail variable to avoid the use of back-to-back latches.

This converter also has a forward latency of three transitions

due to inverting the input data rails and is roughly 3x larger

than a simple four-phase buffer.

B. Enhanced 4:4 Switch

Two-phase circuits have the potential to reduce power by up

to 50% compared to four-phase circuits. Unfortunately, two-

phase buffers are significantly larger than four-phase buffers.

There are two ways to implement two-phase routing for a

minimal area impact: i) replace two four-phase stages with

a single two-phase stage, and ii) replace a single four-phase

stage with a single two-phase stage, but undersize the logic on

the backward path to mitigate the area overhead. Typically, the

second option would have a larger area impact, but it provides

Fig. 6. A four-phase to two-phase LEDR converter.

a compelling performance advantage.

When four-phase half-buffers are replaced with two-phase

full-buffers, the amount slack in the pipeline is doubled. This

alters the throughput curve [7] of the pipeline, as shown

in Figure 8. For the hole-limited domain (the right leg of

the triangle), the throughput of the pipeline is greater when

using two-phase circuits. This is a very important result

because it mitigates the negative performance impact of certain

throughput limiting structures, e.g., unbalanced reconvergent

paths and hole-limited loops. The throughput of common such

structures in an FPGA is discussed in the next section.

In addition to being two-phase, each switch has additional

logic to support enable scaling (voltage scaling on enable

signals). Figure 9 shows the resulting two-phase low-power

switch point. The shaded logic can be configured to use the

nominal voltage, Vdd, or a lower voltage , Vddl. This is done

through a virtual Vdd [8]. The programmable c-element labeled

PC2V has a built-in voltage converter. Although it may appear

that this switch point would be much larger than a typical four-



Fig. 7. A two-phase LEDR to four-phase converter.

phase 4:4 switch, it is less than 10% larger. The reason is that

all of the logic on the backward path, namely the XOR and

PC gates, can be downsized by more than 50% and the circuit

will still run at the same frequency of a four-phase 4:4 switch.

This style of enable scaling hardware allows each 4:4 switch

to be enable-scaled individually. There is a single global low

voltage Vddl available on the chip, but each 4:4 switch can be

programmed to use Vddl or the nominal Vdd.

Only a small amount of logic in the two-phase 4:4 switch

runs at a lower voltage. However, most of the capacitance in

the circuit resides on the external wires (the two data rails

and the enable). The capacitance on each external wire (for

a 65 nm process) is 20 fF, 40 fF, and 120 fF for singles,

doubles, and hexes, respectively. This dwarfs the less than 5 fF

capacitances seen on the internal nodes. The lower-voltage

enable rail and one of the nominal-voltage data rails switch

Fig. 8. Throughput improvement in hole-limited domain from using two-
phase routing.

each cycle. Therefore, the amount of capacitance that runs at

a lower voltage is nearly 50%.

IV. ENABLE SCALING

In the previous section, we described hardware that allows

enable scaling in the FPGA interconnect. Every switch in the

switch boxes may be configured to use a global low-voltage

source, Vddl, or the nominal voltage source, Vdd, for its enable

signal. In this section we present the timing analysis needed

to determine which circuits may use the low-voltage enable

without impacting performance.

A. Voltage Scaling

A high level discussion on voltage scaling in asynchronous

architectures can be found in [9]. We focus on voltage

scaling in pipelines where the throughput is limited by the

architecture. Specifically, we consider token limited loops and

reconvergent paths. The goal is to scale voltage in places where

there is no impact on performance.

Typically, the equation for dynamic power consumption is

given as follows:

Pdynamic = CVdd
2F (1)

Fig. 9. The 4:4 low-power switch used in the low-power switch point. The
shaded logic can be configured to use a lower Vdd.



Fig. 10. The operating frequency of a typical asynchronous circuit in a
65 nm process as its supply voltage is scaled.

In this equation, C is the load capacitance, Vdd is the supply

voltage, and F is the operating frequency of the circuit. We

can simplify the relationship between Vdd and dynamic power

via the following:

F ∝ Vdd (2)

Pdynamic ∝ Vdd
3 (3)

The time it takes to charge a capacitor is proportional to

1/Vdd. Therefore, the frequency is proportional to Vdd. The re-

sulting operating frequency for Vdd scaling in a 65 nm process

for a typical asynchronous circuit is shown in Figure 10. We

avoid scaling past .5 V (roughly twice the threshold voltage) in

this technology because it results in extremely slow circuits.

In addition, the power reduction at .5 V is already greater

than 90%. Due to the linear relationship of Vdd and frequency,

dynamic power scales proportionally to Vdd
3.

When circuits are operating at peak throughput, a cubic

reduction in power is possible at the cost of a linear reduction

in frequency. However, when circuits are not operating at peak

throughput, it is possible to reduce power in certain portions

of the circuit with negligible impact on frequency. In these

cases, the frequency has already been reduced due to some

limitation in the architecture and as a result there is a linear

reduction in power. That leaves a possible Vdd
2 reduction in

Fig. 11. Normalized power reduction resulting from Vdd scaling in a typical
asynchronous circuit in a 65 nm technology. Note that this power reduction is
in addition to the power already saved from operating at a reduced frequency.

power when reducing the supply voltage to match the already

limited frequency. Figure 11 shows this additional reduction

in power from voltage scaling for a typical asynchronous

circuit in a 65 nm technology. Two common throughput

limiting structures we will examine are token limited loops

and reconvergent paths.

B. Voltage Scaling and Throughput

The throughput of a pipeline, γ, is often defined as a

function of slack per token, σ, with dynamic slack, r, and

peak throughput, T [7], [10]:

γ(σ) =







T
σr σr ≥ 1

T (σ − 1)
σ(1 − r)

σr ≤ 1

The σr ≥ 1 case occurs when the pipeline is token-limited.

In other words, there aren’t enough tokens to keep the pipeline

running at full throughput. The throughput of this type of

pipeline is limited by the total forward latency divided by the

number of tokens. The σr ≤ 1 case occurs when the pipeline is

hole-limited (a hole is a buffer absent a token). The throughput

of this type of pipeline is limited by the total backward latency

divided by the number of holes.

We consider pipelines composed of one of two types of

buffers. For logic functions, we consider pipelines made from

four-phase half-buffers. For routing, we consider pipelines

made from two-phase full-buffers (all two-phase buffers are

full-buffers). The throughput of four-phase(4h) and two-

phase(2f) logic is computed as follows:

4h : T = min

(

k

nlf
,
n − 2k

2nlb

)

2f : T = min

(

k

nlf
,
n − k

nlb

)

(4)

In the above, k is the number of tokens, n is the number

of pipeline stages, lf is the forward latency, and lb is the

backward latency. Note that the token-limited case is the same

in both full-buffers and half-buffers.

We envision two possible ways to scale voltage in asyn-

chronous circuits. The first method is to simply scale Vdd.

This increases both the forward and backward latencies of

each stage in a pipeline. The second method is to scale the

voltage of only the enable (acknowledge) signals and their

associated logic. This method keeps the forward latency fixed,

but increases the backward latency of each stage.

Figure 12 shows the impact on throughput when applying

each method of voltage scaling in a ten-stage half-buffer

pipeline. The outermost triangle (solid line) is the throughput

of the pipeline without any scaling (the left leg corresponds to

the token-limited domain and the right leg corresponds to the

hole-limited domain). The innermost triangle formed by the

dotted and dashed lines represents the throughput when Vdd is

reduced by 40%. All points off of the base of the triangle have

worse throughput than the nominal Vdd triangle. The triangle

with a dashed right leg and solid left leg corresponds to the

throughput of the pipeline when the enables are scaled by



Fig. 12. Impact of Vdd and enable scaling on throughput of a ten-stage
half-buffer pipeline.

40%. Much of the left leg of this triangle is shared with the

nominal Vdd case. This makes enable scaling ideal in cases

where the pipeline is always token-limited. By and large, user

designs that run on an asynchronous FPGA are token-limited.

Therefore, enable scaling is our preferred method of voltage

scaling.

1) Loops: Loops are ubiquitous in any reasonably complex

design. The key to running loops at peak throughput is to have

just enough tokens in the loop so that no stage is ever waiting

for a token. This happens when n = k(2lf +2lb)/lf for four-

phase buffers and n = k(lf + lb)/lf for two-phase buffers.

Three examples of loops are shown in Figure 13. Loops are

usually token-limited, rather than hole-limited. This is because

adding initial tokens to a loop changes the computation, while

adding buffers does not. As a result, loops will often operate

on the left leg of the solid triangle in Figure 12. This is an

ideal case for enable scaling because the enable voltage can be

reduced to some degree without any impact on the throughput.

In order to apply enable scaling to loops, we need to choose

the appropriate voltage for the enable signal that saves the most

Fig. 13. Three examples of loops. The head of a token is represented by the
largest darkest circle. The tail of the token is the smallest lightest circle.

Fig. 14. An example of a reconvergent path. On some cycles the bottom
pipeline is stalled and on some cycles the top pipeline is stalled.

power without reducing throughput. This is achieved through a

two-step process. The first step is to find the largest backward

latency that will not impact the throughput of a token-limited

loop. This occurs when the hole-limited domain intersects the

loop’s operating point on the token-limited domain. For four-

phase half-buffers, we solve the following for lb
′, the increased

backward latency:
k

nlf
=

n − 2k

2nlb
′

The lb
′ for four-phase(4h) and two-phase(2f) logic is as

follows:

4h : lb
′ =

lf (n − 2k)

2k
2f : lb

′ =
lf (n − k)

k
(5)

The second step is to characterize the relationship between

enable scaling and the backward latency of a specific buffer

stage through analog circuit simulation. The optimal value of

lb
′ is then cross-referenced against these results to select the

best voltage for the enable signal.

2) Reconvergent Paths: Reconvergent paths are another

common structure found in asynchronous architectures. This

type of structure is formed whenever a copy is made of a

token and both the original and the copy are later used together

in some computation. An example of a reconvergent path is

shown in Figure 14. When the paths are unbalanced, each

can stall the other at different cycles. A reconvergent path

will run at full throughput if the amount of slack (buffering)

on each pipeline is matched. One of the main goals of an

asynchronous designer is to make sure that slack is matched

across parallel pipelines in a reconvergent path. However, this

is a difficult goal to achieve in reconfigurable architectures

where the length and composition of each pipeline are not

known at design-time.

The throughput of a reconvergent path is the minimum of

each pipeline’s throughput [10]:

γ‖(σa, σb) = min(γa(σa), γb(σb))

The throughput of short, ten-stage, and long, 20-stage, half-

buffer pipelines are shown in Figure 15. The throughput of

the composition of these pipelines is the overlapping triangle

with a solid line on its left leg and a dotted line on its right

leg. In the steady-state, the number of tokens in this structure

is determined by the intersection of the token-limited domain



Fig. 15. The throughput of the composition of short, ten-stage, and long,
20-stage, half-buffer pipelines. Enable scaling is shown for the long pipeline.

of the long pipeline and the hole-limited domain of the short

pipeline. Solving for the number of tokens, k, in four-phase

and two-phase buffer pipelines results in the following:

4h : k =
nlnslf

2(nslb + nllf )
2f : k =

nlnslf
nslb + nllf

(6)

The variables nl and ns represent the number of stages in

the long and short pipelines, respectively. Substituting these

values back into Equation 4 results in the following throughput

equations for half-buffers and full-buffers:

4h : T =
ns

2(nslb + nllf )
2f : T =

ns

nslb + nllf
(7)

Based on Figure 15, reconvergent paths are another ideal case

for enable scaling. However, we would like to scale the enable

on the long path only. Scaling the enable on both paths would

hurt the throughput because it drops the intersection point on

the left leg (solid line) of the throughput triangle.

As we did with loops, we would like to find the largest

backward latency (for the long pipeline) that will not reduce

throughput. For reconvergent paths, this occurs when the

hole-limited domain of the long pipeline intersects with the

throughput. For four-phase half-buffer pipelines, we solve the

following for lb
′:

T =
nl − 2k

2nllb
′

Substituting k with Equation 6 and T with Equation 7, yields

the following equations for lb
′:

4h : lb
′ =

nllf
ns

+ lb − lf 2f : lb
′ =

nllf
ns

+ lb − lf (8)

3) Reconvergent Paths with Initial Tokens: When there

aren’t any initial tokens, parallel pipelines in a reconvergent

path each contain an equal number of tokens. Tokens enter/exit

each pipeline simultaneously. However, if one of the pipelines

is initialized with k0 initial tokens, then it will always contain

k0 more tokens than the other pipeline. Initializing both

pipelines with the same number of tokens is equivalent to

not having any initial tokens. Approaching the steady-state,

tokens will be added or removed from the pipelines until they

contain an optimal number of tokens. Therefore, we are only

Fig. 16. The throughput of the composition of short, ten-stage, and long,
20-stage, half-buffer pipelines. The throughput plot for the long pipeline is
shifted left when two initial tokens are added (dashed line).

concerned with the difference between of the number of initial

tokens in each pipeline. We define k0 as difference between the

number of initial tokens in each pipeline. We define k as the

number of shared tokens between each pipeline (the number

of tokens in the pipeline with fewer initial tokens). Pf and

Pm are the pipelines with fewer initial tokens and more initial

tokens, respectively. The number of stages in Pf and Pm are

nf and nm.

In relation to Pf , the throughput curve of Pm is shifted left

as k0 increases. The throughput for the pipeline with more

initial tokens is:

4h : Tm = min

(

k + k0

nmlf
,
nm − 2(k + k0)

2nmlb

)

2f : Tm = min

(

k + k0

nmlf
,
nm − (k + k0)

nmlb

)

(9)

In Figure 16, the longer pipeline is Pm. At k0 = 0 the peak of

long pipeline is to the right of the peak of the short pipeline

and at k0 = 2 the peak of the long pipeline is to the left of

the peak of the short pipeline. This is significant because the

ordering of their peaks changes which legs of each throughput

curve intersect to form the composite throughput curve. When

k0 = 0, we can compare nf and nm directly to determine

which has an earlier peak. However, at k0 6= 0 the position of

the peak corresponds to a pipeline with nm
′ = nm − k0τ/lf

stages. Therefore, we compare nf with nm
′ to determine the

relative ordering of the peaks.

When nf ≤ nm
′ the throughput is limited by the intersec-

tion of the hole-limited domain of Pf and the token-limited

domain of Pm. When nf ≥ nm
′ the throughput is limited

by the intersection of the hole-limited domain of Pm and the

token-limited domain of Pf . We solve for k at the intersection

for each case:

4h : k =











nf (nmlf − 2k0lb)
2(nf lb + nmlf )

nf ≤ nm
′

nf lf (nm − 2k0)
2(nmlb + nf lf )

nf ≥ nm
′



2f : k =











nf (nmlf − k0lb)
nf lb + nmlf

nf ≤ nm
′

nf lf (nm − k0)
nmlb + nf lf

nf ≥ nm
′

(10)

Substituting the above for k in Equation 9 yields the following

equations for throughput:

4h : T =











nf + 2k0

2(nf lb + nmlf )
nf ≤ nm

′

nm − 2k0

2(nmlb + nf lf )
nf ≥ nm

′

2f : T =











nf + k0

nf lb + nmlf
nf ≤ nm

′

nm − k0

nmlb + nf lf
nf ≥ nm

′
(11)

As we did in the previous subsection, we need to find the

target lb
′ for enable scaling. When nf ≤ nm

′ we intersect the

hole-limited domain of nm with point (k, T ) on the throughput

graph. When nf ≥ nm
′ we intersect the hole-limited domain

of nf with point (k, T ) on the throughput graph. This yields

the following:

4h : lb
′ =











nf lb + nmlf
(nf + 2k0)

− lf nf ≤ nm
′

nmlb + nf lf
(nm − 2k0)

− lf nf ≥ nm
′

2f : lb
′ =











nf lb + nmlf
(nf + k0)

− lf nf ≤ nm
′

nmlb + nf lf
(nm − k0)

− lf nf ≥ nm
′

(12)

4) Determining Vddl: In order to choose the correct voltage

for enable scaling, we characterize the backward latency for

a 4:4 enhanced switch in the target process (65 nm) using

Hspice. We assume that we can accurately adjust the voltage

by increments of .05V . Figure 17 shows the backward latency,

lb
′, (left y-axis) as we scale the enable signal from 1V to

.5V . It also shows the power reduction (right y-axis) resulting

from enable scaling from 1V to .5V . Note that the power

reduction displayed is in addition to the reduction that results

from operating at the reduced frequency.

Although we have reversed the x-axis, lb
′ follows f(x) =

1/x. This is as expected because the delay is proportional to

1/Vdd. As a result, lb
′ increases slowly through about .75V

Fig. 17. Relationship of lb
′ to normalized power during enable scaling for

an enhanced 4:4 switch.

and then more quickly as we approach .5V . This means that

small increases in lb
′ initially result in large voltage drops for

the enable signal, but after about .75V it takes larger increases

in lb
′ to see addition drops in voltage.

We can choose the appropriate Vddl by first finding lb
′ from

Equations 5 and 12, depending on the situation, and cross-

referencing that value with Figure 17. For example, suppose

the target switch is in a token-limited loop that can tolerate a

backward latency, lb
′, of 400 ps. From this graph, we see that

we can scale Vddl down to .75V without exceeding a 400 ps

backward latency. This graph also shows that we can expect

a more than 20% drop in power at this voltage.

5) Operating vs. Potential Throughput: For the purposes

of timing analysis, we can construct a graph representation of

user designs that have been mapped to the FPGA. Each node

in the graph represents a buffer stage in the FPGA, e.g., LUTs

and switches. From this graph, we can identify throughput lim-

iting loops and reconvergent paths. The operating throughput,

TO, of all the nodes in the graph is limited by:

1) the least throughput node anywhere in the graph

2) the least throughput loop anywhere in the graph

3) the least throughput reconvergent path anywhere in the

graph

Although each node is limited by TO, they may have a much

higher potential throughput, TP . Figure 18 shows a simple

graph with three potential throughput limiting structures, i.e.,

Loop 1, Loop 2, and RCP 1. The TO of the graph is limited

by the structure with the least throughput. The TP of the

shaded node may be higher than TO because it is only affected

by the throughput of Loop 1. If TP > TO, then some

amount of enable scaling is possible. The precise amount of

enable scaling can be determined by methods described in this

section. Specifically, we find the backward latency, lb
′, that

makes TP = TO, then cross-reference lb
′ with a characteriza-

tion of the underlying circuit implementation, similar to that

shown in Figure 17. Note, the interactions between loops and

reconvergent paths may be more complex than what is depicted

in Figure 18. In some cases, more sophisticated analysis was

needed to approximate the throughput.

6) Determining Global Vddl: Once we know the minimal

enable voltage for each node, Vddli, determining the global

Vddl is straightforward. Vddl can be anywhere from 1 V to

.5 V at increments of 50 mV. Therefore, there are only 11

possible values for Vddl. For each possible Vddl, we compare

Vddl to the Vddli of each node. If Vddl < Vddli, then no power

savings are possible in this node. If Vddl ≥ Vddli, then we

can lookup the associated power reduction for the underlying

circuit with an enable operating at Vddl (similar to Figure 17).

We choose a global Vddl that maximizes the overall power

reduction.

V. EVALUATION SETUP

A. FPGA Simulation Environment

Table I highlights the most important architectural param-

eters of the target asynchronous FPGA. This architecture is

designed to support all of the pipelined MCNC LGSynth93

benchmarks. Simulations are performed by generating a netlist



Fig. 18. The operating frequency of the shaded node is limited by the least
throughput structure of the two loops and reconvergent path.

for each design and running them in our digital simulator,

prsim. The simulator is back-annotated with delays measured

in HSpice. Power numbers are determined by simulating each

distinct circuit in HSpice at the appropriate frequencies and

voltages. We sum the power of each individual circuit to

determine the overall power consumption of the design.

B. Benchmarks

The benchmarks used in our evaluations are listed in Ta-

ble II. These are 8 of the 20 MCNC LGSynth93 bench-

marks [11]. Only ten of the MCNC LGSynth93 benchmarks

are pipelined and two were excluded because they ran at less

than 100 MHz.

Each benchmark was mapped to our CLB design using T-

VPack, then VPR was used to place and route the benchmark

on our FPGA architecture [12]. The synchronous benchmarks

were mapped to the asynchronous architecture by simply

converting all flops in the design into initial tokens. The only

additional hardware needed to support this is a configurable

initial token on the output of each LUT.

VI. RESULTS

A. Area Estimates

Table III lists the area estimates for main components for

the baseline FPGA and the low-power version. These area

TABLE I
TARGET FPGA ARCHITECTURAL PARAMETERS.

FPGA

Fabric Maximum Frequency 1.5 GHz

Process Technology 65 nm

Switch Box 32 x 32 Disjoint Network

Wire Segments 12 Singles, 12 Doubles, and 8 Hexes

Logic Core 4 4-input LUTs

Array Size 48 x 48

Place and Route VPR

TABLE II
THE EIGHT MCNC LGSYNTH93 BENCHMARK CIRCUITS USED IN

EVALUATIONS.

Name Array Size LUT Count

bigkey 36 x 36 1707

clma 47 x 47 8383

diffeq 20 x 20 1497

dsip 36 x 36 1370

elliptic 31 x 31 3604

frisc 30 x 30 3556

s38584.1 41 x 41 6447

tseng 17 x 17 1047

estimates are determined by comparing the total diffusion area

of the sized netlist for each component against the post-layout

area of similar circuits in this technology. Overall, the low-

power FPGA is only about 12% larger than the baseline FPGA.

The largest area increase occurs in the low-power CLB,

which is about 36% larger than the baseline CLB. However, in

practice this area increase would be much less. Typically, the

logic core would contain a number of full-adders which would

help to amortize the cost of the phase converters. In addition,

the logic core could be altered to use two-phase bundled-data,

which would be more compatible with the two-phase routing.

Converting from LEDR to two-phase bundled-data is much

cheaper than converting from LEDR to QDI.

B. Power and Performance

Figure 19 shows the operating frequency of each benchmark

with four-phase (baseline), two-phase, and two-phase enable-

scaled routing. None of the benchmarks come within 40%

of the peak frequency of the underlying architecture. This

is partly due to the fact that a synchronous place and route

tool, VPR, was used to map the designs to the FPGA. (An

academic asynchronous place and route tool does not exist

yet.) However, even if an asynchronous place and route were

used, these benchmarks do not contain enough pipelining to

run near the peak frequency of the technology. Synthesis at

a much higher level would be required to take full advantage

of the high-speed asynchronous FPGA. Even at these speeds,

some of these benchmarks may be 2-3 x faster than they would

be running on a synchronous FPGA.

Moving from four-phase routing to two-phase routing re-

sults in a 40% performance improvement in bigkey and dsip,

and a 70% performance improvement in elliptic. These designs

were limited by either a reconvergent path or a hole-limited

loop. Two-phase circuits double the slack in the routing,

which drastically improves the throughput in these structures.

Due this performance increase, the power reduction in these

benchmarks from two-phase routing is much less than the

TABLE III
ESTIMATED AREA OVERHEADS FOR THE LOW-POWER FPGA CIRCUITS.

Circuit Area Overhead

Low-Power Switch Point 8%

Low-Power Switch Box 8%

Low-Power CLB 36%

Low-Power FPGA 12%



Fig. 19. Operating frequency of each benchmark for four-phase, two-phase,
and two-phase enable-scaled routing.

other five benchmarks, as shown in Figure 20. The bigkey

benchmark has a 15% power decrease, dsip has a 30% power

decrease, and elliptic has a 3% increase. There is a 40% power

decrease in the remaining benchmarks. The full 50% power

decrease is never seen because the slight area increase from

using two-phase circuits makes the wires in the routing a

bit longer and more capacitive. However, even a 40% power

reduction is quite large.

Enable scaling provides an additional 28% power reduc-

tion across all benchmarks. The choice of Vddl for clma

and s38584.1 is .55 V and .5 V is used for all the other

benchmarks. The power reductions are close to the theoretical

35% power reduction possible from enable scaling down

to these operating frequencies. This occurs because a high

percentage of switches can be enable scaled. The structures

that prevent enable scaling, such as being on the short path

of a reconvergent path or on a hole-limited loop, are rare.

In addition, two-phase routing fixes some of these structures

and prevents them from limiting enable scaling. Although

elliptic sees a total power reduction of only 25% because of its

70% performance increase, the other benchmarks experience

a power reduction of 40% - 60%.

Fig. 20. Normalized power consumption of each benchmark for four-
phase, two-phase, and two-phase enable-scaled routing. All benchmarks are
normalized to the clma benchmark.

VII. CONCLUSIONS

The interconnect in asynchronous FPGAs consumes a large

amount of power compared to synchronous FPGA intercon-

nect. Roughly 80-90% of total power consumption in an

asynchronous FPGA is attributed to its buffered interconnect.

We presented two techniques to reduce power consumption

in asynchronous FPGA interconnect: i) two-phase logic, and

ii) enable scaling. We designed hardware to support these

techniques and presented the analysis to determine where

and when to apply enable scaling. For eight of the MCNC

LGSynth93 benchmarks, two-phase interconnect provides up

to a 70% performance improvement and up to a 40% power

reduction. The enable scaling circuits provide an additional

30% power reduction across these benchmarks. The total

power reduction for applying both these methods is up to 60%.
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